Introduction to the Theory of Computation

Final exam

16 August 2017

Closed-book. Duration: 3h30.
Please answer each question on a separate sheet with your name and section. Motivate all your answers and give sufficient details.

1. a) Is the set of all functions from $\{0,1\}$ to \mathbb{N} denumerable?
b) Is the set of all functions from \mathbb{N} to $\{0,1\}$ denumerable?
2. Let L be the language of the words w over the alphabet $\{0,1\}$ that respect at least one of the following conditions:

- w contains the substring 010
- w does not contain the substring 11 .
a) Give a NFA that accepts L.
b) Give a DFA that accepts L.
c) Give a regular grammar that generates L.

3. a) Let L be the language of all words w over the alphabet $\{0,1\}$ such that the length of w is odd and the middle symbol of w is a 0 . Is L regular? Is it context-free?
b) Is it correct that every regular language is also a context-free language? And vice-versa, is every context-free language also a regular language?
4. a) Show that $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $j=k$ where $\left.i, j, k \geqslant 0\right\}$ is a context-free language by giving a pushdown automaton that accepts L as well as a context-free grammar that generates L.
b) State the pumping lemma for context-free languages.
5. a) For Turing machines, define the notions of configuration, derivation, execution, accepted language and decided language.
b) State the Church-Turing Thesis. What type of justification can be given for this thesis?
6. a) Show that $\operatorname{NbDivs}(n)$ that computes the number of divisors of n is primitive recursive. Is NbDivs μ-recursive?
Hint: Use an auxilary function $\operatorname{NbDivsAux}(n, m)$ that computes the number of divisors of n that are less than or equal to m.
b) Do there exist computable functions that are not primitive recursive? Justify your answer.
7. a) Let M_{1} and M_{2} be two Turing Machines that accept the languages L_{1} and L_{2} respectively. Show that determining whether there exists $w \in L_{1}$ such that M_{2} stops on w is undecidable.
b) Why are the languages accepted by a Turing machine also called "recursively enumerable"? Prove your statement.
8. a) Define the complexity class $N P$ and the complexity measures used in this definition.
b) State Cook's theorem. In the proof of Cook's theorem, which problem is encoded by a boolean formula?
