Introduction to the Theory of Computation

Final exam

16 August 2017

Closed-book. Duration: 3h30.

Please answer each question on a separate sheet with your name and section. Motivate all your answers and give sufficient details.

- 1. a) Is the set of all functions from $\{0,1\}$ to \mathbb{N} denumerable?
 - b) Is the set of all functions from \mathbb{N} to $\{0,1\}$ denumerable?
- 2. Let L be the language of the words w over the alphabet $\{0, 1\}$ that respect at least one of the following conditions:
 - w contains the substring 010
 - w does not contain the substring 11.
 - a) Give a NFA that accepts L.
 - b) Give a DFA that accepts L.
 - c) Give a regular grammar that generates L.
- 3. a) Let L be the language of all words w over the alphabet $\{0, 1\}$ such that the length of w is odd and the middle symbol of w is a 0. Is L regular? Is it context-free?
 - b) Is it correct that every regular language is also a context-free language? And vice-versa, is every context-free language also a regular language?
- 4. a) Show that $L = \{a^i b^j c^k \mid i = j \text{ or } j = k \text{ where } i, j, k \ge 0\}$ is a context-free language by giving a pushdown automaton that accepts L as well as a context-free grammar that generates L.
 - b) State the pumping lemma for context-free languages.

- 5. a) For Turing machines, define the notions of *configuration, derivation, execution, accepted language* and *decided language*.
 - b) State the Church-Turing Thesis. What type of justification can be given for this thesis?
- a) Show that NbDivs(n) that computes the number of divisors of n is primitive recursive. Is NbDivs μ-recursive? *Hint:* Use an auxiliary function NbDivsAux(n, m) that computes the number of divisors of n that are less than or equal to m.
 - b) Do there exist computable functions that are not primitive recursive? Justify your answer.
- 7. a) Let M_1 and M_2 be two Turing Machines that accept the languages L_1 and L_2 respectively. Show that determining whether there exists $w \in L_1$ such that M_2 stops on w is undecidable.
 - b) Why are the languages accepted by a Turing machine also called "recursively enumerable"? Prove your statement.
- 8. a) Define the complexity class *NP* and the complexity measures used in this definition.
 - b) State Cook's theorem. In the proof of Cook's theorem, which problem is encoded by a boolean formula?