Introduction to the Theory of Computation

Final exam

19 August 2016

Closed-book. Duration: 3h30.
Please answer each question on a separate sheet with your name and section. Motivate all your answers and give sufficient details.

1. a) Is an infinite subset of a set that is non-denumerable necessarily non-denumerable?
b) Is the union of two denumerable sets necessarily denumerable?
c) Show, using a cardinality argument, that there must exist uncomputable functions from \mathbb{N} to \mathbb{N}.
2. a) Give a DFA that accepts the language

$$
L_{1}=\left\{w \mid w \in\{a, b\}^{*}, N_{a}(w)=2 \bmod 4\right\}
$$

where $N_{\sigma}(w)$ is the number of letters σ contained in the word w.
b) Give a DFA that accepts the language

$$
L_{2}=\left\{w \mid w \in\{a, b\}^{*}, a a \notin \operatorname{Fact}(w)\right\}
$$

c) Give a regular grammar that generates $\overline{L_{1} \cup L_{2}}$.
3. a) Using the pumping lemma, show that the language $\left\{a^{3 n} b^{n} c^{*} \mid n \in\right.$ $\mathbb{N}\}$ is not regular.
b) Let L_{1} and L_{2} be two regular languages over the same alphabet Σ. Is the language $L_{1} \oplus L_{2}$ that contains the words that belong to only one of the two languages regular?
4. a) Is the language $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $j=k$ where $\left.i, j, k \geqslant 0\right\}$ context-free?
b) Show that the intersection of two context-free languages is not necessarily context-free. Use this to deduce that the complement of a context-free language is not necessarily context-free. Give a sufficient criterion for the intersection of two context-free languages to be context-free.
5. a) For a Turing machine M, define the notions of configuration, derivation, execution, accepted language and decided language.
b) Give a Turing machine that decides the language $L=\left\{a^{n} b^{2 n} \mid\right.$ $n \geqslant 0\}$ defined over the alphabet $\Sigma=\{a, c, b\}$. Explain briefly the role of each state of the Turing machine.
6. a) Define primitive recursive functions.
b) Show that the function $\operatorname{SumSquares}(n)$, that computes the sum of the squares from 0 up to n (e.g. SumSquares $(3)=0^{2}+1^{2}+2^{2}+3^{2}$), is primitive recursive.
7. Let M be a Turing machine and q one of its states. Show that the problem that consist in determining whether there exists a word such that M stops in state q is undecidable.
Hint: Use the existential halting-problem.
8. a) Consider $L \in N P$. Show that there exists a deterministic Turing machine M and a polynomial $p(n)$ such that M decides L and has a time complexity bounded by $2^{p(n)}$.
b) State Cook's theorem and explain its importance.

