Introduction to the Theory of Computation

Final exam

25 August 2015

Closed-book. Duration: 3h30.
Please answer each question on a separate sheet with your name and section. Motivate all your answers and give sufficient details.

1. a) Is the set containing all finite binary trees denumerable?
b) Give a sufficient criterion for the complement of a denumerable set to be denumerable?
2. a) Let L be the language on the alphabet $\{a, b\}$ of the words that contain an even number of letters a and an odd number of letters b, thus
$L=\{w \mid w$ contains an even number of a 's and an odd number of b 's $\}$
Give a DFA that accepts L and a regular grammar that generates L^{R}.
b) Prove that every nondeterministic finite automaton can be converted to an equivalent one that has a single accepting state.
3. a) Is the language $\left\{a^{k} b^{3 k} c^{n} d^{3 n} \mid k, n \in \mathbb{N}\right\}$ regular? Is it context-free?
b) Let L_{1} and L_{2} be two regular languages over the alphabets Σ_{1} and Σ_{2} respectively. Is the language $L_{1} \oplus L_{2}$ that contains all the words that belong only to one of the two languages always a regular language?
4. a) Is the language $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $j=k$ where $\left.i, j, k \geqslant 0\right\}$ context-free?
b) Given a context-free language L, do there exist algorithms for checking if $L=\varnothing$ or $L=\Sigma^{*}$? If so, give the algorithm.
5. a) For a Turing machine M, define the notions of accepted and decided language. Give an example of a language that is accepted but not decided by a Turing machine and an example of a language that is decided but not accepted by a Turing machine, or explain why such an example does not exist.
b) Construct a Turing machine that computes the function $f(x)=$ x div 2 where div is the integer division and where x is encoded using a unary alphabet, so that x is represented by x repetitions of the single letter of the alphabet. For example, if the initial tape content is \#11111\#, the final tape content has to be \#11\#.
6. a) Let $n, m \in \mathbb{N}$ with $m \neq 0$. The function $\operatorname{Divceil}(n, m)$ computes the value of $\frac{n}{m}$ rounded to the smallest following integer, that is

$$
\operatorname{Divceil}(n, m)=\left\lceil\frac{n}{m}\right\rceil
$$

Example: $\operatorname{Divceil}(6,3)=2$ and $\operatorname{Divceil}(8,3)=3$. Is the function $\operatorname{Divceil}(n, m)$ primitive recusrive and / or μ-recursive?
b) Prove that there exist computable functions that are not primitive recursive.
7. a) Explain what the "reduction technique" is.
b) Let M be a Turing machine and x, y and z three words. Show that determining whether all the words in the language $L=x y^{*} z$ are accepted by M is undecidable.
8. a) Let $L \in N P$, is L decidable? Give a counter-example or prove your statement.
b) Represent regular and context-free languages as well as the classes of languages $R, R E, P, N P$ and $N P C$ in a Venn diagram showing inclusions between these classes. Which of these inclusions are not yet known to be proper?

