Introduction to computability

Final exam

27 August 2014

Closed-book. Duration: 3h30
Please answer each question on a separate sheet with your name and section. Motivate all your answers and give sufficient details.

1. a) Is the set $\mathbb{N} \times\{0,1\}$ denumerable?
b) Is the set of Java programs denumerable?
2. a) Give a DFA that accepts the language L_{1} containing all the words on the alphabet $\{a, b\}$ that begin with a and end with b.
b) Give a DFA that accepts the language L_{2} containing all the words on the alphabet $\{a, b\}$ that contain at least three a 's. In other words,

$$
L_{2}=\left\{w \mid N_{a}(w) \geqslant 3\right\}
$$

where $N_{\sigma}(w)$ is the number of letters σ contained in the word w.
c) Give a DFA that accepts $L_{1} \cap L_{2}$.
3. a) Show that the language $L=\left\{w w w \mid w \in\{a, b\}^{*}\right\}$ is not regular.
b) Does there exist a regular language L_{1} such that for every contextfree language L_{2} one has $L_{1} \subseteq L_{2}$? And does there exist a regular language L_{1} such that for every context-free language L_{2} one has $L_{2} \subseteq L_{1}$?
Let L_{1} be a regular language and L_{2} a language such that $L_{2} \subseteq L_{1}$. Does this imply that L_{2} is a regular language?
4. a) Let $\Sigma=\{a, b, c\}$, show that

$$
L=\{w \mid \text { the length of } w \text { is odd and its middle symbol is a } c\}
$$

is context-free by giving a pushdown automaton that accepts L as well as a context-free grammar that generates L.
b) State the pumping lemma for context-free languages.
5. a) For a Turing machine M, define the notions of configuration, derivation, execution, accepted language and decided language.
b) Give a Turing machine that computes the function $n \mapsto 2 n$. Consider that numbers are encoded using a unary alphabet, so that n is represented by n repetitions of the unique letter of the alphabet. If q_{0} is an initial state and q_{f} a final state of the Turing machine, you must for instance have

$$
q_{0} \cdot \underline{111 \# \vdash^{*} q_{f} \cdot 111111 \#}
$$

6. a) Show that the function $\operatorname{nbfact}(n, f)$, where n is an integer and f a prime number, that computes the multiplicity of f in the prime factorization of n, is primitive recursive. For example, $\operatorname{nbfact}(18,3)=2$ as $18=2 * 3 * 3$ and $\operatorname{nbfact}(18,5)=$ 0.

Remark: You can use any primitive recursive functions and predicates seen in the lectures.
b) Define μ-recursive predicates. Why are they of interest in computability theory?
7. a) Given two Turing machines M_{1} and M_{2}, accepting respectively the languages L_{1} and L_{2}. Show that the problem of determining if $L_{1} \cap L_{2}=\varnothing$ is undecidable.
b) Define the classes R and RE. What can you say about a language L and its complement \bar{L} with respect to membership in R and RE?
8. a) Give an explicit statement of Cook's theorem and explain its importance.
b) Prove that 3SAT is NP-complete.
c) What is the difference between NP-complete and NP-hard problems?

