Introduction to computability

Final exam

27 August 2014

Closed-book. Duration: 3h30

Please answer each question on a separate sheet with your name and section. Motivate all your answers and give sufficient details.

- 1. a) Is the set $\mathbb{N} \times \{0, 1\}$ denumerable?
 - b) Is the set of Java programs denumerable?
- 2. a) Give a DFA that accepts the language L_1 containing all the words on the alphabet $\{a, b\}$ that begin with a and end with b.
 - b) Give a DFA that accepts the language L_2 containing all the words on the alphabet $\{a, b\}$ that contain at least three *a*'s. In other words,

$$L_2 = \{ w \mid N_a(w) \ge 3 \}$$

where $N_{\sigma}(w)$ is the number of letters σ contained in the word w.

- c) Give a DFA that accepts $L_1 \cap L_2$.
- 3. a) Show that the language $L = \{www \mid w \in \{a, b\}^*\}$ is not regular.
 - b) Does there exist a regular language L_1 such that for every contextfree language L_2 one has $L_1 \subseteq L_2$? And does there exist a regular language L_1 such that for every context-free language L_2 one has $L_2 \subseteq L_1$? Let L_1 be a regular language and L_2 a language such that $L_2 \subseteq L_1$. Does this imply that L_2 is a regular language?

4. a) Let $\Sigma = \{a, b, c\}$, show that

 $L = \{w \mid \text{the length of } w \text{ is odd and its middle symbol is a } c\}$

is context-free by giving a pushdown automaton that accepts L as well as a context-free grammar that generates L.

b) State the pumping lemma for context-free languages.

- 5. a) For a Turing machine M, define the notions of *configuration*, *derivation*, *execution*, *accepted language* and *decided language*.
 - b) Give a Turing machine that computes the function $n \mapsto 2n$. Consider that numbers are encoded using a unary alphabet, so that n is represented by n repetitions of the unique letter of the alphabet. If q_0 is an initial state and q_f a final state of the Turing machine, you must for instance have

$$q_0 \cdot \underline{1}11 \# \vdash^* q_f \cdot 111111 \underline{\#}$$

- 6. a) Show that the function nbfact(n, f), where n is an integer and f a prime number, that computes the multiplicity of f in the prime factorization of n, is primitive recursive.
 For example, nbfact(18,3) = 2 as 18 = 2*3*3 and nbfact(18,5) = 0.
 Remark: You can use any primitive recursive functions and predicates seen in the lectures.
 - b) Define μ -recursive predicates. Why are they of interest in computability theory?
- 7. a) Given two Turing machines M_1 and M_2 , accepting respectively the languages L_1 and L_2 . Show that the problem of determining if $L_1 \cap L_2 = \emptyset$ is undecidable.
 - b) Define the classes R and RE. What can you say about a language L and its complement \overline{L} with respect to membership in R and RE?
- 8. a) Give an explicit statement of *Cook's theorem* and explain its importance.
 - b) Prove that 3SAT is NP-complete.
 - c) What is the difference between NP-complete and NP-hard problems?