Introduction to the Theory of Computation

Final exam

24 January 2017

Closed-book. Duration: 3h30.

Please answer each question on a separate sheet with your name and section. Motivate all your answers and give sufficient details.

- 1. a) Is the set of all functions from $\{0,1\}$ to \mathbb{N} denumerable?
 - b) Is the set of all functions from \mathbb{N} to $\{0,1\}$ denumerable?
- 2. Let L be the language of the words w over the alphabet $\{a, b, c\}$ that respect at least one of the following conditions:
 - w contains one or more letters and begins and ends with the letter b
 - $N_a(w) + N_c(w)$ is a multiple of 3, where $N_{\sigma}(w)$ is the number of letters σ in the word w.
 - a) Give a NFA that accepts L.
 - b) Give a DFA that accepts L.
 - c) Give a regular grammar that generates L.
- 3. a) Let L be the language over the alphabet $\{<, >, !\}$ generated by the following grammar where S is the start symbol

$$S \to \langle S \rangle \mid \rangle S \langle \varepsilon \rangle \mid \varepsilon$$

$$E \to !E \mid \varepsilon;$$

- i. Describe L.
- ii. Is L a regular language?
- iii. Is L a context-free language?
- b) Let L_1 be a regular language and L_2 a language such that $L_2 \subseteq L_1$. Is L_2 necessarily a regular language?

- 4. a) Give a pushdown-automaton that accepts the words over the alphabet $\{a, b, c\}$ where the number of a's is equal to the number of b's and where each letter a is followed by cc.
 - b) Given a context-free grammar G, give an algorithm for checking if $L(G) = \emptyset$.
- 5. a) Give the definition of a non-deterministic Turing Machine and prove that any language that is accepted by a non-deterministic Turing Machine is also accepted by a deterministic Turing Machine.
 - b) Why are Turing Machines of interest in computability theory even though they are quite different from the machines in current use?
- 6. a) Define the notion of *primitive recursive* functions as well as the concepts used in this definition.
 - b) Show that AbsDiff(a, b) = |a b| is primitive recursive. Is AbsDiff μ -recursive?
- 7. a) Define the classes R and RE. What can you say about a language L and its complement \overline{L} with respect to membership in R and RE?
 - b) Let M be a Turing Machine and x, y and z three words. Show that determining wheter all the words in the language xy^*z are accepted by M is undecidable.
- 8. a) Define the complexity class *NP* and the complexity measures used in this definition.
 - b) Let $L \in NP$. Is L decidable? Prove your statement.