Introduction to the Theory of Computation

Final exam

15 January 2016

Closed-book. Duration: 3h30.
Please answer each question on a separate sheet with your name and section. Motivate all your answers and give sufficient details.

1. a) Is the set of all closed intervals of \mathbb{R} with rational bounds denumerable?
b) Is the set of all regular expressions over a finite alphabet Σ denumerable? What happens when Σ is infinite (but denumerable)?
2. a) Give a DFA that accepts the language

$$
L_{1}=\left\{w \mid w \in\{a, b\}^{*}, N_{a}(w)=2 \bmod 4\right\}
$$

where $N_{\sigma}(w)$ is the number of letters σ contained in the word w.
b) Give a DFA that accepts the language

$$
L_{2}=\left\{w \mid w \in\{a, b\}^{*}, a a \notin \operatorname{Fact}(w)\right\}
$$

c) Give a regular grammar that generates $\overline{L_{1} \cup L_{2}}$.
3. a) Is the language $\left\{a^{m} b^{n} c^{\max (m, n)} \mid m, n \in \mathbb{N}\right\}$ regular?
b) Is the language of all well-parenthesized expressions regular? Example: (()()).
4. a) State and prove the pumping lemma for context-free languages.
b) Is the language $L=\left\{a^{i} b^{j} c^{k} d^{l} \mid i+l \geqslant j+k\right\}$ context-free?
5. a) State the Turing-Church Thesis. What type of justification can be given for this thesis?
b) Are two tape Turing Machines more expressive than the standard definition of a Turing Machine? Explain.
6. a) Do there exist computable functions that are not primitive recursive?
b) Show that $\operatorname{IntegerSqrt}(n)=\lfloor\sqrt{n}\rfloor$ is primitive recursive.
c) Is IntegerSqrt μ-recursive? Why are μ-recursive functions of interest in computability theory?
7. a) Let M be a Turing Machine. Show that the problem that consists in determining whether M stops on all words of even length is undecidable.
Hint: Use the empty-word halting-problem.
b) Why are the languages accepted by a Turing Machine also called "recursively enumerable"? Prove your statement.
8. a) Show that $\mathrm{HC} \propto \mathrm{TS}$.
b) Define the complexity classes $P, N P$ and $N P C$. What inclusion relations between these classes are known, plausible? Give an example of a problem belonging to each of these classes.

