Introduction to computability

Final exam

8 January 2013

Closed-book. Duration: 3h30
Please answer each question on a separate sheet with your name and section. Motivate all your answers and give sufficient details.

1. a) Is the set of well formed arithmetic expressions denumerable?

For example $3 *(2+4)$ is well formed and $3+* 5$ as well as $(2+3) * 3)$ are not.
b) Consider the set of one argument predicates over the natural numbers and show that some of these predicates must be undecidable.
2. a) Give a DFA that accepts the language L_{1} containing all the words on the alphabet $\{a, b\}$ that contain an odd number of letters a and an even number of letters b. In other words,
$L_{1}=\left\{w \mid w \in\{a, b\}^{*}, N_{a}(w)=1 \bmod 2\right.$ and $\left.N_{b}(w)=0 \bmod 2\right\}$ where $N_{\sigma}(w)$ is the number of letters σ contained in the word w.
b) Give a DFA that accepts the language L_{2} containing all the words on the alphabet $\{a, b\}$ that contain neither $a a$ nor $b b$. In other words,

$$
L_{2}=\left\{w \mid w \in\{a, b\}^{*}, a a \notin \operatorname{Fact}(w) \text { and } b b \notin \operatorname{Fact}(w)\right\}
$$

c) Give a DFA that accepts $L_{1} \cup L_{2}$.
3. a) Show that the language $L=\left\{a^{i} b^{j} c^{k} \mid k \neq i \cdot j\right\}$ is not regular.
b) Is it correct that every regular language is also a context-free language? And vice versa, is every context-free language also a regular language?
4. a) Show that the intersection of two context-free languages is not necessarily context-free. Use this to deduce that the complement of a context-free language is not necessarily context-free. Give a sufficient criterion for the intersection of two context-free languages to be context-free.
b) Given a context-free grammar G, give an algorithm for checking if $L(G)=\varnothing$.
5. a) For a Turing machine M, define the notions of configuration, derivation, execution, accepted language and decided language.
b) Give a Turing machine that computes the function $n \mapsto 2 n$. Consider that numbers are encoded using a unary alphabet, so that n is represented by n repetitions of the single letter of the alphabet. If q_{0} is an initial state and q_{f} a final state of the Turing machine, you must for instance have

$$
q_{0} \cdot \underline{111 \#} \vdash^{*} q_{f} \cdot 111111 \underline{\#}
$$

6. a) Show that the predicate $\operatorname{twins}(x, y)$, that is true if and only if x and y are prime numbers and $y=x+2$, is primitive recursive. For example, $\operatorname{twins}(11,13)$ is true. Remark: You can use any primitive recursive functions and predicates seen in the lectures.
b) Define μ-recursive predicates.
c) Is the predicate twins (x, y) a μ-recursive predicate?
7. a) Show that there exists at least one undecidable language.
b) Given two Turing machines M_{1} and M_{2}, show that the problem of determining if there exists a word w such that M_{1} and M_{2} both stop on w is undecidable.
8. a) Define polynomial transformations.
b) Define the Travelling Salesman Problem (TS) and the Hamiltonian Circuit Problem (HC) and give a polynomial transformation from HC to TS. What can you conclude from this transformation with respect to the membership in P of these two problems?
c) Give an explicit statement of Cook's theorem. Explain in a few sentences how it can be proved.
d) Give a deterministic algorithm to solve the SAT problem. What is its complexity?
