Machine Learning for Probabilistic Power Systems Reliability Management

Louis Wehenkel

joint work with L. Duchesne and E. Karangelos

Lyngby : 23.11.2018
Organisation of the talk

PART I
Probabilistic Reliability Management: Stakes and Sub-problems

PART II
Machine Learning for Reliability Assessment

PART III
Machine Learning for Reliability Control
Part I

Probabilistic Reliability Management: Stakes and Sub-problems

- Reliability Management
- Reliability Assessment vs Reliability Control
Electric power system reliability

- **Requirement:**
 - At sub-second temporal resolution, balance generation/storage/consumption, under network constraints, in spite of various threats

- **Threats faced:**
 - Variations of generation and demand, weather conditions
 - Component failures, human errors, adversarial attacks

- **Problems to avoid:**
 - Component overloads, voltage or frequency deviations
 - Cascading overloads, instabilities, blackouts

- **Opportunities:**
 - Optimisation and control of flows closer to real-time
 - Preventive maintenance and planning of operation
 - Adaptation of the grid structure to market needs
Reliability management contexts

Taking decisions in order to ensure the reliability of the system while minimizing socio-economic costs.
The currently used N-1 Reliability Criterion (since 50 years)

“The power system should at any time be able to seamlessly withstand the spontaneous disconnection of any single component (e.g. line, transformer, etc.).”

- But N-1 can be over-conservative:
 - *e.g.*, limiting use of cheap renewables.

- ... can be under-conservative:
 - *e.g.*, adverse weather/major sport events, etc..

- ... can be risk averse:
 - seeking to avoid even “minor” (sometimes tolerable) consequences.

- and N-1 can be risk taking!
 - incentivizes corrective control while neglecting its possible failure.

Need to move towards Probabilistic Reliability Criteria

“To enable the optimization of the overall expected socio-economic performance.”

- New models need to be developed

- More complex decision making problems need to be solved
Two ≠ types of reliability management sub-tasks

- **Reliability assessment (ex ante):**
 Determine the expected level of reliability for a given future period of time and for a certain geographical area
 → *large-scale stochastic simulation problem*

- **Reliability control:**
 Determine an optimal set of decisions to take in order to ensure a desired level of reliability over a given time period and for a certain geographical area
 → *large-scale multi-stage stochastic optimisation problem*

NB: Both tasks need a suitable physical model of the system and suitable uncertainty models of the exogenous factors acting on it over the considered time period and geographical area.
Reliability assessment:
Determine the expected level of reliability for a given future period of time and for a certain geographical area:

- Real-time mode (minutes)
- Short-term look-ahead mode (hours, days)
- Longer-term look-ahead problems (months, years)
Reliability Assessment in Real-Time Mode (Objectives)

Every 5 minutes, based on the real-time situation x_{rt}, assess risk induced by contingencies that could occur over the next hour.

Remarks:
- Real-time situation: defined by exogenous and endogenous info
- Contingencies: big set of external and/or internal threats
- Contingency response: PF, OPF, time-domain simulation...
Reliability Assessment in Real-Time Mode (Objectives)

Every 5 minutes, based on the real-time situation x_{rt}, assess risk induced by contingencies that could occur over the next hour.

- Based on data and models (we stress dependence on x_{rt}):
 - $C(x_{rt}), \pi_c(x_{rt}, c)$: set of contingencies and their probabilities
 - $f_{cr}(x_{rt}, c)$: measure of the severity of contingency c in state x_{rt}

Remarks:
- Real-time situation: defined by exogenous and endogenous info
- Contingencies: big set of external and/or internal threats
- Contingency response: PF, OPF, time-domain simulation...
Reliability Assessment in Real-Time Mode (Objectives)

Every 5 minutes, based on the real-time situation x_{rt}, assess risk induced by contingencies that could occur over the next hour.

- Based on data and models (we stress dependence on x_{rt}):
 - $C(x_{rt}), \pi_c(x_{rt}, c)$: set of contingencies and their probabilities
 - $f_{cr}(x_{rt}, c)$: measure of the severity of contingency c in state x_{rt}

- We want to assess the expected impact of possible contingencies:
 - $\mathbb{E}\{f_{cr}|x_{rt}\} = \sum_{c\in C(x_{rt})} \pi_c(x_{rt}, c)f_{rt}(x_{rt}, c)$
 (e.g. expected cost of service interruptions)
 - $\mathbb{P}\{f_{cr} > \eta|x_{rt}\} = \sum_{c\in C(x_{rt})} \pi_c(x_{rt}, c)1(f_{cr}(x_{rt}, c) > \eta)$
 (e.g. probability of large service interruptions)

- Remarks:
 - Real-time situation: defined by exogenous and endogenous info
 - Contingencies: big set of external and/or internal threats
 - Contingency response: PF, OPF, time-domain simulation...
Machine Learning for power systems (in general)

From data ...

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>50MW</td>
<td>margin=50</td>
</tr>
<tr>
<td></td>
<td>stable</td>
</tr>
<tr>
<td>100MW</td>
<td>margin<0</td>
</tr>
<tr>
<td></td>
<td>voltage collapse</td>
</tr>
</tbody>
</table>

Automatic Learning

... to knowledge

IF (P<100MW) AND (Line in) THEN (class=stable)

margin=50*TANH(100-P)+...

...
Opportunities for Machine Learning (in Real-Time mode)

Practical facts:

- The evaluation of the contingency response function $f_{cr}(x_{rt}, c)$ is generally expensive in CPU time.
- Still, this function will be evaluated as often as possible by TSO, yielding growing datasets $D = \{(x^i_{rt}, c^i), f_{cr}(x^i_{rt}, c^i)\}_{i=1}^\infty$.

Supervised Machine Learning Paradigm:

From a sample D of input-output pairs $\{(z^i, y^i)\}_{n=1}^N$, we can learn a function $h(\cdot)$ such that $|h(z) - y|$ is small on average.

Application to Real-Time Reliability Assessment:

Learn a "regression proxy":

$h_{regr}(x_{rt}, c) \approx f_{cr}(x_{rt}, c)$

Learn a "classifier proxy":

$h_{class}(x_{rt}, c) \approx 1(f_{cr}(x_{rt}, c) \geq \eta)$

The underlying assumptions are as follows: h-proxies are much faster to evaluate than $f_{cr}(x_{rt}, c)$.
Opportunities for Machine Learning (in Real-Time mode)

- **Practical facts:**
 - The evaluation of the contingency response function $f_{cr}(x_{rt}, c)$ is generally expensive in CPU time.
 - Still, this function will be evaluated as often as possible by TSO, yielding growing datasets $D = \{(x_{rt}^i, c^i), f_{cr}(x_{rt}^i, c^i)\}_{i=1}^{\infty}$

- **Supervised Machine Learning Paradigm:**
 - From a sample D of input-output pairs $\{(z^i, y^i)\}_{i=1}^{n}$, we can learn a function $h(\cdot)$ such that $|h(z) - y|$ is small on average.
Opportunities for Machine Learning (in Real-Time mode)

- **Practical facts:**
 - The evaluation of the contingency response function $f_{cr}(x_{rt}, c)$ is generally expensive in CPU time.
 - Still, this function will be evaluated as often as possible by TSO, yielding growing datasets $D = \{(x_{rt}^i, c^i), f_{cr}(x_{rt}^i, c^i)\}_{i=1}^{\cdots}$

- **Supervised Machine Learning Paradigm:**
 - From a sample D of input-output pairs $\{(z^i, y^i)\}_{i=1}^{n}$, we can learn a function $h(\cdot)$ such that $|h(z) - y|$ is small on average.

- **Application to Real-Time Reliability Assessment:**
 - Learn a “regression proxy”: $h_{regr}(x_{rt}, c) \approx f_{cr}(x_{rt}, c)$
 - Learn a “classifier proxy”: $h_{class}(x_{rt}, c) \approx 1(f_{cr}(x_{rt}, c) \geq \eta)$
Opportunities for Machine Learning (in Real-Time mode)

- Practical facts:
 - The evaluation of the contingency response function \(f_{cr}(x_{rt}, c) \) is generally expensive in CPU time.
 - Still, this function will be evaluated as often as possible by TSO, yielding growing datasets \(D = \{(x_{rt}^i, c^i), f_{cr}(x_{rt}^i, c^i)\}_{i=1} \).

- Supervised Machine Learning Paradigm:
 - From a sample \(D \) of input-output pairs \(\{(z^i, y^i)\}_{i=1}^n \), we can learn a function \(h(\cdot) \) such that \(|h(z) - y| \) is small on average.

- Application to Real-Time Reliability Assessment:
 - Learn a “regression proxy”: \(h_{regr}(x_{rt}, c) \approx f_{cr}(x_{rt}, c) \)
 - Learn a “classifier proxy”: \(h_{class}(x_{rt}, c) \approx 1(f_{cr}(x_{rt}, c) \geq \eta) \)

- The underlying assumptions are as follows:
 - \(h \)-proxies are much faster to evaluate than \(f_{cr}(x_{rt}, c) \)
 - It is possible to learn accurate enough \(h \)-proxies
Example: Voltage stability / French system (circa 1993)

Study region load: 4700-7500MW
Topologies: N, N-1, N-2
Model: 1200 buses, 450 OLTCs
CSVC, 70 machines

For a given contingency and OP:
ΔLPM: measure of severity

A: power plant

Feeding point of an HV area
Feeding point of an MV load
HV connex island limit
380 kV
225 kV

V

ΔLPM

Pre

Post

P0

Load
Example: Database generation by Monte-Carlo simulation

OPs = operating point
EDs = external disturbances
MHs = dynamic behavior hypothesis

OP = operating point
ED = external disturbances
MH = dynamic behavior hypothesis
Prediction of contingency severity

Severity regression tree: loss of a line circuit

- Mean severity
- Severity st. dev

Severity in MW
- -12
- 738
- 457 (185)

Second circuit in operation
- T2: 2610
- Y
- 76 (47)
- N
- T7 + L0 + D8
- 99 (111)
- 457 (185)

Reactive Reserve < 192
- T3: 1146
- Y
- 37 (21)
- N
- T154: 1464
- 107 (37)

Reactive Reserve < 191
- T458: 165
- Y
- 295 (77)
- N
- T491: 92
- 586 (139)

Reactive Flow < -357
- Reactive Reserve < 884
- T459: 73
- Y
- 316 (78)
- N
- T498: 82
- 619 (105)

Reactive import < -109
- Reactive Flow < -258
- T155: 1237
- Y
- 99 (32)
- N
- T405: 227
- 150 (37)

- Less severe: left
- More severe: right

MAE: 22 MW TS
ML for RT reliability assessment (practically)

- How often to apply ML to refresh the proxies
 - On the fly in real-time
 - Ahead in time
- How to gather the datasets used for learning the proxies
 - Passively, by exploiting data generated by EMS platforms
 - Actively, by using Monte-Carlo approaches
- How to use the tool-box of available ML techniques
 - Interpretability
 - Computational performances (learning and prediction)
 - Accuracy
- How to use the learnt proxies $h_{r,c}$
 - Stand-alone mode
 - Together with “exact” simulator of f_{cr}
Software framework

Field measurements + human expertise

Dynamic models
Staticical info.
Study specs

Tool box of analytical tools
- power flow
- time domain
- direct methods
- modal analysis

Data base generation module
- Random sampling
- Simulation scheduling
- Building of security info. DBs

Data mining module
- Security info DB management
- Access to AL algorithms
- Graphics, data screening...
- Interactive DSA

Tool box of AL algorithms
- decision trees
- regression
- KNN
- unsupervised

Data flow
Interfacing (APIs)
Software modules

Security info DB
AL results
Further readings and developments

- Literature of the late 1990’ies

- More recent machine learning methods
 - Random forests and kernel based methods
 - Gaussian processes
 - Probabilistic graphical models
 - Deep neural networks

- iTESLA European FP7 project: Machine Learning for Dynamic Security Assessment

- GARPUR European FP7 project: Probabilistic reliability management
Reliability Assessment in Look-ahead Mode (Ideally)

Every day (or every few hours), based on probability model $\mathbb{P}\{x_{t_0}^{t_f}\}$ of trajectories of situations that could show up next day (next hours), evaluate the risk induced by these situations.
Reliability Assessment in Look-ahead Mode (Ideally)

Every day (or every few hours), based on probability model $\mathbb{P}\{x_{rt}^{t_0 \cdots t_f}\}$ of trajectories of situations that could show up next day (next hours), evaluate the risk induced by these situations.

- **Data and model:**
 - $x_{rt}^t = (\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t), c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t)))$, where ξ_{rt}^t is exogenous (weather, demand, market . . .), while the endogenous parts are results of the real-time reliability management process.

- **Remarks:**
 - Exogenous uncertainties $\xi_{rt}^{t_0 \cdots t_f}$ are modelled as spatio-temporal stochastic processes conditioned on available information in look-ahead mode.
 - Policy $u_{rt}^t(\xi_{rt}^t)$ models how the real-time operator will behave in real-time.
 - Function $c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t))$ expresses the resulting cost per time step of real-time reliability management.
Reliability Assessment in Look-ahead Mode (Ideally)

Every day (or every few hours), based on probability model $\mathbb{P}\{x_{rt}^{t_0 \cdots t_f}\}$ of trajectories of situations that could show up next day (next hours), evaluate the risk induced by these situations.

- **Data and model:**
 - $x_{rt}^t = (\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t), c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t)))$, where ξ_{rt}^t is exogenous (weather, demand, market ...), while the endogenous parts are results of the real-time reliability management process.

- **We want to assess expected outcome of real-time operation:**
 - $\mathbb{E}\left\{\sum_{t=t_0}^{t_f} c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t))\right\}$
 - $\mathbb{P}\left\{\sum_{t=t_0}^{t_f} c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t)) \geq M\right\}$

- **Remarks:**
 - Exogenous uncertainties $\xi_{rt}^{t_0 \cdots t_f}$ are modelled as spatio-temporal stochastic processes conditioned on available information in look-ahead mode.
 - Policy $u_{rt}^t(\xi_{rt}^t)$ models how the real-time operator will behave in real-time.
 - Function $c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t))$ expresses the resulting cost per time step of real-time reliability management.
Opportunities for Machine Learning (in Look-ahead mode)

Look-ahead mode probabilistic reliability assessment could be solved by Monte-Carlo simulation. Various possibilities exist to make such a process more effective and practical.

- Better models of $\mathbb{P}\{\xi_{rt}^{t_0 \cdots t_f}|\text{info available in look-ahead mode}\}$
 - from observational datasets, from TSO and DSO
 - using unsupervised learning, e.g. convolutional GANs?

- Learning about real-time operation strategy $u_{rt}(\xi_{rt}^t)$ and/or $c_{rt}(\xi_{rt}^t)$
 - from observational datasets collected by SCADA and EMS
 - from simulations

- Reducing the number of required Monte-Carlo samples to estimate

 - $\mathbb{E}\left\{\sum_{t=t_0}^{t_f} c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t))\right\}$
 (Variance reduction via control variates, and/or importance sampling)

 - $\mathbb{P}\left\{\sum_{t=t_0}^{t_f} c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t)) \geq M\right\}$
 (Rare event simulation via importance sampling)
Example: Machine Learning for Day-ahead reliability assessment

Based on ongoing work at ULiège.

For further details, please see

- Using Machine Learning to Enable Probabilistic Reliability Assessment in Operation Planning, L. Duchesne et. al, PSCC 2018
4000 samples of uncertainty realizations ξ_{rt} along next day (load, wind, outages)
Real-time operation simulated by N-1 DC-SCOPF per time-step and trajectory
Inputs: DA decisions per time-step, ξ_{rt} per trajectory and time-step
Outputs: the different terms of the cost function c_{rt}, including risk $\mathbb{E}\{f_{rt}|\xi_{rt}, u_{rt}\}$ of service-interruptions upon contingencies, per trajectory and per time-step.
Some Machine Learning results (PowerTech 2017)
Some Machine Learning results (PowerTech 2017)
Some Machine Learning results (PowerTech 2017)

- Market output gen 14
- Line 16 status
- Nb of lines unavailable
- Total load
- Line 18 status
- Line 14 status
- Wind farm 1
- Net load
- Line 22 status
- Market output gen 13
- Wind farm 4
- Load 11
- Load 6
- Hour
- Min production
Synthesis (PowerTech 2017)

- Machine learning can be used day-ahead to build “proxies” \hat{c}_{rt} of the different terms of c_{rt} incurred in real-time reliability management.

- Computationally, evaluating \hat{c}_{rt} is about 10000 times faster than the “exact” evaluation of c_{rt} via SCOPF and contingency simulation.

- Random forests and Neural networks are promising and complementary tools in this context.

- Some terms of \hat{c}_{rt} are more difficult to learn than others, in particular the expected risk induced by contingencies.

- Open questions for further work:
 - Leverage deep learning to improve accuracy of proxies \hat{c}_{rt}
 - Use of machine learning to model the RT decision policy u_{rt}
 - Use of learnt proxies \hat{c}_{rt} for day-ahead reliability assessment
Use of ML-proxies for DA reliability assessment (PSCC 2018)

Problem tackled:

- Given two computer programs
 - a generative model allowing us to sample possible next day trajectories according to $\mathbb{P}\{\xi_{t_0}^{t_f} \mid \text{day ahead info}\}$
 - and a SCOPF solver allowing us to compute operating costs $C_{rt}(\xi_{rt}) = \sum_{t=1}^{24} c_{rt}(\xi_{rt}^t)$ along any trajectory
- Compute an estimate of $\mathbb{E}\{C_{rt} \mid \text{day ahead info}\}$

Crude Monte Carlo (CMC) approach:

- Sample n trajectories $\xi_{rt}^i \sim \mathbb{P}\{\xi_{rt}^{t_0}^{t_f} \mid \text{day ahead info}\}$
- Compute $\bar{C}_{rt} = \frac{1}{n} \sum_{i=1}^{n} C_{rt}(\xi_{rt}^i) = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{24} c_{rt}(\xi_{rt}^{t,i})$
- Needs large sample size n (a few thousand) to be accurate enough
- Requires $24 \times n$ SCOPF computations
Use of ML-proxies for DA reliability assessment (PSCC 2018)

We could (naively) use Machine Learning as follows:

- **Machine learning stage:**
 - Sample $k \ll n$ trajectories ξ_{rt}^i and use SCOPF to compute the corresponding $k \times 24$ values of $c_{rt}(\xi_{rt}^i, t)$
 - Use a supervised learning algorithm to build proxy $\hat{c}_{rt}(\cdot)$, much faster to evaluate than SCOPF

- **Use CMC with proxy**
 - Sample $n' \gg n$ additional trajectories and use proxy to compute $\tilde{C}_{rt} = \frac{1}{n'} \sum_{i=1}^{n'} \sum_{i=1}^{24} \hat{c}_{rt}(\xi_{rt}^i, t) \approx \mathbb{E}\{\hat{C}_{rt}|\text{day ahead info}\}$.

Unfortunately, this later quantity is in general not equal to $\mathbb{E}\{C_{rt}|\text{day ahead info}\}$

- Its bias depends both on the problem and on the used machine learning algorithm, and is therefore unpredictable.
Use of ML-proxies for DA reliability assessment (PSCC 2018)

Combining Machine Learnt proxies with Control Variate approach:

- First do as in the previous slide:
 - Learn proxy $\hat{c}_{rt}(\cdot)$ with k trajectories
 - Estimate $\mathbb{E}\{\hat{C}_{rt}|\text{day ahead info}\}$ with large n' trajectories.
- Then estimate $\mathbb{E}\{\hat{C}_{rt}|\text{day ahead info}\} - \mathbb{E}\{C_{rt}|\text{day ahead info}\}$
 - Sample k' additional trajectories
 - Compute $\bar{\Delta} = \frac{1}{k'} \sum_{j=1}^{k'} \left(\hat{C}_{rt}(\xi_{rt}^j) - C_{rt}(\xi_{rt}^j) \right)$
 - Estimate $\mathbb{E}\{C_{rt}|\text{day ahead info}\} \simeq \mathbb{E}\{\hat{C}_{rt}|\text{day ahead info}\} - \bar{\Delta}$
- This latter estimate is always unbiased

- For a given budget of $(k + k')$ trajectories solved via SCOPF, it is typically more accurate than CMC with $n = k + k'$ trajectories
Case study: 3-area RTS system (PSCC 2018)

NB: modified by including lots of wind power plants
Crude Monte-Carlo approach (PSCC 2018)

For \(n = 2400 \) trajectories:

Estimate = \(1.44 \times 10^6 \)
Std.error = \(2 \times 10^4 = 1.4\% \)

- Operating cost for one trajectory: 24 successive DC-SCOPF computations
- Sample \(n = 2400 \) trajectories, and estimate expectation by sample average
- Standard error is estimated by \(\sigma / \sqrt{n} \), \(\sigma \) being the sample standard deviation
Naive use of Machine Learnt proxy (PSCC 2018)

For \(n' = 20000 \) trajectories:

Estimate = \(1.42 \times 10^6 \)

Std.error = \(4 \times 10^3 = 0.3\% \)

- Proxy of hourly operating cost learnt on \(k = 850 \) trajectories, using ANN
- Estimate expectation via much larger sample, by using only the proxy
- Unfortunately, using the proxy we get a biased estimate (by about 1.4 %)
Use of ML proxy as a Control Variate (PSCC 2018)

Proxy learnt on $k = 850$ trajectories, using resp. ET or ANN

Estimate on k' up to 1550 additional samples by the control variates approach

Yields unbiased estimate of reduced std.error (factor 2), for same SCOPF budget

Estimate $= 1.44 \times 10^6$

Std.error $= 1 \times 10^4 = 0.7\%$
Further refinement: Stacked Monte-Carlo (PSCC 2018)

- Yields unbiased estimate of reduced std.error by a factor 4
- Uses SCOPF budget in a more effective way to reduce both bias and variance
- See paper for explanation of the method

Estimate = 1.44×10^6
Std.error = $5 \times 10^3 = 0.35\%$
Synthesis (PSCC 2018)

- Machine learning can be used in a sound way to significantly speed up day-ahead reliability assessment under uncertainties.
- Computationally, a speed-up of a factor 10-20 with respect to a crude Monte-Carlo approach is certainly reachable.
- Further leveraging deep neural networks may help to make the approach even more effective.
- Open questions for further work:
 - Adaptation of the proposed framework for estimating probabilities of rare events \(\mathbb{P} \left\{ \sum_{t=t_0}^{t_f} c_{rt}(\xi_{rt}, u_{rt}^t(\xi_{rt})) \geq M \right\} \)
 - Combination of this approach with appropriate techniques for finding suitable day-ahead decisions.
Reliability Assessment in mid/long-term modes (Ideally)

- Maintenance optimization and system development contexts
Reliability Assessment in mid/long-term modes (Ideally)

- Maintenance optimization and system development contexts
- Look-ahead horizons: months to years; years to decades
Reliability Assessment in mid/long-term modes (Ideally)

- Maintenance optimization and system development contexts
- Look-ahead horizons: months to years; years to decades
- Complexity multiplied by 8800 hrs \times 30 years
Reliability Assessment in mid/long-term modes (Ideally)

- Maintenance optimization and system development contexts
- Look-ahead horizons: months to years; years to decades
- Complexity multiplied by 8800 hrs × 30 years
- Uncertainty models even more complex to establish
Reliability Assessment in mid/long-term modes (Ideally)

- Maintenance optimization and system development contexts
- Look-ahead horizons: months to years; years to decades
- Complexity multiplied by 8800 hrs \times 30 years
- Uncertainty models even more complex to establish
- Many opportunities for Machine Learning...
Reliability control:
Determine an optimal decision u^* to take in order to ensure a desired level of reliability over a given time period:

- Real-time mode
- Short-term look-ahead mode
- Longer-term look-ahead problems
Possible Optimal Control Approaches

- **Analytical approach**: formulate equations and solve them to near-optimality; it is the realm of mathematical optimization; needs lots of approximations to be tractable.
Possible Optimal Control Approaches

- **Analytical approach**: formulate equations and solve them to near-optimality; it is the realm of mathematical optimization; needs lots of approximations to be tractable.

- **Brute force “Trial and error” approach**: using 'Reliability assessment module' as an oracle: can work well when small number of alternative decisions have to be compared; can exploit further ideas of variance reduction and machine learning.
Possible Optimal Control Approaches

- **Analytical approach**: formulate equations and solve them to near-optimality; it is the realm of mathematical optimization; needs lots of approximations to be tractable.

- **Brute force “Trial and error” approach**: using 'Reliability assessment module' as an oracle: can work well when small number of alternative decisions have to be compared; can exploit further ideas of variance reduction and machine learning.

- **Off-line policy search**: create structured space of candidate decision policies, and sample them together with scenarios used to assess by simulation the candidate policies. Interleave policy search steps and proxy-learning steps in a suitable way.
Possible Optimal Control Approaches

- **Analytical approach:** formulate equations and solve them to near-optimality; it is the realm of mathematical optimization; needs lots of approximations to be tractable.

- **Brute force “Trial and error” approach:** using ‘Reliability assessment module’ as an oracle: can work well when small number of alternative decisions have to be compared; can exploit further ideas of variance reduction and machine learning.

- **Off-line policy search:** create structured space of candidate decision policies, and sample them together with scenarios used to assess by simulation the candidate policies. Interleave policy search steps and proxy-learning steps in a suitable way.

- **On-line reinforcement learning approach:** interleave learning and decision making, while taking advantage of simulators and proxies designed ahead in time.
Some further bibliographical pointers

P. Panciatici, G. Bareux and L. Wehenkel
Operating in the fog - Security management under uncertainty

E. Karangelos, P. Panciatici and L. Wehenkel
Whither probabilistic security management for real-time operation of power systems?
Proc. of IREP Symposium, Rethymnon 2013

E. Karangelos and L. Wehenkel
Probabilistic reliability management approach and criteria for power system real-time operation
Proc. of PSCC, Genoa 2016

E. Karangelos and L. Wehenkel
Probabilistic reliability management approach and criteria for power system short-term operational planning
Proc. of IREP Symposium, Porto 2017

L. Duchesne, E. Karangelos, and L. Wehenkel
Machine learning of real-time power systems reliability management response
Proc. of IEEE PowerTech, Manchester 2017

L. Duchesne, E. Karangelos, and L. Wehenkel
Using machine learning to enable probabilistic reliability assessment in operation planning
Proc. of PSCC, Dublin 2018

E. Karangelos, and L. Wehenkel
Post-contingency corrective control failure: a risk to neglect or a risk to control?
Proc. of PMAPS, Boise 2018