Chapter 8: Securing Switched LANs

Chapter goals:
- Understand security vulnerabilities in switched LANs
- Learn how to secure switches
- Understand VLANs (Virtual LANs) and their security
Chapter Roadmap

- Securing Switched Ethernet LANs
 - Securing the MAC self-learning process
 - Securing DHCP and ARP
 - Securing the spanning tree protocol
- VLANs
 - Securing VLANs

Switched Ethernet – Reminder

- Switches build a spanning tree to avoid loops
 - Root bridge, root ports, forwarding/blocking ports
- Switches self-learn mapping between MAC addresses and ports, by looking at MAC source addresses
 - They build a CAM (Content Addressable Memory) forwarding table
 - When a MAC address is not in the table, the switch floods the received frame
- Switches are transparent to routers and hosts
 - A set of interconnected switches form a LAN
 - For IP, this LAN is a subnet
- IP addresses are mapped on MAC addresses by the ARP protocol
- Don’t confuse MAC forwarding tables and ARP tables!
 - In which devices do we find them?
 - What do they contain?
Chapter Roadmap

- Securing Switched Ethernet LANs
 - Securing the MAC self-learning process
 - Securing DHCP and ARP
 - Securing the spanning tree protocol
- VLANs
 - Securing VLANs

MAC spoofing attack

- MAC spoofing
 - B sends a frame with source MAC address C
- Switch « learns » that C is reachable via interface 2!
 - B can now see the frames destined for C
- Some switches will overwrite C’s entry
 - C cannot see frames any longer!
 - DoS attack!
MAC flooding attack

- B generates a large number of frames with spoofed MAC addresses (X, Y, …)
- Switch (CAM) table will overflow
 - Capacity of table may vary from a few thousands to more than 100,000 entries
- Older entries will be removed from table
 - Switch now floods frames on all interfaces for removed (unknown) MAC addresses
- Usually one table per switch, not one per VLAN
 - All VLANs impacted

Detecting/preventing MAC spoofing and flooding attacks

- MAC address activity notification
 - Many switches can be configured to warn about frequent MAC address changes
- Port security
 - Associate a few MAC addresses with every port (Why not just 1?)
 - Only for access ports, not inter-switch (trunk) ports
 - Can be static or dynamic
 - Violations are notified
- Unicast flooding protection
 - Limited flooding is normal
 - But continuous flooding is not!
 - Alert!
- DHCP snooping
 - See next slides
Chapter Roadmap

- Securing Switched Ethernet LANs
 - Securing the MAC self-learning process
 - Securing DHCP and ARP
 - Securing the spanning tree protocol
- VLANs
 - Securing VLANs

Attack against DHCP

- DHCP is not a datalink protocol (it runs over UDP), but solutions to DHCP attacks are also useful to thwart layer 2 attacks
- DHCP reminder:
 - Client discovers server(s): broadcast packet
 - DHCP server broadcasts an offer
 - Client broadcasts interest in (one) offer
 - DHCP server acks
- Client gets IP address and mask, but also default router and DNS servers!
 - A (quick) rogue DHCP server can easily redirect client to a fake router and/or fake DNS server
- Solution: DHCP snooping
 - Monitor and restrict DHCP operations on a (V)LAN
 - A host has no reason to send DHCP offers (nor ACKs)!
 - Don’t let DHCP offers enter the switch on “untrusted” ports
 - Need access control above layer 2!
- In addition:
 - DHCP snooping allows to learn IP-to-MAC bindings
 - Switch learns IP address assigned to client and knows client MAC address (present in request)
DHCP snooping to thwart IP/MAC spoofing attacks

IP spoofing
- Spoofed source IP is IP_C
- Source: B
- Dest: A
- A B IP packet
- B: attacker

MAC spoofing
- Spoofed MAC source: C
- Source IP is IP_A
- Dest: A
- A C IP packet
- B: attacker

- DHCP snooping: discard frames with invalid <IP, MAC> source address pairs

ARP spoofing/poisoning

- ARP reminder:
 - ARP request: MAC broadcast frame searching for an IP address
 - ARP reply: unicast
 - Gratuitous ARP:
 - Reply sent without prior request
 - Useful when MAC address changes

- ARP spoofing/poisoning
 - Sends gratuitous ARP with wrong IP-to-MAC mapping: attacker’s MAC address (MAC$_B$) mapped to victim’s IP address (IP_C)
 - All traffic to C is actually sent to B. Then B can silently forward it to C after sniffing: Man-in-the-Middle attack
 - Note: B needs a second ARP spoofing attack to also sniff the return traffic

- Solutions:
 - Ignore gratuitous ARP
 - Use an IDS to track changes in IP-to-MAC mappings
 - Rely on DHCP snooping
Chapter Roadmap

- Securing Switched Ethernet LANs
 - Securing the MAC self-learning process
 - Securing DHCP and ARP
 - Securing the spanning tree protocol
- VLANs
 - Securing VLANs

Attacking the Spanning Tree Protocol

- Taking over the root bridge
 - Attacker sends BPDUs with smallest switch id
 - Becomes root bridge
 - If attacker is dual-homed, some traffic can be redirected to cross attacker’s device
- BPDU flooding
 - DoS attack

- Solution:
 - Distinguish trunk ports from access ports
 - Discard BPDUs on access ports
 - End stations are not supposed to send BPDUs!
Chapter Roadmap

- Securing Switched Ethernet LANs
 - Securing the MAC self-learning process
 - Securing DHCP and ARP
 - Securing the spanning tree protocol
- **VLANs**
 - Securing VLANs

VLANs

- Switches have been extended by adding virtualization (VLAN switch)
- A VLAN switch emulates multiple, independent switches
- We will review
 - The motivation for VLANs
 - Their technology
 - VLANs spanning multiple physical switches
 - The need for an extra field in the frame (VLAN tag)
 - Security in VLANs
VLANs: motivation

Human resource management:
- CS user moves office to EE area, while staying in the CS department. How to keep user connected to CS switch?
- CS user becomes part of EE department, but wants to keep his/her office. How to connect user to EE switch?

Performance/security issues:
- LAN = single broadcast domain
- Issue: all layer-2 broadcast traffic crosses entire LAN (e.g., ARP, DHCP, flooding due to unknown destination MAC address)

Cost:
- Many lowest level switches may have only few ports in use

VLANs

Virtual Local Area Network

Switch(es) supporting VLAN capabilities can be configured to define multiple virtual LANs over single physical LAN infrastructure

Port-based VLAN: switch ports grouped (by switch management software) so that single physical switch …

... operates as multiple virtual switches
Port-based VLAN

- traffic isolation:
 - frames to/from ports 1-8 can only reach ports 1-8
 - broadcast traffic remains on its VLAN

- dynamic membership:
 - ports can be dynamically assigned among VLANs
 - update done by software when user changes location

Address-based VLAN

- easier management:
 - VLANs are based on MAC addresses of endpoints, rather than switch port
 - user (i.e. MAC address) can move from one port to another without changing VLAN

- dynamic membership:
 - MAC addresses can be reassigned among VLANs

- VLANs can also be based on IP addresses of endpoints (e.g. IP prefix/subnet defining a VLAN)
VLANs: motivation

- VLANs address issues such as scalability, security, and network management.
- Network architects set up VLANs to provide network segmentation over a shared physical infrastructure:
 - Traffic cannot jump from one VLAN to another, and broadcast LAN frames stay on their VLAN.
- VLANs can be used to partition a network into several distinctive segments, e.g.:
 - Voice over IP
 - Network management
 - Storage area network (SAN)
 - Guest Internet access
 - Demilitarized zone (DMZ)
- A common infrastructure shared by VLANs can provide a measure of security with great flexibility for a comparatively low cost.
- Quality of service schemes can optimize traffic on inter-switch (trunk) links for real-time (e.g. VoIP) or low-latency requirements (e.g. SAN).

Forwarding between VLANs

- *forwarding between VLANs* always done via routing (just as with separate switches):
 - figure shows interconnection through a separate router.
- In practice, vendors sell combined switches plus routers (so-called layer 3 switches).

© From Computer Networking, by Kurose & Ross
VLANs spanning multiple switches

- how to interconnect multiple physical switches with devices on several VLANs?
- could connect the devices from the same VLAN through a dedicated link between the 2 switches
 - but would require one inter-switch link per VLAN!

VLANs spanning multiple switches

- trunk link/port: carries frames in VLANs defined over multiple physical switches
 - frames forwarded within VLAN between switches can’t be vanilla 802.1 frames (must carry VLAN ID info)
 - 802.1Q protocol adds/removes additional header fields for frames forwarded between trunk ports
IEEE 802.1Q VLAN frame format

- When the field following the 2 MAC addresses is 0x8100 (> 1500), it's a 802.1Q frame
- 3-bit priority field is used to provide QoS
- When a frame has no tag on a trunk link, there is a native/default VLAN id (= 1) which the frame is considered to be associated with

Assigning a VLAN id to a host

- If a host NIC sends an untagged frame, the frame will be associated with the VLAN corresponding to the incoming port (in port-based VLAN) or to the source MAC address (in address-based VLAN)
 - If the frame crosses a trunk link, the tag is added
 - unless the frame is associated with the native/default VLAN and the trunk port is configured to support the native VLAN
- A host NIC could also send tagged frames
 - e.g., an IP phone sending frames on the “VoIP VLAN”
 - VLAN ids can be assigned manually to hosts or assigned dynamically (e.g. thanks to IEEE 802.1x after host authentication with an AAA server)
Consider a Layer-2 VPN scenario
- Provider’s network creates one VLAN per customer
- Customer may still define multiple VLANs within customer’s multi-site network
- Customers’ VLAN frames carried through provider’s VLAN:
 - 802.1Q frames will be double tagged in the provider’s network
 - Outer VLAN id = Provider’s VLAN id
 - Inner VLAN id = Customer’s VLAN id

VLANs and spanning trees
- When several VLANs are deployed, it is possible to build one or several spanning trees:
 - Per-VLAN spanning tree (PVST)
 - Multiple spanning tree protocol (MSTP):
 - one spanning tree per group of VLANs
Chapter Roadmap

- Securing Switched Ethernet LANs
 - Securing the MAC self-learning process
 - Securing DHCP and ARP
 - Securing the spanning tree protocol
- VLANs
 - Securing VLANs

VLANs – A security plus

- Layer-2 broadcast frames remain on their VLAN
 - ARP, DHCP, …
- Frames cannot jump from one VLAN to another without passing through a layer-3 device
 - and high-end layer-3 switches can even perform firewall functions without using an external firewall device
- This traffic isolation is a security plus, unless there are misconfigurations and incorrect cabling
VLANs and firewalls

- The same physical switch could be used for the internal network and the DMZ, with a dedicated DMZ VLAN.
- But usually considered preferable to keep devices at different security levels isolated on physically separate switches.

VLANs – Trunk versus access ports

- Non trunk ports should be configured as access ports to avoid switch spoofing attacks.
 - In a switch spoofing attack, an attacking host imitates a trunking switch.
- On access ports the switch will discard:
 - Tagging and trunking protocols used to manage VLANs:
 - e.g., CISCO's Dynamic Trunking Protocol (DTP) used to negotiate trunking on a link and to configure the VLANs in a multi-switch network.
 - but also BPDUs for example.
- Also:
 - disable unused switch ports and create a VLAN to collect disabled switch ports.
VLAN hopping - Attacking the VLAN tag stack

VLAN hopping

- Frame hops from VLAN 1 to VLAN 2!
- Victim on VLAN 2 can receive killer packets from an attacker on VLAN 1 without crossing any router (and possible filter)!

Solutions

- Don't assign native VLAN to any access port
- Force all traffic on trunk to always carry a tag, even the native one
- Assign another unused number to the native VLAN

Summary

Securing Switched LANs

- Securing the MAC self-learning process
 - MAC spoofing
 - MAC flooding
- Securing DHCP and ARP
 - Rogue DHCP server
 - ARP spoofing/poisoning
- Securing the spanning tree protocol
- IEEE 802.1x can also be used with Switched LANs
 - was initially designed in this context

VLANs

- VLAN as a network segmentation mechanism
- A security plus

Securing VLANs

- Switch spoofing
- VLAN hopping