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The completion and publication of the Haemophilus 
influenzae genome sequence in 1995 (REF. 1) marked a 
significant phase transition in the history of biologi-
cal research. The advent of whole-genome sequencing 
and other high-throughput experimental technologies 
transformed biological research from a relatively data-
poor discipline into one that is data rich. An important 
challenge that is faced by investigators today lies in inter-
preting these large-scale data sets and thereby deriving 
fundamental and applied biological information about 
whole systems.

The challenge that comes with information-rich 
environments is not unique to post-genomics biologi-
cal research. Modern data sets in many disciplines are 
frequently immense in size. For example, National 
Oceanic and Atmospheric Administration (NOAA) sat-
ellites, which are used to monitor global climate change, 
generate approximately one terabyte of data per day2. 
Furthermore, the international retail giant Wal-Mart 
maintains a database of nearly 460 terabytes that con-
tains product information and details on the customers 
who buy them3. This onslaught of available information 
has driven the development of important data-mining 
techniques that are devoted to uncovering details that 
are of practical value for various applications4.

Although their size is often on the same, or a smaller, 
scale compared with other modern data sets, significant 
challenges are unique to modern post-genomics data 
sets. For example, many technological platforms, both 
hardware and software, are available for several ‘omics’ 
data types, but some of these are prone to introducing 
technical artefacts5. This can bias the data, which can 
falsely expose sample differences in the absence of a 

biological cause. In addition, uniform, standardized data 
representations are not always adopted6, which com-
plicates cross-experiment comparisons. Data-quality, 
context and lab-to-lab variations represent another 
important hurdle that must be overcome in genome-scale 
science7.

Despite these challenges, however, investigators 
are making progress in identifying, extracting and 
interpreting biological insights from omics data sets. 
One successful approach to doing so requires the inte-
gration of omics data. Here, we review some of the 
recent work that is being conducted around the world 
with regards to studying biology at the systems level 
in this way  8. We will first introduce many of the omics 
methods and data types that are currently available 
to researchers. We will then discuss several recently 
developed data-integration techniques and the types of 
problems that they are designed to tackle. We will also 
highlight a number of recent studies that successfully 
integrated omics data to address important biologi-
cal questions. Finally, the article will conclude with a 
discussion of the challenges that face the field as well 
as its future directions.

The advent of high-throughput DNA sequencing 
in the mid-1990s was quickly followed by technologi-
cal innovations that provide genome-scale measure-
ments for many of the molecular species that exist 
within the cell (FIG. 1). The description of the cellular 
network that these omics data provide for a given time 
and/or condition can be classified into three broad 
categories: components, interactions and functional 
states. Components data yield information regarding 
the specific molecular content of the cell or system. 
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Terabyte 
A unit of computer-
information-storage capacity 
that is equal to one trillion 
bytes or one thousand 
gigabytes.

Data mining 
An analytical discipline that is 
focused on finding 
unsuspected relationships and 
summarizing often large 
observational data sets in new 
ways that are both 
understandable and useful to 
the data owner.

Omics data set 
A generic term that describes 
the genome-scale data sets 
that are emerging from high-
throughput technologies. 
Examples include whole-
genome sequencing data 
(genomics) and microarray-
based genome-wide 
expression profiles 
(transcriptomics).

The model organism as a system: 
integrating ‘omics’ data sets
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Abstract | Various technologies can be used to produce genome-scale, or ‘omics’, 
data sets that provide systems-level measurements for virtually all types of cellular 
components in a model organism. These data yield unprecedented views of the cellular 
inner workings. However, this abundance of information also presents many hurdles, the 
main one being the extraction of discernable biological meaning from multiple omics 
data sets. Nevertheless, researchers are rising to the challenge by using omics data 
integration to address fundamental biological questions that would increase our 
understanding of systems as a whole.
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Interactions data specify the connectivity that exists 
among the molecular species, thereby defining the 
network ‘scaffold’ within the cell or system. Finally, 
functional-states data reveal the overall behaviour, or 
phenotype, of the cell or system. The following sec-
tions briefly introduce many omics technologies that 
are used by researchers to generate these data in the 
context of these three categories, and many useful 
online resources that contain publicly accessible data 
are summarized in TABLE 1.

Components data
Genomics. Genomics, which is defined here as the study 
of the whole genome sequence and the information con-
tained therein, is clearly the most mature of the different 
omics fields. Since 1995, nearly 300 genome-sequencing 
projects, with representative species from each of the three 
kingdoms of life, have been completed9 and hundreds 
more are underway. The raw sequence data themselves 
are facilitating many fascinating comparative genomics 
studies that are designed to identify gene-regulatory ele-
ments10, to understand speciation11, and to refine our idea 
of the evolutionary tree of life12.

Beyond the simple genome sequence, genome annota-
tion defines the complement of proteins and functional 
RNAs that are available to the cell, as well as their asso-
ciated regulatory elements. For example, many compu-
tational efforts have addressed the task of identifying 
transcription-factor-binding sites in genomic sequences, 
as shown in a recent study in which a critical perform-
ance assessment of many available tools was conducted13. 
So-called ORFeome projects are also underway to isolate 
experimentally each protein-coding component that is 
encoded by the open reading frames (ORFs) of a system. 
These projects — which will validate computational 
predictions, isolate and characterize splice variants, and 
facilitate downstream functional analyses14 — are cur-
rently ongoing for many organisms, including the nema-
tode Caenorhabditis elegans, humans and the pathogen 
Brucella melitensis.

Transcriptomics. The field of transcriptomics provides 
information about both the presence and the relative 
abundance of RNA transcripts, thereby indicating the 
active components within the cell. Since the mid-to-
late 1990s, countless genome-wide studies have exam-
ined the dynamics of gene expression in many model 
systems and environments. Microarrays15 and serial 
analysis of gene expression (SAGE)16 represent the most 
well-used approaches and have been applied to many 
model systems, as well as to the study of genes that are 
predominantly expressed in stem cells17, to classifying the 
molecular subtypes of human cancers18, and to monitor-
ing the host-cell transcriptional response to pathogens19. 
Even though these types of transcriptomics studies 
provide crucial information regarding the expression 
state, or primary genomics readout of the cell, it must 
be recognized that various levels of post-transcriptional 
control might rival its importance and are not captured 
by these analyses20.

Proteomics. Ultimately, proteomics aims to identify and 
quantify the cellular levels of each protein that is encoded 
by the genome. Methods based on two-dimensional 
gel electrophoresis and mass spectrometry are the most 
popular strategies21. High-throughput, quantitative, 
western-blot methods have also been implemented, 
but require extraordinary efforts and resources22. The 
proteomes of many cellular structures and organelles, 
such as the cytoskeleton and mitochondria, have been 
assessed23. Additional recent efforts are being devoted to 
developing next-generation technologies that will allow 

Figure 1 | ‘Omics’ data are providing comprehensive descriptions of nearly all 
components and interactions within the cell. Omics data sets that describe 
virtually all biomolecules in the cell are starting to become available. These data can 
be generally classified into three categories: components, interactions and 
functional-states data. Components data detail the molecular content of the cell or 
system, interactions data specify links between molecular components, and 
functional-states data provide an integrated readout of all omics data types by 
revealing the overall cellular phenotype. The central pathway traces the biological 
information flow from the genome to the ultimate cellular phenotype, and the 
available omics data types that are used to describe these processes are indicated in 
the adjacent boxes. From the top, DNA (genomics) is first transcribed to mRNA 
(transcriptomics) and translated into protein (proteomics), which can catalyse 
reactions that act on and give rise to metabolites (metabolomics), glycoproteins and 
oligosaccharides (glycomics), and various lipids (lipidomics). Many of these 
components can be tagged and localized within the cell (localizomics). The 
processes that are responsible for generating and modifying these cellular 
components are generally dictated by molecular interactions, for example by 
protein–DNA interactions in the case of transcription, and protein–protein 
interactions in translational processes as well as enzymatic reactions. Ultimately, the 
metabolic pathways comprise integrated networks, or flux maps (fluxomics), which 
dictate the cellular behaviour, or phenotype (phenomics).
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Serial analysis of gene 
expression 
(SAGE). An experimental 
technique for transcriptome 
analysis through the 
massive sequential analysis 
of short cDNA sequence tags. 
The cDNA tags are derived 
from cellular or tissue mRNA 
for which the corresponding 
genes can be identified, and 
the total count of cDNA tags 
for each gene represents an 
accurate measurement of its 
expression level.

Mass spectrometry 
An analytical technique that 
identifies biochemical 
molecules (such as proteins, 
metabolites or fatty acids) on 
the basis of their mass and 
charge.

for the better characterization of proteome–phenotype 
relationships by elucidating more fully the link between 
protein-expression profiles and distinct cellular processes 
or conditions24. In particular, one strategy that is being 
developed involves overcoming the problem of detecting 
only the most highly represented proteins in biological 
samples by focusing on unique characteristic peptides for 
each protein or protein isoform24.

Metabolomics/metabonomics. The discipline of meta-
bolomics seeks to identify the complete set of metabolites, 
or the metabolome, of the cell. The related metabonomics 
field specifically studies the dynamic metabolic response 
of living systems to environmental stimuli or genetic 
perturbation, and for the purposes of this review will 
be treated as an equivalent data type25. The metabolome 
represents the output that results from the cellular inte-
gration of the transcriptome, proteome and interactome 
(described in the next section)26, and therefore provides 
not only a list of metabolite components but also a func-
tional readout of the cellular state. As one of the newer 

omics data types, the methods that are used to generate 
these data are still being refined, and typically rely on 
mass spectrometry, NMR spectroscopy and vibrational 
spectroscopy27 to analyse the metabolite contents that are 
extracted from isolated cells or tissues. Given the highly 
diverse set of biomolecules and the large dynamic range 
of metabolite concentrations that require detection, 
modern techniques must capture hundreds of distinct 
chemical species. Despite these challenges and the 
consequent limitations, metabolomics is fast becom-
ing a popular tool for studying the cellular state of 
many systems, including plants28, the human red blood 
cell29 and microbes30, as well as in metabolic-engineering 
applications31, in pharmacology and toxicology32 and in 
human nutritional studies33.

Localizomics. Localizomics seeks to identify the sub-
cellular location of all proteins in the cell, which can 
provide key insights into the cellular function of the 
individual proteins as well as their probable interacting 
partners. In general, localizomics — more so than most 

Table 1 | ‘Omics’ data repositories*

Data types Online resource Description URL

Components

Genomics Genomes OnLine Database 
(GOLD)

Repository of completed and ongoing 
genome projects

http://www.genomesonline.org

Transcriptomics Gene Expression Omnibus (GEO) Microarray and SAGE-based genome-
wide expression profiles

http://www.ncbi.nlm.nih.gov/geo

Stanford Microarray Database 
(SMD)

Microarray-based genome-wide 
expression data

http://genome-www.stanford.edu/microarray

Proteomics World-2DPAGE Links to 2D-PAGE data http://us.expasy.org/ch2d/2d-index.html

Open Proteomics Database 
(OPD)

Mass-spectrometry-based proteomics 
data

http://bioinformatics.icmb.utexas.edu/OPD

Lipidomics Lipid Metabolites and Pathways 
Strategy (LIPID MAPS)

Genome-scale lipids database http://www.lipidmaps.org

Localizomics Yeast GFP Fusion Localization 
Database

Yeast genome-scale protein-localization 
data

http://yeastgfp.ucsf.edu

Interactions

Protein–DNA Biomolecular Network Database 
(BIND)

Published protein–DNA interactions http://www.bind.ca/Action/

Encyclopedia of DNA Elements 
(ENCODE)

Database of functional elements in 
human DNA

http://genome.ucsc.edu/ENCODE/index.html

Protein–protein Munich Information Center for 
Protein Sequences (MIPS)

Links to protein–protein-interaction data 
and resources

http://mips.gsf.de/proj/ppi

Database of Interacting Proteins 
(DIP)

Published protein–protein interactions http://dip.doe-mbi.ucla.edu

Functional states

Phenomics RNAi database C. elegans RNAi screen data http://rnai.org

General Repository for 
Interaction Datasets (GRID)

Synthetic-lethal interactions in yeast http://biodata.mshri.on.ca/grid

 A Systematic Annotation Package 
For Community Analysis of 
Genomes (ASAP)

Single-gene-deletion microarray data for 
E. coli phenotypes 

http://www.genome.wisc.edu/tools/asap.htm

*This table details some of the databases that store and distribute genome-scale omics data sets through publicly accessible Web sites. Some omics technologies 
do not yet have associated data-dissemination resources — notably metabolomics, glycomics and fluxomics — and are therefore not included in this table. It 
should also be noted that this table does not represent all publicly available omics data resources, but, rather, provides a reasonably broad sample of the data that 
are readily accessible to researchers today. C. elegans, Caenorhabditis elegans; 2D-PAGE, two-dimensional polyacrylamide-gel electrophoresis; E. coli, Escherichia 
coli; GFP, green fluorescent protein; RNAi, RNA interference; SAGE, serial analysis of gene expression.
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Vibrational spectroscopy 
An analytical technique that 
can be used to investigate the 
composition of biological 
samples by the characteristic 
frequencies at which chemical 
bonds vibrate.

Metabolic engineering 
An applied discipline that is 
devoted to the targeted 
improvement in cellular 
properties or metabolite 
production by experimental 
manipulation of specific 
metabolic or signal-
transduction pathways.

In silico prediction 
A general term that refers to a 
computational prediction that 
usually results from the 
analysis of a mathematical or 
computational model.

Histocytomics 
A developing field that is 
scaling up the traditional 
techniques of histochemistry 
and cytochemistry, such that 
many cellular species can be 
identified and localized in a cell 
or tissue sample in a high-
throughput manner.

Tiling array 
A high-density microarray that 
contains evenly spaced, or 
‘tiled’, sets of probes that span 
the genome or chromosome, 
and can be used in many 
experimental applications such 
as transcriptome 
characterization, gene 
discovery, alternative-splicing 
analysis, ChIP–chip, DNA-
methylation analysis, 
DNA-polymorphism analysis, 
comparative genome analysis 
and genome resequencing.

ChIP–chip 
A high-throughput 
experimental technique that 
combines chromatin 
immunoprecipitation (ChIP) 
and microarray technology 
(chip) that directly identifies 
protein–DNA interactions.

Power-law distribution 
Networks that exhibit a power-
law distribution, also known as 
scale-free networks, are non-
uniform, with most nodes 
having very few links, whereas 
a few so-called hub nodes 
have a very large number of 
links. Notably, many biological 
networks follow a power-law 
distribution as does the 
internet, for example.

other omics data types — requires extraordinary efforts, 
as each molecular species must be tagged or detected by 
antibodies, visualized by microscopy and assigned, often 
manually, to a specific subcellular domain or organelle. 
Accordingly, complete localizome determination has 
been restricted to model systems, such as Escherichia 
coli34 and Saccharomyces cerevisiae35, which are most 
amenable to manipulation by standard molecular-biol-
ogy techniques. Recent experimental efforts have gen-
erated a genome-wide resource of individual promoter 
constructs, thereby setting the stage for the determina-
tion of the C. elegans localizome36, and computational 
techniques are allowing for the in silico prediction of pro-
tein localization in eukaryotes37. Such predictions can be 
made on the basis of information regarding amino-acid 
and protein-domain families being previously associated 
with known subcellular locations. Furthermore, recent 
technological advancements — such as laser-scanning 
cytometry and tissue microarrays, which can simultane-
ously visualize the presence of many biological species 
in many different cell or tissue samples — are trans-
forming traditional histochemical and cytochemical 
methods from low- to high-throughput tools. This has 
spurred the nascent field of histocytomics, which has the 
potential to bring localizomics to more experimentally 
challenging systems, such as mammalian cell and tissue 
culture38.

High-throughput technologies for the detection 
and measurement of other cellular components are 
also becoming available. For example, lipidomics39 
seeks to identify and classify the complete inventory 
of lipids and their associated interacting factors within 
the cell, and glycomics40 seeks to do the same for carbo-
hydrates and glycans. However, these methods are in 
their infancy and relatively few data sets have been 
generated so far. Therefore, data-integration efforts 
using these omics data types remain on the horizon.

Interactions data
The protein–DNA interactome. Data concerning the 
interactions between proteins and DNA, particularly 
between transcription factors and their target promot-
ers, fundamentally define the genetic regulatory network 
of the cell. Determining the structure of this network is 
important to understand how cells modify their tran-
scriptional state during developmental processes41 and 
in response to environmental, extracellular, intracellular 
and intercellular signals. The combination of chromatin 
immunoprecipitation (ChIP) with whole-genome pro-
moter or tiling arrays42, commonly known as ChIP–chip 
or genome-wide location analysis43, has become the 
premier tool for the high-throughput elucidation of 
gene-regulatory interactions.

In recent years, researchers have exploited ChIP–chip 
to study various transcription factors in many model 
systems. Studies have investigated RNA polymer-
ase binding to promoters in E. coli44, S. cerevisiae45 
and humans46. Comprehensive investigations of the 
S. cerevisiae transcription-factor regulatory network 
have also appeared47. Furthermore, several studies have 
investigated the regulatory interactions of important 

human transcription factors such as Myc48, nuclear fac-
tor (NF)-κB49, p53 (REF. 50) and cyclic-AMP-response-
element-binding protein (CREB)51. A recent study 
also exploited ChIP–chip to interrogate nonspecific 
protein–DNA interactions, which have important roles 
in defining the transcriptional state of cells, by exam-
ining histone acetylation and methylation patterns 
in S. cerevisiae52. They found that histone acetylation 
occurs primarily at the beginning of genes, whereas his-
tone methylation can be found throughout transcribed 
regions.

The protein–protein interactome. Protein–protein inter-
actions — in signalling cascades and enzyme-complex 
formation, for example — dictate many cellular pro-
cesses. Identifying all functional protein–protein inter-
actions will be important for understanding the structure 
and function of the integrated cellular network53. In 
recent years, several techniques have provided many 
genome-scale protein–protein-interaction maps. These 
include experimental yeast two-hybrid54 and co-affinity 
purification coupled with mass-spectrometry techniques, 
as well as computational approaches that predict protein–
protein interactions by relying on shared characteristics of 
known interacting proteins55 or phylogenetic evolutionary 
information56.

So far, reasonably comprehensive protein–protein-
interaction networks57 have appeared for bacteria 
(E. coli58 and Helicobacter pylori59), the malarial patho-
gen Plas modium falciparum60, S. cerevisiae61, the fruitfly 
Drosophila melanogaster62, C. elegans63 and humans64. 
Many follow-up studies have analysed the patterns of 
interacting components, or topological properties, 
that are exhibited by the resulting networks65 and have 
debated the potential underlying biological implica-
tions. For example, they have asked whether the appar-
ent power-law distribution of protein–protein-interaction 
connectivity exists to confer robustness against the 
perturbation of network components66. Further studies 
have assessed the fidelity of protein–protein-interaction 
data (estimated to be as low as 50% for yeast two-hybrid 
screens) and how to best capture the ‘true’ network67. 
Additional efforts are aimed towards developing high-
throughput small-molecule screens designed to identify 
molecules that interact with, and disrupt, protein–protein 
interactions68.

Functional-states data
Phenomics. The term phenomics refers to the high-
throughput determination of cellular fitness or 
viability in response to genetic and/or environmental 
perturbations. Several high-throughput strategies are 
used at present to accomplish this task. Phenotyping 
microarrays facilitate a high-throughput, parallelized 
assessment of the growth capabilities of wild-type and 
mutant microbes69. Chemogenomics applies a similar 
approach by rapidly screening the phenotypic effect of 
libraries of compounds on whole biological systems and 
also has functional-genomics capabilities70. RNA inter-
ference (RNAi) screens, in which each gene product is 
functionally knocked down but not deleted, likewise, 

R E V I E W S

NATURE REVIEWS | MOLECULAR CELL BIOLOGY  VOLUME 7 | MARCH 2006 | 201

 F O C U S  O N  M O D E L L I N G  C E L L U L A R  S Y S T E M S



© 2006 Nature Publishing Group 

 

Table 2 | ‘Omics’ integration techniques*

Methods Integration data types URL References

Identifying the scaffold

REDUCE, MODEM algorithms Genomics, transcriptomics http://bussemaker.bio.columbia.edu/reduce 84

GRAM algorithm PDI, transcriptomics http://psrg.lcs.mit.edu/GRAM/Index.html 85

Decomposing the scaffold

Enriched motifs (for example, using mfinder and mDraw) PPI, PDI, genomics http://www.weizmann.ac.il/mcb/UriAlon/
groupNetworkMotifSW.html

90

SAMBA algorithm Genomics, PDI http://www.cs.tau.ac.il/%7Ershamir/
expander/expander.html

93

SANDY algorithm PDI, transcriptomics http://sandy.topnet.gersteinlab.org 95

Active subnetworks (for example, using Cytoscape) PPI, PDI, transcriptomics http://www.cytoscape.org 96

Within-pathway and between-pathway network models PPI, PDI, phenomics http://www.cellcircuits.org/Kelley2005 98

Cellular modelling and analysis

COBRA method Genomics, proteomics, 
localizomics, phenomics

http://systemsbiology.ucsd.edu 100,101

Developmental gene-regulatory networks (for example, 
using the BioTapestry tool)

Genomics, phenomics http://www.biotapestry.org 105

*This table provides URLs for various online resources that supply direct software implemention and/or additional information regarding many of the techniques 
detailed in the main text. COBRA, constraint-based reconstruction and analysis; GRAM, genetic regulatory modules; MODEM, module construction using gene 
expression and sequence motifs; PDI, protein–DNA interaction; PPI, protein–protein interaction; REDUCE, regulatory-element detection using correlation with 
expression, SAMBA, statistical-algorithmic method for bicluster analysis; SANDY, statistical analysis of network dynamics.

Network scaffold 
Refers to the structure of a 
network that specifies the 
components of the network 
and the interactions between 
them, and represents the end 
product of the network-
reconstruction process.

Network module 
A portion of a biological 
network that is composed of 
multiple molecular entities 
(such as genes, proteins or 
metabolites) that work 
together as a distinct unit 
within the cell, for example, in 
response to certain stimuli or 
as part of a developmental or 
differentiation programme.

are invaluable tools in assessing genotype–phenotype 
relationships and have been used extensively in stud-
ies of D. melanogaster, C. elegans and human systems71. 
Comprehensive studies in E. coli34 and S. cerevisiae72 
have also produced detailed information regarding 
gene and pathway essentiality by examining cellular 
viability following single and double gene deletions, 
respectively.

Recently developed techniques in the field of flux-
omics73 also provide functional-states data by quantify-
ing the specific flux of metabolites through enzymatic 
reactions within the cell. This approach has so far been 
limited to studies of microbes, however, and studies that 
integrate fluxomics and other high-throughput data have 
yet to appear in the literature.

Methods for omics data integration
The growing availability of omics data is providing 
researchers with unprecedented, large-scale views of 
biological systems. In recent years, many researchers 
have made great strides towards extracting insights 
from these data by devoting much of their work to 
studying the properties and content of omics data sets, 
ultimately developing general methods to integrate vari-
ous genome-scale data types (TABLE 2). These approaches 
generally tackle three specific tasks: first, identifying the 
network scaffold by delineating the connections that exist 
between cellular components; second, decomposing the 
network scaffold into its constituent parts, or network 
modules, in an attempt to understand the overall network 
structure; and third, developing cellular or systems mod-
els to simulate and predict network behaviour that gives 
rise to cellular phenotypes (FIG. 2). Furthermore, many 
software packages have appeared that can facilitate these 
efforts (TABLE 3).

Identifying the scaffold. Protein–DNA and protein–
protein-interactome data define the interactions that 
comprise cellular networks. As previously noted, how-
ever, these data sets can be prone to high error rates67. 
Researchers attempt to mitigate this issue by develop-
ing methods that integrate multiple omics data types, 
yielding scaffolds that are likely to reflect real cellular 
networks more closely. The methods described below 
aim to refine protein–DNA or protein–protein networks 
by reducing the number of false-positive interactions, 
therefore allowing for explicit and accurate definitions 
of enzymatic complexes, as well as gene-regulatory and 
signalling networks.

A common approach to uncovering gene-regulatory 
networks focuses on integrating transcriptomics and 
genomics information. One strategy to accomplish 
this involves, first, clustering high-throughput gene-
expression data sets, and then isolating the upstream 
regions of the clustered genes and analysing them for 
common cis-regulatory motifs74. Additional methods 
circumvent the need for multiple gene-expression data 
sets, and instead rely on directly correlating the prob-
ability of cis-regulatory transcription-factor-binding 
motifs occurring in a particular promoter region with 
the corresponding gene-expression pattern74. If the 
identified motifs correspond to known transcription-
factor-binding sites, the regulatory network that 
is responsible for the observed transcription state 
can be inferred. The MODEM (module construction 
using gene expression and sequence motif ) algo-
rithm extends this idea by employing the REDUCE 
(regulatory-element detection using correlation with 
expression) algorithm to find regulatory motifs, and 
subsequently allowing for the inclusion of either 
ChIP–chip or transcription-factor-perturbation 
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Bayesian model 
A probabilistic model that 
generally specifies the 
likelihood of an observation 
occurring, on the basis of the 
presence of various 
characteristics that are known 
or assumed to be associated 
with the observation according 
to prior information.

experiments75 to delineate the regulatory network. 
The success of these methods, however, is often ham-
pered due to the inherent high degree of variability, 
or ‘noise’, of microarray gene-expression data, and the 
general difficulty in identifying the often degenerate 
regulatory-motif signatures in genomic sequences. 

Another increasingly popular approach to identify-
ing gene-regulatory networks involves the integration 
of protein–DNA-interaction data with transcriptomics 
data. Bar-Joseph et al.76 developed an algorithm known 
as genetic regulatory modules (GRAM) to accomplish 
this task. GRAM first identifies all protein–DNA-
binding events that are indicated by ChIP–chip results 
for a given set of transcription factors. A subset of genes 
that are identified through the analysis of the binding 
data is then selected on the basis of them having highly 
correlated gene-expression profiles. The binding data 
are then revisited with relaxed binding-detection cri-
teria to add additional gene targets that share similar 
expression profiles with the initially chosen gene subset, 
and that use the same set of transcriptional regulators. 
This iterative process results in the specification of a 

gene-regulatory network and can be used to study its 
modularization (see below). Furthermore, given a recon-
structed network, techniques are available to determine 
computationally which perturbation experiments will 
promote the most rapid elucidation and expansion of 
the network in the future77,78.

Systematic approaches that infer the structure of the 
protein–protein-interaction network have been devel-
oped. In recent years, Bayesian classification methods 
have emerged as a common approach to overcoming the 
problem of noisy interaction data. The general approach 
combines and uses subtle evidence from disparate data 
sources in an effort to filter out false positives from the 
list of possible protein–protein interactions. First, it 
identifies features that are shared by known interacting 
proteins (known as ‘gold standard’ positives) and similarly 
identifies features that are characteristic of known non-
interacting pairs (known as ‘gold standard’ negatives). It 
then compares the integrated characteristics for pairwise 
combinations of proteins against the same character-
istics for known interacting protein pairs and known 
non-interacting protein pairs and generates a likelihood 
score for each potential interaction. The result is a proba-
bilistic interactome in which all pairwise combinations 
of proteins are represented, the highest scoring of which 
represent the most likely structure of the protein–protein-
interaction network.

Using this approach to elucidate the S. cerevisiae 
protein–protein-interaction network, Jansen et al.79 
integrated mRNA-correlation transcriptomics data, 
genomics (which included functional annotation and 
other ontological data) and data on whether genes are 
essential or not from high-throughput phenotyping 
assays. This Bayesian approach allowed them to derive 
a probabilistic structure for the entire S. cerevisiae pro-
tein–protein-interaction network. Recently, Rhodes 
et al.80 adopted this approach to build a comprehensive 
probabilistic human protein–protein-interaction network 
containing 40,000 interactions, which, when account-
ing for differences in gene number, is comparable to 
results obtained for model organisms. To achieve this, 
they integrated genomics data in the form of functional 
annotation, ontological and shared-protein-domain data, 
orthologous protein–protein-interaction data from other 
model organisms, and mRNA co-expression-based tran-
scriptomics data. Both of the described studies confirmed 
selected predicted interactions using detailed follow-up 
experiments. Furthermore, given that interacting pro-
teins tend to perform similar functions or participate 
in similar cellular processes, the confirmed interaction 
results are useful in assigning functional annotations to 
hypothetical proteins that are shown to interact directly 
with protein(s) of known function.

However, although these integrative efforts improved 
protein–protein-interaction detection results over using 
any one data type alone, it should be noted that neither 
study was able to recover all of the known interactions, 
and that the false-positive rates remained high. This 
discrepancy could be a product of technical limitations 
that are associated with the experimental protocols that 
were used to generate the data, or could, perhaps, be 

Figure 2 | ‘Omics’ data-integration approaches for identifying, decomposing and 
modelling cellular networks. Many investigators are devoting significant efforts to 
investigating the properties of omics data sets and developing general methods to 
integrate these data. These techniques generally accomplish three particular tasks: first, 
identifying the network scaffold; second, decomposing the network scaffold; and third, 
cellular-systems modelling and analysis. a | Identifying the network scaffold. This panel 
depicts the general strategy for identifying all interactions between cellular components 
that comprise the gene-regulatory network scaffold by integrating chromatin 
immunoprecipitation (ChIP) and microarray gene-expression data (referred to as 
ChIP–chip data). ChIP–chip data specify the interactions between a transcriptional 
regulator and its target gene, and various statistical approaches can be used to derive the 
specific regulatory relationships (that is, transcriptional activation or repression) between 
components. b | Network-scaffold decomposition. This procedure is generally carried out 
by integrating omics data in the context of a given or inferred network structure, followed 
by deconstructing the network into network modules. These modules are then commonly 
used either to infer organizational principles or identify active portions of the network. 
c | Cellular-systems modelling and analysis. The availability of these omics data sets opens 
the door for integrative efforts that incorporate these data into whole-cell or systems 
models. Genome-scale models are under development and involve, first, the 
incorporation of data into a network model, followed by the mathematical representation 
of that model, to ultimately facilitate simulation and analysis.
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Table 3 | Software for ‘omics’ integration*  

Package Accessibility Functionality URL

Biotapestry Open source • Build developmental gene-regulatory network models
• Visualize network 
• Simulate and analyse network behaviour

http://www.biotapestry.org

CellDesigner Open source • Build interaction maps
• Visualize process diagrams

http://www.celldesigner.org

Cytoscape Open source • Build interaction maps
• Visualize high-throughput data
• Conduct graph theoretical analysis

http://www.cytoscape.org

Pajek Free for non-
commercial use

• Build interaction maps
• Visualize network structure
• Conduct graph theoretical analyses

http://vlado.fmf.uni-lj.si/pub/networks/pajek/default.
htm

SimPheny Commercial • Build COBRA models
• Integrate high-throughput data
• Visualize high-throughput data
• Simulate and analyse network behaviour

http://www.genomatica.com

ToPNet Open source • Represent interaction maps as PetriNets
• Visualize high-throughput data

http://www.biosolveit.de/ToPNet

YeastHub Open source • Integrate high-throughput data http://yeasthub.gersteinlab.org
*As omics data sets become increasingly available, the need has grown for software tools to effectively integrate, structure, analyse and visualize omics data. This 
table compiles several of the useful tools that are currently available to researchers, briefly describes their utility, and includes links to their associated online 
resources. The Systems Biology Markup Language (SBML) Web page provides links to many other software tools for network visualization and analysis (http://www.
sbml.org). COBRA, constraint-based reconstruction and analysis.

Synthetic lethal 
This term refers to the lethal or 
significantly impaired 
phenotype that results from 
mutations in two non-essential 
genes that, individually, result 
in viability. Such an interaction 
possibly indicates their activity 
within the same essential 
pathway or parallel non-
essential pathways.

Bipartite graph 
A set of graph vertices that is 
partitioned into two distinct 
sets such that no two graph 
vertices within the same set are 
adjacent. For example, one set 
can represent genes, and the 
other set can represent 
characteristics that describe 
the function(s) of those genes.

due to differences in the growth conditions that were 
used to generate the experimental data. With these fac-
tors in mind, subsequent analyses that aim to identify 
the organizational principles of these networks, some 
of which are described below in the context of scaffold 
decomposition, might themselves be confounded by 
incomplete or incorrect interactions that are likely to 
exist within these derived scaffolds.

Scaffold decomposition. Many available methods are 
designed to complement scaffold-building techniques 
by decomposing them into network modules. These 
methods generally aim to accomplish one of two tasks. 
The first method attempts to analyse a network scaffold 
directly by identifying its modular structure, with the 
ultimate aim of understanding organizational principles 
of networks. By contrast, the second method aims to 
integrate omics data types with known or pre-defined 
molecular scaffolds — for example, from scaffolds that 
are derived from interactions data or generated by using 
the methods described in the previous section — in 
order to pinpoint the portions of the network that are 
most active under a given condition and therefore best 
explain the observed systemic behaviour.

One approach that was designed to study the modu-
lar structure of networks involves the identification of 
significantly enriched motifs, or interaction patterns, 
that exist within the network (FIG. 3). Yeger-Lotem et 
al.81 searched for enriched two-, three- and four-protein 
motifs in an integrated protein–protein, protein–DNA 
network. The identified enriched motifs are thought to 
represent the basic building blocks that comprise the 
cellular network. The incorporation of localizomic data 
also helps isolate the most biologically relevant motifs82, 
as interacting components are most likely to exist in the 
same subcellular compartment or organelle.

Zhang et al.83 recently expanded on this idea by 
combining protein–protein interaction, ChIP–chip 
(protein–DNA interaction), gene co-expression 
(transcriptomics), synthetic lethal (phenomics) and 
sequence homology (genomics) data to decompose an 
integrated S. cerevisiae interaction network into mod-
ules. After constructing a comprehensive S. cerevisiae 
interaction network from these data, significantly 
enriched three-node (and some four-node) network 
motifs were then detected and organized into network 
themes that consisted of overlapping motif structures. 
Network themes were then further grouped into the-
matic maps, which provided a topological overview, 
specifying links between different functional subsys-
tems, and ultimately imposing a hierarchical structure 
onto the network. Additional efforts, such as the sta-
tistical analysis of network dynamics (SANDY) algo-
rithm84, are also extending these analyses to reflect 
the dynamic properties of the network by assessing 
topological features under various environmental 
conditions85.

Tanay et al.86 took a slightly different approach to 
the same network-modularization problem with their 
statistical-algorithmic method for bicluster analysis 
(SAMBA) algorithm. A bipartite graph is first con-
structed in which genes are linked to gene properties 
that are derived from omics data. Genes that share a 
statistically significant number of properties are then 
identified and, together, represent a network module. 
Modules can then be analysed using methods from the 
field of graph theory to define connectivity statistics and 
ultimately assess their global organization within the 
network. As previously noted, however, these studies 
that are aimed at studying network organization rely on 
high-quality scaffold identification and can therefore be 
significantly compromised by erroneous data.
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Simulated annealing-based 
search algorithm 
A global optimization 
technique that traverses a 
search space by testing 
random mutations on an 
individual solution, keeping all 
better solutions, and accepting 
worse solutions 
probabilistically on the basis of 
the difference in solutions and 
a decreasing temperature 
parameter.

Training set 
A collection of data that has 
known characteristics and is 
used to develop a predictive 
model in data-mining and 
machine-learning applications 
(for example, in Bayesian-
model approaches). The 
characteristics learned from 
the training set are used to 
make subsequent predictions 
about new data.

Much effort has also focused on identifying portions 
of the cellular network that are likely to be responsible 
for an observed phenotype. Ideker et al.87 developed a 
method for identifying ‘active subnetworks’ by integrat-
ing interaction and transcriptomics data. They first 
assembled a network scaffold on the basis of the inter-
action data and independently assessed the statistical 
significance for each component within the assembled 
network. They then used a simulated annealing-based 
search algorithm to identify subnetworks that are enriched 
for differentially expressed genes. Subnetwork enrich-
ment was assessed by comparing an aggregate statistical 
measure for all components in the identified subnetwork 
against randomly selected subnetworks of the same 
size from the same expression data. Highly significant 
enriched subnetworks indicate a probable involvement 
in the phenotype under study.

Another network-decomposition approach inte-
grates many biological networks in an effort to predict 
synthetic-lethal interactions88. Decision trees are con-
structed that integrate various characteristics — such as 
localization, functional annotation and shared sequence 

homology — for pairwise combinations of genes in 
a training set, which are then used to predict whether 
the combined perturbation of two genes will lead to a 
growth-deficiency phenotype. This method could prove 
invaluable in focusing experimental studies of network 
robustness in systems that cannot be so easily genetically 
manipulated.

Rather than predicting synthetic-lethal interac-
tions, Kelley and Ideker89 used an integrated network 
to uncover mechanistic explanations for growth-defi-
cient double-deletion strains, and thereby elucidated 
underlying network organizational principles. They first 
constructed an integrated network that was comprised 
of protein–protein and protein–DNA interactions, as 
well as enzyme–enzyme interactions that are specified 
by metabolic reaction maps as defined in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)90. Using 
a log-odds scoring scheme, they identified within- and 
between-pathway network motifs in an effort to explain 
the synthetic-lethal interactions. Within-pathway motifs 
correspond to instances where genetic interactions 
occur between genes for which the protein products 
are involved in the same pathway, whereas between-
pathway cases involve genes for which the protein prod-
ucts participate in distinct pathways or processes. The 
application of this method as a predictive tool was also 
assessed and it was determined that between-pathway 
motifs are generally better predictors of synthetic-lethal 
interactions in S. cerevisiae — this would be expected, 
given that the perturbation of multiple independent 
pathways is likely to have a larger impact on cellular 
fitness than multiple perturbations of a single pathway. 
As an additional application, these network motifs 
were also shown to be potentially useful in studying 
the organizational properties of a network and to make 
protein-function predictions.

Cellular modelling and analysis. As noted previously, 
omics technologies are providing systems-wide measure-
ments of virtually all classes of biomolecules. Although 
the level of precision of most systems-wide measure-
ments is not yet sufficient to detail specific levels or 
concentrations of cellular components, these data are 
beginning to open the door for integrative efforts that 
strive to model the entire cell. Accordingly, significant 
work is being devoted to developing methods that facili-
tate whole-cell modelling, simulation and analysis.

The constraint-based reconstruction and analysis (COBRA) 
technique91 has emerged in recent years as a successful 
approach to modelling systems on a genome scale. In 
contrast to many existing computational modelling 
approaches, the COBRA method seeks to clearly distin-
guish biologically feasible from biologically unfeasible 
network states, rather than exactly predicting network 
behaviour. By relying primarily on network stoichi-
ometry, COBRA avoids the need to define kinetic rate 
constants and other parameters that are difficult or 
impossible to determine accurately in the laboratory. This 
technique begins with developing a network reconstruction 
on the basis of annotated genome sequence, known bio-
chemistry and other high-throughput resources, such as 

Figure 3 | Network-motif enrichment: an example of network decomposition. 
One approach to decomposing complex networks involves the identification of enriched 
motifs, or interaction modules, that exist within networks. a | A reconstructed Escherichia 
coli regulatory network. This diagram represents a hierarchical representation of the 
regulatory network that was previously used in an integrated regulatory and metabolic 
model of E. coli 96. This relatively complex network structure that contains 104 regulators 
and 479 target-enzyme genes is organized so that global regulators are depicted in red, 
major regulators in purple, minor regulators in green, and target genes — in this case 
model enzymes — in yellow. The blue lines represent direct regulatory reactions, either 
between regulators or between regulator and target enzymes. Genes were arbitrarily 
assigned to the regulator class (global versus major versus minor) on the basis of the total 
number of target genes that are either directly under their control, or that are indirectly 
controlled by the direct interaction with other regulators. b | Network-motif-enrichment 
analysis. To illustrate one method that researchers use to decompose biological 
networks, network-motif-enrichment analysis81 was conducted to identify the relative 
enrichment of the 13 possible types of three-node motifs that could be present within 
the depicted E. coli regulatory network. The four three-node motifs that were detected 
within the network are shown. Only the top motif was identified as occurring more 
frequently than would be expected by chance, as determined by comparisons with 
randomized networks. This motif, which is commonly known as the feed-forward loop, 
has been frequently observed in biological-network analyses and is thought to serve as a 
filter against noise within networks that are responding to various signals. 
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Log-odds scoring scheme 
A statistical procedure that is 
designed to assess the 
significance of an observation 
by calculating a quantity that 
considers the observed 
frequency relative to the 
expected frequency, if the 
observation was random.

Constraint-based 
reconstruction and analysis 
(COBRA). A genome-scale 
modelling approach that 
involves: first, the 
reconstruction of biochemical 
reaction networks; then, 
applying constraints to the 
network; and finally, analysing 
the characteristics and 
capabilities of the network 
using various computational 
techniques.

Network reconstruction 
The process of integrating 
different data sources to create 
a representation of the 
chemical events that underlie a 
biochemical reaction network. 

Governing constraints 
Biochemical networks and 
cellular systems are 
constrained by natural law. 
These governing constraints 
include physico-chemical 
constraints (such as enzyme 
turnover), topobiological 
constraints (such as cellular 
crowding), environmental 
constraints (such as nutrient 
availability) and regulatory 
constraints (such as gene 
repression in response to 
external signals).

Omics data integration 
The simultaneous analysis of 
high-throughput genome-scale 
data that is aimed at 
developing models of biological 
systems to assess their 
properties and behaviour.

Biomarker 
A distinctive biochemical 
indicator that is associated 
with a biological process or 
event (for example, the 
presence of a protein, or set of 
proteins, that are characteristic 
of cancerous cells).

proteomics, localizomics and phenomics data92. Governing 
constraints, such as reversibility and maximum capacity 
of enzymatic reactions, can then be imposed on the 
network, thereby defining the feasible network states91.

Since 1999, more than a dozen genome-scale 
metabolic-network reconstructions for various micro-
organisms from all major taxa of the tree of life have 
appeared in the literature (reviewed in REF. 92). Models 
of organelles and individual human cells, such as the 
mitochondria and the red blood cell, are also available. 
Each network reconstruction captures the components 
of the system and the interactions between them, thereby 
effectively representing two-dimensional genome anno-
tations93. Furthermore, the combination of genome-scale 
models and associated analytical methods that is used 
by the COBRA technique has proven useful in basic 
research, by aiding researchers in identifying meta-
bolic systems properties and in directing experimental 
design91,92, as well as in applied disciplines such as meta-
bolic engineering94. Furthermore, when viewed in light 
of genome-wide expression data, these models can be 
used to uncover the structure of transcription regulation 
in metabolic networks95. So far, however, these models 
have had their main success in assessing the metabolic 
capabilities of cells, but do not account for many other 
important aspects of cellular biology. Efforts have begun 
that are aimed at incorporating regulatory96 and signal-
ling processes97 using the COBRA approach, but much 
work remains to be done in order to capture the true 
internal state of the cell through whole-cell modelling.

Significant advances are also being made in modelling 
developmental gene-regulatory networks. These genetic 
programmes are of primary interest as they ultimately 
dictate the growth and differentiation of multicellular 
systems. Developmental programmes are encoded in 
DNA sequence, and models that explain these processes 
are derived by integrating genomics and localizomics data 
to establish developmental regulatory interactions within 
and between various cell types. This is then followed by 
the detailed experimental validation98 of these relation-
ships. Each interaction can be verified unambiguously 
using established experimental techniques — regulatory 
relationships are either confirmed or refuted based on the 
developmental impact of mutations in DNA promoter 
regions — and are therefore independent of molecular 
concentrations or kinetic constants. Although the sea 
urchin model is the most mature, models of developmen-
tal gene-regulatory networks are becoming available for 
many other organisms41.

Asking ‘big’ questions
Many researchers are capitalizing not only on new omics 
technologies, but also on the wealth of information that 
has been captured by omics data (FIG. 4). Many efforts are 
using omics integration to identify potential functional 
annotation99. Perhaps more interesting, however, are the 
many investigations that have been facilitated by omics 
integration, and which are aimed at delineating systems-
wide behaviour and addressing fundamental evolution-
ary questions. So, integrating multiple omics data sets to 
form networks, and determining their functional states, is 

allowing us to address both proximal (or systems-specific) 
and distal (or broader-scale) evolutionary questions in 
biology at a resolution that was previously impossible.

From scaffolds to functional states. Omics integration 
studies that are designed to characterize the behaviour 
of S. cerevisiae have pervaded the literature in recent 
years. One particular line of research that uses inte-
grative techniques revolves around identifying all the 
key components that are involved in the S. cerevisiae 
response to various mutagens. For example, the integra-
tion of single-gene-deletion phenotypic screens, locali-
zation experiments and protein–protein-interaction 
data has provided a systems-level view of DNA-damage 
responses and the recovery from exposure to known 
carcinogens100. A recent study expanded on this work 
by integrating genomics and phenomics data that were 
obtained while screening additional carcinogens, and it 
derived specific insights into the relative importance of 
DNA-repair modules for resistance to each compound101 
— ultimately revealing new functional interactions. 
The S. cerevisiae response to arsenic exposure was also 
elucidated through the integration of phenomics, tran-
scriptomics and protein–protein-interactions data102 
in an effort to understand the cellular response to this 
widespread, non-mutagenic carcinogen.

C. elegans is another model organism that is increas-
ingly being studied at the systems level using omics data 
integration. In particular, these integrative efforts have 
focused on more fully characterizing all the elements 
that are at work during specific biological processes. For 
example, phenomics data from RNAi screens combined 
with protein–protein-interactions data enabled the recent 
elucidation of additional factors that are involved in the 
RNAi process103. Integration of these data also led to 
the further elucidation of the Dauer-formation family 
member-7–transforming growth factor-β (DAF-7–
TGF-β) signalling pathway104 (which participates in 
cancer pathogenesis, inflammation and developmental 
pathways) as well as to the identification of possible novel 
participants in the DNA-damage-response process105. 
Incorporating gene co-expression data into these types 
of analyses has also allowed researchers to deduce the 
protein complexes and active network components that 
are responsible for early C. elegans embryogenesis106.

The integration of omics data is also driving many 
recent studies in plants. Given the huge diversity of 
metabolic compounds that plants can produce, plant 
researchers have been spurring advances in metabolomic 
technologies and the subsequent analytical procedures, 
many of which rely on the integration of omics data. For 
example, the integration of genomics and metabolomics 
data is driving functional-annotation efforts that assign 
specific enzymes to previously uncharacterized metabolic 
reactions107. Transcriptomics and metabolomics data are 
also being integrated to assess the potential for inadvertent 
systems-wide impacts that could result from the genetic 
engineering of crops108, as well as to analyse the nutrient-
starvation stress response in Arabidopsis thaliana109.

Many studies of human systems are also adopting 
omics data-integration strategies to identify biomarkers 

R E V I E W S

206 | MARCH 2006 | VOLUME 7  www.nature.com/reviews/molcellbio

R E V I E W S



© 2006 Nature Publishing Group 

 

Genomics Transcriptomics Proteomics Metabolomics Protein–DNA
interactions

Protein–protein
interactions

Fluxomics Phenomics

Genomics
(sequence 
annotation)

• ORF validation
• Regulatory 
   element
   identification74

• SNP effect on
   protein activity
   or abundance

• Enzyme
   annotation

• Binding-site
   identification75

• Functional
   annotation79

• Functional
   annotation

• Functional
   annotation71,103

• Biomarkers125

Transcriptomics
(microarray, SAGE)

• Protein: 
   transcript
   correlation20

• Enzyme
   annotation109

• Gene-regulatory
   networks76

• Functional
   annotation89

• Protein complex
   identification82

• Functional
   annotation102

Proteomics
(abundance, post-
translational
modification)

• Enzyme
   annotation99

• Regulatory
   complex 
   identification

• Differential
   complex
   formation

• Enzyme capacity • Functional
   annotation

Metabolomics
(metabolite
abundance)

• Metabolic-
   transcriptional
   response

• Metabolic
   pathway
   bottlenecks

• Metabolic
   flexibility
• Metabolic
   engineering109

Protein–DNA
interactions
(ChlP–chip)

• Signalling
   cascades89,102

• Dynamic
   network
   responses84

Protein–protein
interactions
(yeast 2H, 
coAP–MS)

• Pathway 
  identification
   activity89

Fluxomics
(isotopic tracing)

• Metabolic
   engineering

Phenomics
(phenotype arrays,
RNAi screens,
synthetic lethals)

that are associated with disease states, to elucidate sig-
nalling-pathway components more fully, and to conduct 
detailed studies of important transcription-factor mecha-
nisms of action and activities. Recently, metabolomics and 
transcriptomics data were integrated to define prognosis 
characteristics in human neuroendocrine cancers110. 
Researchers used transcriptomics signatures to identify 
activated portions of the metabolic network and to then 
direct corresponding metabolomics experiments that 
were designed to detect specific metabolic changes that 
are characteristic of the most aggressive types of this can-
cer. This work ultimately resulted in the identification of 
transcriptomics and metabolomics biomarkers for these 
disorders that are associated with particular pathways 
that are involved in γ-aminobutyric acid (GABA) and 
imidazole-4-acetate production, respectively. Another 
study used protein–protein-interaction and proteomics 
data to elucidate interferon (IFN)-mediated regulation in 
human liver cells more fully111, which might lead to the 
enhanced understanding of the host response to hepatitis 
C virus. In an additional study, protein–DNA interaction 
and transcriptomics data were integrated from a number 
of human and mouse tissues to study CREB activity51. 

It was determined that CREB-target-gene activation 
cannot be explained by CREB-binding-site occupancy 
or the phosphorylation state of the transcription factor 
alone, but instead, requires the selective recruitment 
to the promoter of other transcription factors, such as 
CREB-binding protein (CBP), and possibly additional 
cofactors as well. Each of the above examples highlights 
how omics data sets can be integrated to provide compre-
hensive views of model systems and to therefore better 
understand their overall behaviour in response to various 
environmental conditions and stimuli.

Gaining evolutionary insights. Many evolutionary studies 
are also benefiting from the integration of multiple omics 
data types. One question that is of fundamental interest is 
what cellular factors distinguish species, and are therefore 
likely to have had roles in speciation events, particularly 
those of close evolutionary relatives? For example, as the 
chimpanzee and human genome sequences share ~99% 
identity, what other cellular factors account for the many 
morphological, behavioural and cognitive differences that 
exist between species? Enard et al.112 used transcriptomics 
and proteomics data to show that significant changes in 

Figure 4 | ‘Omics’-data integration helps to address interesting biological questions on the systems level. This array 
summarizes some of the potential biological insights that can be gleaned from the pairwise integration of omics data. 
Each element in the array contains examples of the type of systemic information that can be gained by integrating omics 
data. Reference numbers are noted for those applications that are described in the main text. Empty elements represent 
more challenging integrations where an application is less obvious. It should also be noted that many researchers have 
extended integrative analyses, some of which are described in the main text, to include three or more omics data sets to 
investigate additional biological problems. ChIP–chip, chromatin-immunoprecipitation–DNA-microarray; coAP–MS, 
co-affinity-purification–mass-spectrometry; ORF, open reading frame; RNAi, RNA interference; SAGE, serial analysis of 
gene expression; SNP, single nucleotide polymorphism; yeast 2H, yeast two-hybrid analysis.
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Metabolic syndrome 
An increasingly common, 
complex and multi-factorial 
disorder that is characterized 
by glucose intolerance, 
abdominal obesity, 
hypertension and abnormal 
cholesterol levels that 
increases an individual’s risk of 
developing coronary heart 
disease and type 2 diabetes.

Personalized genomic 
medicine 
The idea that genome-scale 
technologies will allow 
clinicians to apply treatment 
regimens that are tailored 
specifically to an individual 
patient on the basis of their 
genetic makeup and 
associated predispositions.

Gödel’s incompleteness 
theorem 
A prominent result from 
mathematical logic that 
basically states that for any 
formal theory in which basic 
arithmetical facts (or axioms) 
are provable, it is possible to 
construct an arithmetical 
statement that is true but 
neither provable nor refutable 
within the theory. Therefore, 
despite having all axioms 
available, certain truths may 
not be provable or readily 
apparent.

gene and protein expression patterns in the brain might 
have more crucial roles than changes in other tissues. A 
follow-up study that lends support to this idea integrated 
genomics and transcriptomics data, and identified a 
trend towards increased protein-coding changes between 
humans and chimpanzees in brain-specific genes relative 
to other tissues113. Additional studies investigated brain-
region-specific transcriptomes of humans and chimpan-
zees114 and found general differences between species, 
although these differences were not related to any single 
brain region.

Understanding the role of changes in transcriptional 
regulatory networks throughout evolution is also of 
central interest. Ihmels et al.115 integrated genomics 
and transcriptomics data to identify an evolutionary 
‘re-wiring’ of the S. cerevisiae transcriptional regula-
tory network that seems linked to its ability for rapid 
anaerobic growth. They first identified differential corre-
lations between gene-expression levels in mitochondrial 
ribosomal proteins and RNAs between S. cerevisiae and a 
distantly related yeast species. A specific regulatory motif 
was subsequently identified in the genomic sequence, 
the absence of which explained the differential correla-
tion patterns and strong fermentative growth ability of 
S. cerevisiae relative to the distantly related yeast species. 
This association was then confirmed in nine other yeast 
species. A similar study integrated genomics and tran-
scriptomics data to study the dynamics of the evolution 
of transcriptional regulatory networks by examining 
ribosomal regulation in 17 yeast species116.

Challenges that lie ahead
The current and potential utility of omics integration is 
clear. Deriving the molecular scaffold that provides the 
structures of cellular networks, interpreting biological data 
in terms of these scaffolds, and ultimately modelling how 
cellular networks behave in silico will continue to drive 
systems-level research and our general understanding of 
model organisms. Many challenges exist and must be con-
fronted, however, before the field of systems biology can 
move significantly forward through omics integration.

The primary problems facing the field involve data, 
software and model accessibility. At present, many, and 
perhaps most, high-throughput data-integration efforts 
rely on supplementary-data repositories to disseminate 
detailed results, and these are often not standardized 
to facilitate downstream analysis by other research-
ers. Although the data repositories that are detailed in 
TABLE 1 are working towards alleviating this problem, 
few are close to achieving the level of consistent utility 
that genomics resources such as GenBank have attained. 
The additional confounding issue of data reliability and 
reproducibility must also be appropriately addressed as 
these high-throughput databases mature. As summarized 
in a recent editorial that assesses the problems that are 
associated with transcriptional profiling117, consistent 
standards for representing data — including an assess-
ment of cross-platform and cross-laboratory consistency 
— are important issues that must be carefully consid-
ered in order for these resources to be of true utility to 
researchers in the field.

Similarly, much of the software and code that is 
developed in omics data-integration efforts is either 
not made readily available, or is not accessible to 
researchers who might be interested in applying the 
associated methods to their own problems of interest. 
One of the exceptions to this idea is the Cytoscape118 
software package that facilitates network modelling as 
well as high-throughput data integration and analysis. 
The user-friendly interface and useful analytical plug-
ins make this tool readily accessible to all researchers. 
Similar efforts will be required to make omics data inte-
gration and analysis as ubiquitous and accessible as a 
programme such as BLAST, for example, has become.

Finally, the issue of making the contents of cellular 
models available to the research community is of primary 
concern. As more and more cellular models are devel-
oped in an effort to fully describe biological systems, 
their distribution in a standardized form is required to 
facilitate their further development and general utility 
in biological research. The Systems Biology Markup 
Language (SBML)119, for example, has been developed 
to provide a uniform framework in which models can 
be represented, and the recently initiated MIRIAM 
(‘minimum information requested in the annotation of 
biochemical models’)120 project and affiliated databases 
will facilitate the dissemination of uniformly structured 
and annotated models to the research community. The 
adoption of these or similar standards will be important 
to the advancement of the field.

Omics integration going forward
So far, the integration of omics data has primarily affected 
basic biological research using model systems. However, 
this strategy is also beginning to influence clinically 
relevant applications. For example, the budding field of 
toxicogenomics is being driven by the recognition of the 
potential power in interpreting standard toxicological 
studies in genomics, proteomics and metabolomics con-
texts121. Nutrigenomics has also emerged as a field that 
aims to harness omics strategies to study the complex 
interaction between the human body, nutritional intake 
and the environment122. This field has vast potential to 
make significant inroads towards understanding and 
developing treatments for metabolic syndrome and related 
disorders123,124.

Other medical disciplines are also feeling the impact of 
the omics revolution. Multiple omics data sets are begin-
ning to shed additional light on the complex, chronic 
inflammatory neurological disease multiple sclerosis125. 
Cancer research is also benefiting from integrated sys-
tems analysis using omics data126. Furthermore, many 
researchers anticipate that these strategies will translate 
into drug-development applications127 and, ultimately, 
into personalized genomic medicine128.

The general optimism that is associated with the 
promise of systems biology, omics data integration, 
and personalized health care must be tempered by the 
acknowledgement of a potentially unsettling reality, 
however. Drawing an analogy to Gödel’s incompleteness 
theorem, the availability of complete information that 
omics data potentially represents might not be sufficient 
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to understand all the underlying principles that govern 
the functions of biological systems. In other words, 
despite having all ‘axioms’ in hand, the associated funda-
mental ‘truths’ might not be fully revealed. Nonetheless, 
omics technologies and omics data integration are likely 
to continue to affect biological research as investigators 
harness these strategies to tackle difficult problems on 
previously unprecedented scales.

Note added in proof
After submission of this manuscript, an important 
study129 appeared that proposes a physical model of 
protein–protein interaction networks that strongly 
indicates that high-throughput protein–protein inter-
action studies may be dominated by non-specific 
interactions, which must be considered in all studies 
that rely on these high-throughput data.
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