Using R for Linear Regression

In the following handout words and symbols in **bold** are R functions and words and symbols in *italics* are entries supplied by the user; <u>underlined</u> words and symbols are optional entries (all current as of version R-2.4.1). Sample texts from an R session are highlighted with gray shading.

Suppose we prepare a calibration curve using four external standards and a reference, obtaining the data shown here:

> conc
[1] 0 10 20 30 40 50
> signal
[1] 4 22 44 60 82

The expected model for the data is

signal =
$$\beta_0 + \beta_1 \times \text{conc}$$

where β_0 is the theoretical y-intercept and β_1 is the theoretical slope. The goal of a linear regression is to find the best estimates for β_0 and β_1 by minimizing the residual error between the experimental and predicted signal. The final model is

signal = $b_0 + b_1 \times conc + e$

where b_0 and b_1 are the estimates for β_0 and β_1 and e is the residual error.

Defining Models in R

To complete a linear regression using R it is first necessary to understand the syntax for defining models. Let's assume that the dependent variable being modeled is Y and that A, B and C are independent variables that might affect Y. The general format for a linear¹ model is

response ~ <u>op1</u> term1 <u>op2 term2 op3 term3...</u>

$$y = \beta_0 + \beta_1 x$$
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ $y = \beta_0 + \beta_{11} x^2$ $y = \beta_0 + \beta_1 x_1 + \beta_2 \log(x_2)$

are linear models. The equation $y = \alpha x^{\beta}$, however, is not a linear model.

¹ When discussing models, the term 'linear' does not mean a straight-line. Instead, a linear model contains additive terms, each containing a single multiplicative parameter; thus, the equations

where *term* is an object or a sequence of objects and *op* is an operator, such as a + or a -, that indicates how the term that follows is to be included in the model. The table below provides some useful examples. Note that the mathematical symbols used to define models do not have their normal meanings!

Syntax	Model	Comments
$Y \sim A$	$Y = \beta_0 + \beta_1 A$	Straight-line with an implicit y-
		intercept
$Y \sim -1 + A$	$Y = \beta_1 A$	Straight-line with no y-intercept;
		that is, a fit forced through $(0,0)$
$Y \sim A + I(A^2)$	$Y = \beta_0 + \beta_1 A + \beta_2 A^2$	Polynomial model; note that the
		identity function I() allows terms
		in the model to include normal
		mathematical symbols.
$Y \sim A + B$	$Y = \beta_0 + \beta_1 A + \beta_2 B$	A first-order model in A and B
		without interaction terms.
$Y \sim A:B$	$Y = \beta_0 + \beta_1 AB$	A model containing only first-order
		interactions between A and B.
$Y \sim A^*B$	$Y = \beta_0 + \beta_1 A + \beta_2 B + \beta_3 A B$	A full first-order model with a term;
		an equivalent code is $Y \sim A + B +$
		A:B.
$Y \sim (A + B + C)^2$	$Y = \beta_0 + \beta_1 A + \beta_2 B + \beta_3 C + \beta_$	A model including all first-order
	$\beta_4 AB + \beta_5 AC + \beta_6 AC$	effects and interactions up to the n th
		order, where n is given by ()^n.
		An equivalent code in this case is
		$\mathbf{Y} \sim \mathbf{A}^* \mathbf{B}^* \mathbf{C} - \mathbf{A} : \mathbf{B} : \mathbf{C}.$

Completing a Regression Analysis

The basic syntax for a regression analysis in R is

$lm(Y \sim model)$

where Y is the object containing the dependent variable to be predicted and *model* is the formula for the chosen mathematical model. The command lm() provides the model's coefficients but no further statistical information; thus

> lm(signal ~ conc)
Call:
lm(formula = signal ~ conc)
Coefficients:
(Intercept) conc
3.60 1.94

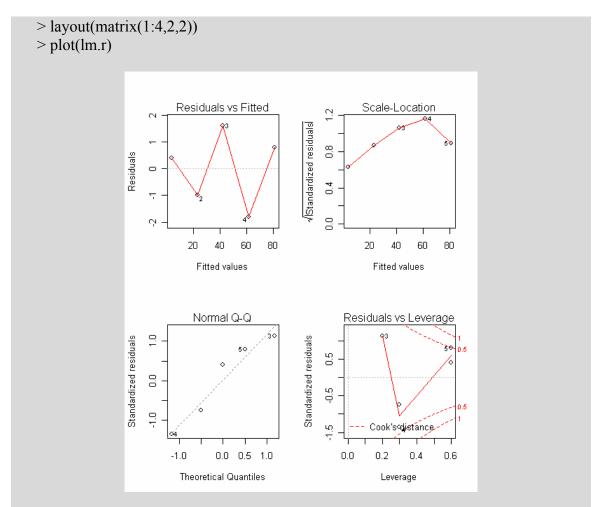
To obtain more useful information, and to obtain access to many more useful functions for manipulating the data, it is best to create an object that contains the command for the model

 $> lm.r = lm(signal \sim conc)$

This object can then be used as an argument for other commands. To obtain a more complete statistical summary of the model, for example, we use the **summary()** command.

> summary(lm.r) Call: $lm(formula = signal \sim conc)$ Residuals: 1 2 3 4 5 0.4 -1.0 1.6 -1.8 0.8 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 3.60000 1.23288 2.92 0.0615. 1.94000 0.05033 38.54 3.84e-05 *** conc Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.592 on 3 degrees of freedom Multiple R-Squared: 0.998, Adjusted R-squared: 0.9973 F-statistic: 1486 on 1 and 3 DF, p-value: 3.842e-05

The section of output labeled 'Residuals' gives the difference between the experimental and predicted signals. Estimates for the model's coefficients are provided along with the their standard deviations ('Std Error'), and a t-value and probability for a null hypothesis that the coefficients have values of zero. In this case, for example, we see that there is no evidence that the intercept (β_0) is different from zero and strong evidence that the slope (β_1) is significantly different than zero. At the bottom of the table we find the standard deviation about the regression (s_r or residual standard error), the correlation coefficient and an F-test result on the null hypothesis that the MS_{reg}/MS_{res} is 1.


Other useful commands are shown below:

> coef(lm.r)		# gives the model's coefficients
(Intercept) 3.69	conc 1.94	

> resid(lm.r)	# gives the residual errors in Y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
> fitted(lm.r)	# gives the predicted values for Y
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Evaluating the Results of a Linear Regression

Before accepting the result of a linear regression it is important to evaluate it suitability at explaining the data. One of the many ways to do this is to visually examine the residuals. If the model is appropriate, then the residual errors should be random and normally distributed. In addition, removing one case should not significantly impact the model's suitability. R provides four graphical approaches for evaluating a model using the **plot()** command.

The plot in the upper left shows the residual errors plotted versus their fitted values. The residuals should be randomly distributed around the horizontal line representing a residual error of zero; that is, there should not be a distinct trend in the distribution of points. The plot in the lower left is a standard Q-Q plot, which should suggest that the residual errors are normally distributed. The scale-location plot in the upper right shows the square root of the standardized residuals (sort of a square root of relative error) as a function of the fitted values. Again, there should be no obvious trend in this plot. Finally, the plot in the lower right shows each points leverage, which is a measure of its importance in determining the regression result. Superimposed on the plot are contour lines for the Cook's distance, which is another measure of the importance of each observation to the regression results. Distances larger than 1 are suspicious and suggest the presence of a possible outlier or a poor model.

Sometimes a model has known values for one or more of its parameters. For example, suppose we know that the true model relating the signal and concentration is

signal =
$$3.00 \times \text{conc}$$

Our regression model is

signal =
$$3.60 + 1.94 \times \text{conc}$$

We can use a standard t-test to evaluate the slope and intercept. The confidence interval for each is

$$\beta_0 = b_0 \pm ts_{b0}$$
 $\beta_1 = b_1 \pm ts_{b1}$

where s_{bo} and s_{b1} are the standard errors for the intercept and slope, respectively. To determine if there is a significant difference between the expected (β) and calculated (b) values we calculate t and compare it to its standard value for the correct number of degrees of freedom, which in this case is 3 (see earlier summary).

> tb1 = abs((3.00 - 1.94)/0.05033); tb1	# calculate absolute value of t
[1] 21.06100	
> pt(tb1, 3, lower.tail = FALSE)	# calculate probability for t
[1] 0.0001170821	<pre># double this value for a two- # tailed evaluation; difference # is significant at p = 0.05</pre>
> tb0=abs((0-3.60)/1.23288);tb0	# calculate absolute value of t
[1] 2.919992	

> pt(tb0, 3, lower.tail = FALSE)	# calculate probability for t
[1] 0.03074826	# double this value for a two-# tailed evaluation; difference# is not significant at p = 0.05

Here we calculate the absolute value of t using the calculated values and standard errors from our earlier summary of results. The command

pt(value, degrees of freedom, lower.tail = FALSE)

returns the one-tailed probability that there is no difference between the expected and calculated values. In this example, we see that there is evidence that the calculated slope of 1.94 is significantly different than the expected value of 3.00. The expected intercept of 0, however, is not significantly different than the calculated value of 3.60. Note that the larger standard deviation for the intercept makes it more difficult to show that there is a significant difference between the experimental and theoretical values.

Using the Results of a Regression to Make Predictions

The purpose of a regression analysis, of course, is to develop a model that can be used to predict the results of future experiments. In our example, for instance, the calibration equation

signal = $3.60 + 1.94 \times \text{conc}$

Because there is uncertainty in both the calculated slope and intercept, there will be uncertainty in the calculated signals.

Suppose we wish to predict the signal for concentrations of 0.05, 0.15, 0.25, 0.35 and 0.45 along with the confidence interval for each We can use the **predict()** command to do this; the syntax is

predict(model, data.frame(pred = new pred), level = 0.95, interval = "confidence")

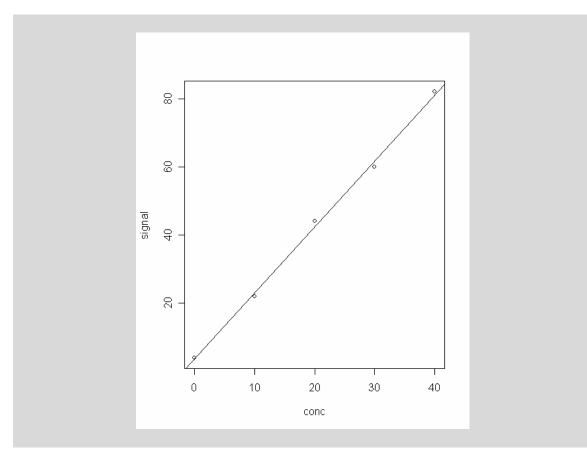
where *pred* is the object containing the original independent variables and *new pred* is the object containing the new values for which predictions are desired, and *level* is the desired confidence level.

> newconc=c(5,15,25,35,45);newconc

[1] 5 15 25 35 45

> predict(lm.result,data.frame(conc = newconc), level = 0.9, interval = "confidence")

fit	lwr	upr
1 13.3	10.85809	15.74191
2 32.7	30.92325	34.47675
3 52.1	50.32325	53.87675
4 71.5	69.05809	73.94191
5 90.9	87.49778	94.30222

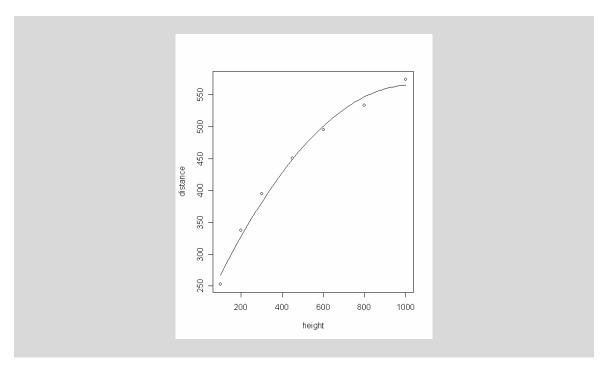

where 'lwr' is the lower limit of the confidence interval and 'upr' is the upper limit of the confidence interval. R does not contain a feature for finding the confidence intervals for predicted values of the independent variable for specified values of dependent variables, a common desire in chemistry. Too bad.

Adding Regression Lines to Plots

For straight-lines this is easy to accomplish.

> plot(conc, signal)
> abline(lm.r)

gives the following plot.



For data that does not follow a straight-line we must be more creative.

<pre>> height = c(100, 200, 300, 450, 600, 800, 1000) > distance = c(253, 337, 395, 451, 495, 534, 574)</pre>	# data from Galileo		
$>$ lm.r = lm(distance ~ height + I(height^2)); lm.r	# a quadratic model		
Call: lm(formula = distance ~ height + I(height^2))			
Coefficients: (Intercept) height I(height^2) 200.211950 0.706182 -0.000341			
> newh = seq(100, 1000, 10); newh	<pre># create heights for # predictions</pre>		
[1] 100 110 120 130 140 150 160 170 180 190 200 [12] 210 220 230 240 250 260 270 280 290 300 310 [23] 320 330 340 350 360 370 380 390 400 410 420 [34] 430 440 450 460 470 480 490 500 510 520 530 [45] 540 550 560 570 580 590 600 610 620 630 640 [56] 650 660 670 680 690 700 710 720 730 740 750 [67] 760 770 780 790 800 810 820 830 840 850 860 [78] 870 880 890 900 910 920 930 940 950 960 970 [89] 980 990 1000			
> fit = 200.211950 + 0.706182*newh - 0.000341*newh^2;fit	# calculate distance# for new heights# using model		
[1] 267.4201 273.7659 280.0434 286.2527 292.3938 298.4667 [9] 316.2763 322.0764 327.8084 333.4721 339.0676 344.5949 [17] 360.7677 366.0222 371.2085 376.3266 381.3766 386.3583 [25] 400.8942 405.6032 410.2439 414.8164 419.3207 423.7568 [33] 436.6560 440.8193 444.9144 448.9414 452.9001 456.7906 [41] 468.0530 471.6707 475.2202 478.7015 482.1146 485.4593 [49] 495.0851 498.1572 501.1612 504.0969 506.9644 509.7637 [57] 517.7525 520.2790 522.7373 525.1274 527.4493 529.7031 [65] 536.0550 538.0359 539.9487 541.7932 543.5695 545.2776 [73] 549.9928 551.4281 552.7952 554.0941 555.3249 556.4874 [81] 559.5657 560.4555 561.2770 562.0303 562.7154 563.3323 [89] 564.7739 565.1180 565.3940	350.0540 355.4450 391.2718 396.1171 428.1248 432.4245 460.6129 464.3670 488.7363 491.9448 512.4948 515.1578 531.8886 534.0059 546.9176 548.4893 557.5817 558.6078		
> plot(height_distance)	# original data		

> plot(height, distance)	# original data
> lines(newh, fit, lty=1)	# display best fit

The resulting plot is shown here.

