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Abstract
The purpose of this review is to focus on the three most important themes in genetic association studies
using randomly selected patients (case, affected) and normal samples (control, unaffected), so that students and
researchers alike who are new to this field may quickly grasp the key issues and command basic analysis methods.
These three themes are: elementary categorical analysis; disease mutation as an unobserved entity; and the
importance of homogeneity in genetic association analysis.

Keywords: genetic association; case-control; single-nucleotide-polymorphism (SNP); linkage disequilibrium; categorical data
analysis; aggregation paradox

INTRODUCTION
Genetic association analyses, i.e. the examination

of statistical correlation between a person’s genetic

marker genotype with his phenotype or disease

status, has become a common task in human genetics

and human disease studies. There are several reasons

for this trend. First, it has been shown by statistical

power analysis that genetic association studies require

less samples than pedigree linkage analysis to map

disease genes with low penetrance [1]. Second, with

the genomic infrastructure in place, such as the

complete DNA sequence of the human genome [2,

3], the location of single-nucleotide-polymorphism

(SNP) genetic markers [4, 5], and the ever

inexpensive high-throughput genotyping technolo-

gies [6, 7], it is more cost-effective and easier to carry

out candidate-gene, regional, or whole-genome

association studies. Third, it has been discovered

that the issue of population stratification and spurious

association signal can be manageable if better study

design is used and if serious care is taken during

analysis [8–11]. The publication of genome-wide

association studies of seven common diseases using

thousands of cases and controls from Wellcome

Trust Case Control Consortium exemplified the

current status of this field [12].

A consequence of the rapid developments in the

field of genetic association study is the large number

of publications. Figure 1 shows the number of

methodology papers on association analyses per year

listed in the online bibliography maintained by the

author (URL: http://www.nslij-genetics.org/ld/): it

can be seen that after Risch and Merikangas’s seminal

paper in 1996, the number of methodology papers

jumped to around 50 per year for the next three

years. The next jump occurred in 2000–2001 with

the anticipation and completion of the human

genome project, to 100–180 papers per year. One

may wait to see whether a publication peak has been

reached in the past 2–3 years. For researchers and

students new to this field, it is impractical to read

1500 method-oriented research articles, not to

mention even more application papers. Reading all

review articles is no less overwhelming. Here is just

a partial list: Nature Reviews Genetics carried nearly

30 review articles related to association analysis one

way or another, with the following among them:

[13–22]; Lancet published a series of review and
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introductory articles in 2005 on genetic epidemiol-

ogy with association as the major component

[23–29]; Annual Review journals published many

reviews that can be linked to association studies such

as [30–33]; Current Opinion in Genetics & Development
carried ‘Genomes and Evolution’ volumes focused

on human genetics topics [Vol.11 Issue 6 (2001),

Vol.12 Issue 6 (2002), Vol.16, Issue 6 (2006)]; both

American Journal of Human Genetics [34–38], andTrends
in Genetics [39–46] occasionally publish reviews and

perspectives on genetic association analysis.

To help a novice to digest this mountainous

information, one solution is to limit the learning to

only a few important topics or themes. The goal of

this review is to focus on three such essential pieces

of information that are required knowledge in

genetic association: first, the necessary mathematical

background; second, the fact that the disease-gene-

mutation as well as the haplotype it resides is not

directly observable; and third, the issue that hetero-

geneity of various forms is the most likely cause for

false association signal. The following two review

articles in [21, 47] are probably on a comparable level

and readers can also consult the HandbookonStatistical
Genetics in [48].

LECTURE 1: STATISTICAL
BACKGROUNDçCATEGORICAL
DATA ANALYSIS
One commonly asked question is: what kind of

mathematical background is needed for genetic

association analysis? Due to the involvement of

professional statisticians in the field, many sophisti-

cated statistical and mathematical techniques have

been applied. But the most basic tools used in asso-

ciation studies belong to the ‘categorical data analysis’

[49], for the obvious reason that both the disease

status and genotype are discrete and categorical.

The simplest scenario of genetic association

analysis is to study a SNP’s genotype frequency in

a group of independent patients (cases) and a group

of normal individuals (controls). This might be

considered as the ‘hydrogen atom’ for genetic asso-

ciation, borrowing a term from physics to describe

the minimum model system. Two types of questions

can be asked concerning the genotype or allele

frequency difference in the case and control groups.

One is ‘how big the genotype or allele frequency

difference is?’ Another is ‘how likely that we see this

genotype frequency difference by chance?’ The first

question is answered by ‘estimation’ and the second

question by ‘statistical testing.’ The main difference

between the two is that estimation is usually less

affected by the sample size, whereas a test result

is greatly influenced by how many samples are

collected in the dataset. Later in this section, we will

discuss the issue that precision of an estimation,

the confidence interval, is also affected by the

sample size.

After a routine test of Hardy–Weinberg equilib-

rium (which is explained in detail in both [47] and

[21]) in control samples for the purpose of revealing

genotype errors [50], allele and genotype frequency

differences in the case and control groups can be

tested for three tables: 2-by-3 genotype counts table,

2-by-2 allele counts table, and the ‘better’ of the two

2-by-2 genotype counts table by combining hetero-

zygous genotype AB with either one of the homo-

zygous genotype [Table 1(A), (B), (C)]. The last

approach is essentially a model selection between the

genetic dominant and recessive mode of inheritance:

assuming allele A is the mutant allele whose

frequency is higher in the case group than the

control group, then for the dominant model, AA
and AB genotypes are equivalent in terms of their

contribution to disease risk, and for the recessive

model, AB and BB are equivalent.

Each test can be carried out by Pearson’s chi-

square (�2) test, or Fisher’s exact test which is usually

used when some genotype counts are smaller than

five (details can be found in [49]). For statistical tests,

a ‘test statistic’ is first calculated. For example,

for Pearson’s test, the test statistic is a summary of

discrepancy between the observed (O) and expected

(E) genotype/allele count: X2 ¼
Pimax

i¼1ðOi � EiÞ
2=Ei
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Figure 1: Annual number of methodology papers
of genetic association analysis as listed in http://
www.nslij-genetics.org/ld/.
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(imax ¼ 6 and 4 for Table 1 (panel A) and (panel B),

respectively). The test statistic calculated from the

data is then compared to its ‘null distribution’, i.e.

the distribution of the test statistic by chance alone.

The probability of finding the observed test statistic

or larger under the null distribution is called the

P-value. A P-value in our case is the probability of

finding the genotype/allele frequency difference as

large as, or larger than what is observed in our data,

if in reality the case and the control have the same genotype/
allele frequency. When the P-value calculated from

the data is less than 0.01—i.e. if there is no difference

between the two groups, then our data is as unlikely

as 1 out of 100 by chance—we say the test is

significant at the 0.01 level.

The R script (for an introduction of the freely

available statistical package R, from http://www.

r-project.org, [51, 52]) for the three tests on the data

in Table 1 can be found in Figure 2. Let’s call the

genotype-based test on Table 1 (panel A) GBT,

allele-based test on Table 1 (panel B) ABT, and the

maximum of the test statistics in two tables in

Table 1 (panel C) MAX2. Then under the null

hypothesis (i.e. genotype/allele frequencies are the

same in case and in control group), the test statistic in

GBT follows the �2 distribution with two degrees of

freedom, and the test statistic in ABT follows the �2

distribution with one degree of freedom. For

MAX2, the null distribution of the test statistic

may not be known exactly, because it depends on

the statistical correlation between two test statistics

under dominant and recessive models, which in turn

depends on model parameters such as disease

penetrance and allele frequencies [53, 54].

For any �2 distributed test statistic with df degrees
of freedom, one can decompose it to two �2

distributed test statistics with df 1 and df 2 degrees of

freedom and their sum df 1þ df 2 is equal to df [49].
For example, the test statistic in GBT can be

decomposed to two �2 distributed values each with

one degree of freedom. One of them is the test

statistic in a commonly used test called Conchran–

Armitage test (CAT) [21, 49]. CAT tests whether

log(r), where r is the (number of cases)/(number of

casesþ number of controls) ratio, changes linearly

with the AA, AB, BB genotype with a non-zero

slope. Note that since AB is positioned between AA
and BB genotype, the genotype is not just a

categorical variable, but an ordered categorical vari-

able. Also note that although CAT is genotype-

based, its value is closer to the allele-based ABT test

statistic. This is confirmed by the numerical values

in Figure 2.

From Figure 2, it can be seen that both the

Pearson’s chi-square test and Fisher’s exact test lead

to very similar results. The effect of sample size on

test results can be easily demonstrated by multiplying

all genotype counts by 2—even though the geno-

type frequencies as well as the difference between

the two groups are unchanged, the test result

becomes more significant (with much smaller

P-values) when sample size is increased. The

P-values obtained from GBT, ABT, MAX2, CAT

tests are highly correlated, but not identical. Some

differences between different tests were discussed in

Ref. [55, 56], but according to Ref. [21], ‘there is no

generally accepted answer to the question of which

SNP test to use’. The key issue seems to be that we

do not know the true mode of inheritance of a

disease with respect to a particular susceptibility gene

and that information should help us to pick a

particular test over other tests. The idea of combin-

ing two test statistics by a maximum operation as

used in MAX2 test is a way to protect against

uncertain disease model and this type of ‘robust test’

has been discussed in theoretical statistics [57, 58].

As for the ‘estimation’ part of the association anal-

ysis, besides the genotype/allele frequency difference

(e.g. for the data in Table 1 (panel B), the allele A
frequency in case group is 210/2000¼ 10.5%,

Table 1: An example of a case-control data

AA AB BB total

(A) Genotype counts
Case a¼10 b¼190 c¼ 800 aþbþc¼1000
Control d¼ 3 e¼100 f¼ 900 dþeþf¼1003

A B total

(B) Allele counts
Case x11¼2aþb¼ 210 x12¼ bþ2c¼1790 2(aþbþc)¼ 2000
Control x21¼2dþe¼106 x22¼ dþ2f¼1900 2(dþeþf)¼ 2006

AAþAB BB AA ABþBB total

(C) Two ways of grouping heterozygotes with homozygotes
Case aþb¼ 200 c¼ 800 a¼10 bþc¼ 990 aþbþc¼1000
Control dþe¼103 f¼ 900 c¼ 3 dþe¼1000 dþeþf¼1003

There are 1000 case samples and 1003 control samples, whose geno-
type distribution is shown in the table (A); the number of A and B
allele counts is in (B).The genotype counts in (C) are converted from
(A) by combining ABwith either AA or BB.Note that the total counts
in (B) doubles the counts in (A), and the two tables in (C) correspond
to the dominant and recessive models if allele A is considered as
the risk allele.
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that in control group is 106/2006¼ 5.3%, differs by

5.2%), another commonly used quantity is odds-

ratio (OR). Odds itself is already a ratio: e.g.

numbers of allele A (‘for’) versus numbers of allele

that is not A (‘against’) can be used to estimate an

odds . For the data in Table 1 (panel B), the odds

for A in case group is estimated to be 210/

1790¼ 0.117, and the odds for A in control group

is estimated to be 106/1900¼ 0.056. If the allele A

is rare, then odds is approximately equal to the allele

frequency (e.g. 0.117� 0.105 and 0.056� 0.053).

For the allele count data in Table 1 (panel B) the

OR (case-over-control, for A) is 2.102878. Note

that if we switch row and column, odds (‘for’ case,

given a particular genotype) cannot be estimated,

because in a case–control study design, the affection

status is picked first and the genotype is determined

later, so genotype is not given. For example, in

the first table in Table 1 (panel A), we cannot say

the odds ‘for’ case given AA genotype is 10:3, as the

case samples always consist of a very small per-

centage of the general population, and this odds

should be �1, not >1. However, a nice feature

of case–control design is that even when odds

cannot be defined when row and column are

switched, the OR (A-over-B, ‘for’ case) can still be

defined and unchanged by this operation.

There is one quantity that properly combines

the ‘estimation’ and the ‘testing’ part of an analysis:

the confidence interval (CI). We often see reports

of the 95% confidence interval for odds-ratio (95%

CI of OR), which means that if we repeat the same

estimation of OR with the similarly generated data,

95% of the time the true value of OR would fall

within that interval. The formula used for estimating

CI of OR can be traced to Woolf [59, 60], which

is restated here [for the notation used, please refer to

Table 1 (panel B)]:

OR ¼
x11=x12
x12=x22

¼
x11x22
x12x21

define � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x11
þ

1

x12
þ

1

x21
þ

1

x22

r
;

95% CI of OR ¼ ½OR � e�1:96�;OR � e1:96��:

Figure 2: An R script for carryingout Pearson’s�2 test and Fisher’s exact teston the data inTable1. gc, ac, gc1, gc2 are
the data inTable1(panel A), (panel B), (panel C). pvg, pva, pvg1, pvg2 are the resulting P-value from the Pearson’s �2 test.
pvb is the minimum P-value of the dominant and the recessive model. pvg.f, pva.f, pvg1.f, pvg2.f, pvb.f are the similar
P-values from Fisher’s exact test. pvcat is the P-value for the Conchran-Armitage trend test. The numerical values
after a # sign are the output from running the script.The last four lines show that when the sample size is doubled,
the test results are evenmore significant (P-values aremuch smaller).
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The number 1.96 comes from the normal distribu-

tion: the probability for sampling a standard normal

distributed value within [�1.959964, 1.959964] is

95%. Similarly, there is a 99% chance to sample a

standard normal random value within [�2.575829,

2.575829]. The estimation of confidence interval for

OR is implemented in an R script in Figure 3. Note

that as expected, the 99% CI is wider than the 95%

CI; also note that when the sample size is doubled,

both CIs are narrowed.

LECTURE 2: DISEASEGENE
MUTATION IS NOTDIRECTLY
OBSERVABLE INGENETIC
ANALYSES
One of the important facts about genetic analysis is

that we do not know directly the location of the

disease gene, we only know the genetic markers

nearby which might be in linkage disequilibrium

with it; nor do we know directly the haplotype

phase or the parental origin of the disease gene

mutation. Some link between the observed and the

hidden unobserved variable is needed.

Table 2 (panel A) shows the four possible haplo-

types with the disease locus and a SNP marker

nearby, with haplotype frequencies of f1 ¼ pHA;
f2 ¼ pHB; f3 ¼ phA; f4 ¼ phB. The mutant frequency

is pH ¼ f1 þ f2, and wild-type allele frequency ph¼
f3 þ f4. Similarly, the marker allele frequencies are

pA ¼ f1 þ f3 and pB ¼ f2 þ f4. The linkage

disequilibrium (LD) is measured by a difference

between the haplotype frequency and the product

of independent allele frequencies and an obvious

choice is:

D ¼
X
i¼H;h

X
j¼A;B

pijjpij � pi � pjj

For Table 2 (panel A), the four jpij � pipjj terms

in the definition of D are actually identical,

for example, pHA � pHpA¼ f1�ð f1 þ f2Þð f1 þ f3Þ ¼
�f2 þ ð f1 þ f2Þð f2 þ f4Þ ¼ �ðpHB � pHpBÞ.

Figure 3: An R function for estimating odds-ratio (OR) and its confidence interval (CI).The two input variables for
the function are: counts: the 2-by-2 count tablewritten as a 4-element array; alpha: oneminus the percentage for the
CI (e.g. alpha=0.05 for 95%CI).The result for the data inTable1(panel A) is shown.The last three lines show the result
when the sample size is doubled.

Table 2: Notations for haplotypes

Disease
locus

Freq Marker Freq Hap-
freq

Comments

(A) Four haplotypes
H (mutant) f1þf2 A f1þf3 f1 Main mutant-carrying

haplotype
H (mutant) f1þf2 B f2þ f4 f2 Rare (zero freq in

founders)
h (wild type) f3þ f4 A f1þf3 f3 Common
h (wild type) f3þ f4 B f2þ f4 f4 Common

Disease
locus

Freq Marker Freq Hap-
freq.

D D0

(B) Three haplotypes
H f1 A f1þf3 f1 f1�f1(f1þf3)¼ f1f4 1
h f3þ f4 A f1þf3 f3 f3�(f3þ f4)(f1þf3)¼�f1 f4 1
h f3þ f4 B f4 f4 f4�(f3þ f4)f4¼ f1f4 1

(A) The four haplotypes and their frequencies; (B) A special situation
of three haplotypes (‘three-haplotype scenario’) where D0 is always
equal to1.

Lectures on genetic association analysis 5



There is a problem in using D, however: it

depends on allele frequencies. Considering the

following scenario (‘three-haplotype scenario’):

when the mutant allele H was first introduced

into a population with the nearby marker allele A,
most of haplotypes would be h�A and h�B, very
few were H�A, and none of the haplotypes were

H�B. Using the formula in Table 2 (panel B),

we have D ¼ f1 f4 ¼ pHpB, which is a function

of allele frequencies at both two loci. More

generally, since the haplotype frequency should

always be smaller than the frequency of its con-

stituent alleles, we have pHA ¼ pHpA þD � pH
and pHA¼ pHpA þD � pA, which lead to

D � minðpHpB; phpAÞ [61]. Let us call the minimum

of multiple known upper bounds ‘ceiling’ – we can

rewrite D � ceiling(D). Another measure of LD is

to normalize D by its ceiling:

D0 ¼
D

ceiling ðDÞ

For the three-haplotype scenario in Table 2

(panel B),D0 ¼ 1 because phpA ¼ ðf3 þ f4Þðf1 þ f3Þ ¼
f3 þ f1 f4 > f1 f4¼pHpB, sominðpHpB; phpAÞ ¼ pHpB.

Is the maximum D0 in the three-haplotype

scenario the best we can hope for between a

marker and the disease locus? If we detect the

allele A in nearby marker, do we guarantee that

there is a mutant allele in the disease locus? From

Table 2 (panel B), the answer is no, because A
can also sit on a haplotype with the wild-type

allele h. In other words, the correlation between A
and H is not ‘perfect’. The correlation between

A and H is maximized when the odds-ratio

ðpH=phÞ : ðpA=pBÞ is maximized, and the product of

D0 (squared) and this odds-ratio leads to a third

measure of LD:

r2 ¼
D2

p2Hp
2
B
�
pHpB
phpA

¼
D2

pHphpApB
:

r2 is equal to 1 (maximized) only when f2¼ f3 ¼ 0,

or, when there is a one-to-one correspondence

between allele A and mutant H.

If both the disease locus and its nearby marker are

coded numerically with H¼ 1, h¼ 0, A¼ 1, B¼ 0,

then the covariance of the two variables is

f1 � ð f1 þ f2Þð f1 þ f3Þ ¼ D, variances are pHph and

pApB, and the correlation coefficient between the

two numerically coded variable is:

C ¼
Cov ðdis;markerÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðdisÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðmarkerÞ
p ¼

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pHphpApB

p ;

whose square is exactly r2. The r2 is also related to a

quantity widely used in information theory, the

mutual information [62]:

M ¼
X
i¼H;h

X
j¼A;B

pij log
pij

pi � pj
:

This relationship (r2 ¼ 2M assuming the natural

log is used) can be proved by a Taylor expansion

[49, 63–65]:

M ¼
X
i¼H;h

X
j¼A;B

ðpipj þDijÞ log 1þ
Dij

pipj

� �

�
X
ij

ðpipj þDijÞ 1þ
Dij

pipj
�

D2
ij

2p2i p
2
j

 !

¼
X
ij

D2
ij

pipj
�

D2
ij

2p2i p
2
j

 !
¼

D2

2

X
ij

1

pipj

¼
D2

2

pA þ pB
pHpApB

þ
pA þ pB
phpApB

� �
¼

D2

2pHphpApB
¼

r2

2
:

For a marker to be effective in genetic association

study, its allele frequency difference in case and

control groups has to be highly correlated with that

for the disease gene locus. Let us put superscripts to

allele and haplotype frequencies to distinguish cases

from controls and define �pH ¼ pcaseH � pcontrolH ,

�pA ¼ pcaseA � pcontrolA for their differences. The

notations pAjH; pAjh are used for the A allele

frequency conditional on disease gene locus alleles.

If we assume pAjH ¼ pAH=pH ¼ f1=ð f1 þ f2Þ and

pAjh ¼ pAh=ph ¼ f3=ð f3 þ f4Þ remain approximately

the same in case and control group and the

superscript is not needed, then following Pritchard

and Przeworski [34]:

�pA ¼ pcaseA � pcontrolA ¼ ðpcaseAjHp
case
H þ pcaseAjhp

case
h Þ

� ðpcontrolAjH pcontrolH þ pcontrolAjh pcontrolh Þ

� pAjHðpcaseH � pcontrolH Þþ pAjhðpcaseh � pcontrolh Þ

¼ pAjHðp
case
H � pcontrolH Þþ pAjhð1� pcaseH �ð1� pcontrolH ÞÞ

¼ ðpAjH � pAjhÞ�pH

¼
f1

f1þ f2
�

f3
f3þ f4

� �
�pH

¼
f1 f4� f2 f3
pHph

�pH ¼
D

pHph
�pH :

For the Pearson’s chi-square test, the chi-square

test statistic X2 is proportional to the square of

the allele frequency difference, and inversely

proportional to the product of two allele

6 Li



frequencies: X2 � ð�pÞ2=ðpqÞ [34, 56], so one

implication of the above formula is:

X2
marker �

ð�pAÞ
2

pApB
¼

D2

p2Hp
2
hpApB

ð�pHÞ
2

¼
D2

pHphpApB

ð�pHÞ
2

pHph
�

D2

pHphpApB
X2

disease�locus;

i.e. the two chi-square test statistics, one at the

disease locus and another at the SNP marker, are

related by r2. Because this equation makes a crucial

claim that test statistic at a nearby marker can be

translated to that at the disease locus itself [15, 21,

34], it can be called the ‘fundamental formula for

linkage disequilibrium mapping’. Other alternative

versions of this fundamental formula can be found in

Refs [66–68].

A careful reader might notice that during the

derivation of this fundamental formula, if the roles of

A and H are switched, it leads to the incorrect

conclusion of X2
disease�locus ¼ r2X2

marker. One expla-

nation can be that it is more reasonable to assume

pcaseAjH ¼ pcontrolAjH than assuming pcaseHjA ¼ pcontrolHjA , because

the first conditioning is to condition on the true

cause of the disease status, whereas the second is only

to condition on a ‘hitchhiked’ neutral marker, thus

is unlikely to be true. However, how good the

quality of the first approximation is may depend on

whether there are other causes of the disease, i.e.

other susceptibility loci or environmental factors

unrelated to the region under study [67, 68]. Clearly

more theoretical investigation of this issue is needed.

Besides the uncertainty of unobserved disease

gene, the phase and parental origin of alleles are also

not directly observable. However, methods exist to

infer (‘reconstruct’) the haplotypes. One of the

approaches, the EM (expectation and maximization)

algorithm, will be introduced here, using the data

in Table 3 (taken from Ref. [69]) for joint genotype

counts of two loci, one with alleles H and h, and one

with alleles A and B.

The only samples whose phase cannot be un-

ambiguously resolved are the double-heterozygous

samples with the Hh-AB joint genotype. Of these

samples, there are two possible phases: (i) H-A and

h-B; (ii) H-B and h-A. We assume n1 samples are in

phase 1, and n2 samples are in phase 2 (n1 þ n2 ¼ e).
If n1 and n2 are known, then the haplotype fre-

quencies fi; f2; f3; f4 can be determined as in Table 3

(panel B). On the other hand, if we know

f1; f2; f3; f4 haplotype frequencies, n1 should be

proportional to f1 f4, n2 proportional to f2 f3, and due

to the constraint n2 þ n3 ¼ e, their value can be

determined. This ‘chicken and egg’ problem can be

tackled by first assuming a value for n1 and n2 (e.g.,
n1 ¼ n2 ¼ 2), solving for haplotype frequencies,

using these haplotype frequencies to re-estimate

n1; n2, and repeating the iteration cycle until there is

no improvement in the haplotype frequency estima-

tion. An R-script of this process for the data in

Table 3 (panel A) is included in Figure 4.

This so-called EM algorithm [70] described above

is also called ‘gene counting’ in genetics [71] and

introductory material can be found in several

textbooks [61, 72–74]. To recognize the situation

where EM algorithm can be applied, remember the

two key components in our example: missing data/

information (the number of double heterozygous

samples in each phase: n1 and n2), and unknown

parameters (the four haplotype frequencies:

f1; f2; f3; f4). If the missing data can be estimated

(imputed) when the parameter value is known (the

E-step), and if the unknown parameter value can be

obtained by the data (the M-step), the EM method is

applicable. One final note is on a limitation of EM

method [75]: if all our samples are double hetero-

zygous (a ¼ b ¼ c ¼ d ¼ f ¼ g ¼ h ¼ i ¼ 0, e > 0),

the limiting solution is not unique and dependent on

the initial choice of n1; n2. Intuitively, in this

situation, we do not have any information to base

on in order for deciding the phase of a double

heterozygote, except to claim that each one of the

four possible haplotypes has the same frequency.

An alternative explanation of this limitation is that

the application of EM requires Hardy–Weinberg

Table 3: An example of EM algorithm

AA AB BB

(A) raw data
HH a¼14 b¼ 0 c¼ 0
hH d¼ 34 e¼ 4 f¼ 0
hh g¼109 h¼ 50 i¼10
N¼221

A B

(B) haplotype frequency when the phase of double-heterozygous
samples is known
H f1N¼ 2aþbþ dþn1¼62þ n1 f2 N¼ 2cþbþ fþn2¼ n2
h f3 N¼ 2gþdþhþn2¼ 302þ n2 f4 N¼ 2iþ fþhþn1¼70þ n1

(A) Jointgenotype counts originally used in Ref. [69]. (B) Two-locus hap-
lotype counts if the double-heterozygous joint genotype counts (e) can
be partitioned into e¼n1þn2, where n1(n2) is the number of samples in
the H-A, h-B phase (H-B, h-A phase).
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equilibrium, which is violated in the double-

heterozygous situation.

LECTURE 3:THE IMPORTANCEOF
HOMOGENEITY
Concerns of population heterogeneity was the main

reason that for many years the method of choice in

genetic analysis was pedigree-based, i.e. linkage

analysis and family-based association [76, 77], and

not the case–control association analysis. Spurious

association signals due to population stratification

occur if cases (or controls) disproportionally represent

a genetically distinct subgroup and as a result, any

allele frequency difference between this subgroup

and the general population leads to an allele

frequency difference between the case and the

control group (see box 4 of Ref. [21]). The effect

of population stratification is an example of the

‘aggregation paradox’ [78] with Simpson’s [79]

(or Pearson-Yule-Kendall-Simpson’s, to be histori-

cally correct [80]) paradox as a special case. Simply

stated, Simpson/aggregation paradox is the reversal/

inconsistency of a statistical relationship between

two variables as observed in subpopulation, when

subpopulations are combined into a whole popula-

tion. In association analysis, the inconsistency caused

by aggregation can be manifested in at least two

different ways: (i) false positives—there is no

observed association between a marker and the

disease in subpopulations, whereas significant asso-

ciation is observed in the combined population;

(ii) false negatives—marker-disease association exists

in subpopulations but disappears in the combined

population.

Instead of using tables to illustrate these two

situations, here I am adopting a graphic technique

previously used in the discussion of Simpson’s

paradox [81]. Figure 5 shows the allele frequencies

in case and control groups in two subpopulations as

well as in the combined population. The x-axis is the
proportion of samples from subpopulation-1: left end

corresponds to 100% subpopulation-2, and right

end for 100% subpopulation-1. The y-axis is the

allele frequency in case and control groups repre-

sented by two straight lines (here the case line is

above the control line). Moving along the line

changes the composition of samples from the two

populations.

In Figure 5A, the control group has 40% of the

samples from subpopulation-1, and 60% from

subpopulation-2, but the case group has 90%

subpopulation-1 samples and 10% subpopulation-2

samples. In each subpopulation, the allele frequency

Figure 4: An R script for estimating haplotype frequency for the data inTable 3(panel A).The joint genotype counts
in Table 3(panel A) are stored in a 9-element array g. n1, n2 are the missing data (number of double heterozygotes
in phase1 and phase 2), and f1, f2, f3, f4 are the unknown parameter values (haplotype frequencies). Both the missing
data and unknown parameter values are initialized before the while loop, and updated within the loop.The loop exit
condition is when the iteration does not improve the parameter value estimation.
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difference between the case and control group is

0.01, whereas in the combined dataset, the difference

is increased to 0.21. At a typical sample size, testing

allele frequency difference of 0.01 in each subpopu-

lation will not be significant, but testing the 0.21

difference in the combined population will be

significant. In fact, if the allele frequency in case

and control groups is shrunk from 0.01 to 0 testing

allele frequency in subpopulations will never be

significant, whereas it could be significant in the

combined population.

Using the graphic representation, we can easily

figure out situations where population stratification

has no effect. For example, if both lines in Figure 5A

are horizontal, any composition of the two sub-

populations leads to the same allele frequency

difference in the combined population. In fact, it is

the situation where two subpopulations have no

differential allele frequency for this SNP. In another

example, when the two lines are parallel to each

other and the subpopulation compositions in case

and control group are the same, then the allele

frequency difference in the combined population

remains the same as those in the subpopulations. It is

the situation when the case and the control group are

well matched in their subpopulation compositions.

False negatives caused by population stratification

are rarely discussed in the genetic association litera-

ture, but can be easily illustrated by Figure 5B. In

this example, the allele frequency difference between

case and control group in the two subpopulations

is 0.3 and 0.2, respectively. But with different com-

positions of the two subpopulations (80% subpopu-

lation-1 for control group and 20% subpopulation-1

for case group), the allele frequency difference is

merely 0.04 in the combined group.

One might think that since the compositions of

two subpopulations in case and control usually do

not differ very much, population stratification is

unlikely to cause any problem. However, Figure 6

shows a real example in genetic association study of

type 2 diabetes in American Indians [82], where a

10% difference in subpopulation composition has

lead to false positive signal. In Ref. [82], a haplotype

derived from allotypic markers (called Gm3:5;13;14) is

examined in American Indians with various degrees

of Indian heritage. The Gm3:5;13;14-carrying fre-

quency as a function of the Indian heritage (0 for

European Caucasians, 7/8 for one non-Indian

grand-grandparent, 1 for 100% Indian heritage, etc.)

is shown in Figure 6 (crosses), which increases from

0.01 for 100% Indians to 0.66 for 100% Europeans),
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a dramatic change with the population proportion.

Suppose the control group is 99% Indian and the

diabetes group is 99.9% Indian, even if there is no

difference between Gm3:5;13;14-carrying frequency

in cases and controls, that in the combined dataset is

expected to be 0.05. The numbers of 99% and

99.9% Indian in the control and the case group are

not unrealistic since the prevalence of type 2

diabetes is higher in Indian population than that in

European population, and it is more likely to sample

a 100% Indian heritage case sample than a 100%

Indian control sample.

The example in Figure 6 points to a way of

protecting against population stratification effect:

avoiding SNPs with large allele frequency differences

between ethnic groups. How large a difference in

allele frequency is considered to be large? Wright’s

F-statistic can be used for the purpose of measuring

the effect of admixing subpopulations [83]. Denote

the allele frequencies of an allele in two subpopu-

lations as p1 and p2 (and for another allele, the

frequencies are q1 ¼ 1� p1, q2 ¼ 1� p2). The het-

erozygosity (frequency of the heterozygote) in the

two subpopulations is 2p1q1, 2p2q2, and that of the

combined population is Hwhole ¼ 2p � q, where

p ¼ wp1 þ ð1� wÞp2, q ¼ wq1 þ ð1� wÞq2 are the

averaged allele frequency of the two alleles (with

the mixing proportion of the two subpopulations

being w and 1� w).
If the heterozygosity is calculated within each

subpopulation, and added with the appropriate

weights, we have Hsub ¼ w2p1q1 þ ð1� wÞ2p2q2. It
turns out that heterozygosity always increases when

subpopulations are combined, i.e. Hwhole � Hsub.

We can illustrate this inequality for w ¼ 1=2:

Hwhole ¼ 2 �
p1 þ p2

2

q1 þ q2
2

¼
p1q1 þ p2q2 þ p1q2 þ p2q1

2

¼ p1q1 þ p2q2 þ
p1q2 þ p2q1 � p1q1 � p2q2

2

¼ p1q1 þ p2q2 þ
ðp1 � p2Þ

2

2
� Hsub

The larger the allele frequency difference jp1 � p2j,
the bigger the inflation of heterozygosity in the

combined population. The percentage increase of

the heterozygosity by combining subpopulations is

the Wright’s F-statistic:

F �
Hwhole �Hsub

Hwhole

¼
2wð1� wÞðp1 � p2Þ

2

Hwhole

�
2wð1� wÞðp1 � p2Þ

2

Hsub

¼
ðp1 � p2Þ

2

ðp1q1Þ=ð1� wÞ þ ðp2q2Þ=ðwÞ

ð1Þ

For more than two subpopulations, the formula is

more complicated. Other meanings of F-statistic are
discussed in detail in Ref. [83].

The F value can be marker-specific as well as

dataset-specific, but an F ¼ 10�1 seems to capture

the typical variation between major ethnic groups

(e.g. F for autosomal SNPs typed in HapMap

between European and Chinese/Japanese is roughly

0.07, and that between Yoruba African and Chinese/

Japanese is 0.12 [4]), and F ¼ 10�4 � 10�3 seem

to describe variation between regions of an iso-

lated population (e.g. 0.00137 for 40 micro-

satellite markers between regions in the Icelandic

population [84]).

It is tempting to attribute the non-replication of

association study results [85–87, 9] to population

stratification, but it is not necessary to be the case

[88, 89]. There are heterogeneities of other forms

than that of the allele frequency. Locus hetero-

geneity refers to the situation in which the suscepti-

bility gene can be located at different chromosomal

locations for different patients. Allelic heterogeneity
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Figure 6: A graphic illustration of the effect of popula-
tion stratification in studying the potential association
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refers to the situation where mutations can occur

anywhere in the same disease gene: coding, non-

coding or regulatory regions. For example, it was

found that there are three functional variants in the

IFN regulatory factor 5 conveying risk for the disease

systemic lupus erythematosus [90]. It is not impos-

sible that this type of allelic heterogeneity could

weaken the association signal to such an extent that

the disease gene fails to be detected by an association

study. Yet two other sources of heterogeneity are the

disease subtypes and uncertainty in disease diagnosis.

What is considered to be a single disease may have

different etiologies involving different genes. From

this perspective, the contribution of environmental

factors can also vary from patients to patients, thus be

called heterogeneous. It is with these complications

caused by heterogeneity that the authors of Ref. [91]

cautioned that ‘homogeneous populations are not

a panacea’. Common sense and care are perhaps the

best weapon against errors caused by heterogeneity.

BEYONDTHIS REVIEW
Even within the scope of the three themes covered

in this review, not all topics are discussed. For

Lecture 1, one might be interested in learning about

power analysis (e.g. the power.prop.test subroutine

in R) and multiple testing correction (Bonferroni

correction for independent and correlated tests, false

discovery rates, etc.). For Lecture 2, alternative ways

for reconstructing haplotypes may be encountered

[92–95], and one may also address the question of

whether reconstructing haplotype step is truly neces-

sary for LD mapping [21, 96, 97, 98]. For Lecture 3,

one can study several proposals on correcting

population stratifications using markers unlinked

to the disease, such as the genomic control method

[99,100] and the one implemented in the

STRUCTURE program [101–103].

Acknowledgements
This review is based on the lectures I gave at the ‘Theoretical and

Practical Course: Pharmacogenomics – Genetic Epidemiology

and Web-Based Tools’ in March 2005 at Guadalajara, Mexico.

I thank Prof. Luis Figuera for his invitation and acknowledge

the financial support from the International Centre for Genetic

Engineering and Biotechnology (ICGEB). I also thank Yaning

Yang, Elena Kowalsky, Jose Luis Santiago-Alvarez for reading an

early draft of the paper, and Lisa J. Mao for proofreading the

revised version of the paper.

References
1. Risch N, Merikangas K. The future of genetic studies of

complex human diseases. Science 1996;273:1516–7.
2. Venter JC, Adams MD, Meyers EW, et al. The sequence of

the human genome. Science 2001;291:1304–51.
3. Lander ES, Linton LM, Birren B, et al. (International

Human Genome Sequencing Consortium) Initial sequen-
cing and analysis of the human genome. Nature 2001;409:
860–921.

4. International HapMap Consortium. A haplotype map of the
human genome. Nature 2005;437:1299–320.

5. Barnes MR. Navigating the HapMap. Brief Bioinformatics
2006;7:211–24.

6. Matsuzaki H, Dong S, Loi H, et al. Genotyping over
100,000 SNPs on a pair of oligonucleotide arrays. NatMeth
2004;1:109–111.

7. Fan JB, Chee MS, Gunderson KL. Highly parallel genomic
assays. Nat RevGenet 2006;7:632–44.

8. Cardon LR, Palmer LJ. Population stratification and
spurious allelic association. Lancet 2003;361:598–604.

9. Freedman ML, Reich D, Penney KL, et al. Assessing the
impact of population stratification on genetic association
studies. Nat Genet 2004;36:388–93.

10. Marchini J, Cardon LR, Phillips MS, et al. The effect of
human population structure on large genetic association
studies. Nat Genet 2004;36:512–17.

11. Epstein MP, Allen AS, Satten GA. A simple and improved
correction for population stratification in case-control
studies. AmJHumGenet 2007;80:921–30.

12. The Wellcome Trust Case Control Consortium. Genome-
wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls. Nature 2007;447:
661–78.

13. Peltonen L, Palotie A, Lange K. Use of population
isolates for mapping complex traits. Nat Rev Genet
2000;1:182–90.

14. Cardon LR, Bell JI. Association study designs for complex
diseases. Nat Rev Genet 2001;2:91–9.

15. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage
disequilibrium in human genome. Nat Rev Genet
2002;2:299–310.

16. Wall KD, Pritchard JK. Haplotype blocks and linkage
disequilibrium in the human genome. Nat Rev Genet
2003;4:587–97.

17. Zondervan KT, Cardon LR. The complex interplay among
factors that influence allelic association. Nat Rev Genet
2004;5:89–100.

Key Points
	 Categorical data analysis provides all the tools needed for

genetic association studies. There are many SNP tests with
various advantages and disadvantages.

	 Because the location, the haplotype phase and the mode
of inheritance of a gene mutation are unknown, a variety of
approaches focus on how to better infer the unobservable and
on how to measure the correlation between observables and
the unobservable.

	 Population stratification is an example of the aggregation para-
dox, with Simpson’s paradox as another example. The aggrega-
tion paradox can be easily illustrated and explained by simple
graphs.

Lectures on genetic association analysis 11



18. Rebbeck TR, Spitz M, Wu X. Assessing the function of
genetic variants in candidate gene association studies Nat
Rev Genet 2004;5:589–97.

19. Hirschhorn JN, Daly MJ. Genome-wide association studies
for common diseases and complex traits. Nat Rev Genet
2005; 6:95–108.

20. Wang WYS, Barratt BJ, Clayton DG, et al. Genome-wide
association studies: theoretical and practical concerns. Nat
Rev Genet 2005;6:109–18.

21. Balding DJ. A tutorial on statistical methods for population
association studies. Nat Rev Genet 2006;7:781–91.

22. Jorgenson E, Witte JS. A gene-centric approach to
genome-wide association studies. Nat Rev Genet
2006;7:885–91.

23. Burton PR, Tobin MD, Hopper JL. Genetic epidemi-
ology 1: key concepts in genetic epidemiology. Lancet
2005;366:941–51.

24. Teare MD and Barrett JH. Genetic epidemiology 2: genetic
linkage studies. Lancet 2005;366:1036–44.

25. Cordell HJ and Clayton DG. Genetic epidemiology 3:
genetic association studies. Lancet 2005;366:1121–31.

26. Palmer LJ and Cardon LR. Genetic epidemiology 4:
shaking the tree: mapping complex disease genes with
linkage disequilibrium. Lancet 2005;366:1223–34.

27. Hattersley AT and McCarthy MI. Genetic epidemiology 5:
what makes a good genetic association study? Lancet
2005;366:1315–23.

28. Happer JL, Bishop DT, Easton DF. Genetic epidemiology
6: population-based family studies in genetic epidemiology.
Lancet 2005;366:1397–1406.

29. Davey Smith G, Ebrahim S, Lewis S, et al. Genetic
epidemiology 7: genetic epidemiology and public health:
hope, hype, and future prospects. Lancet 2005;366:1484–98.

30. Zwick ME, Cutler DJ, Chakravarti A. Patterns of genetic
variation in Mendelian and complex traits. Ann Rev
Genomics HumGenet 2000;1:387–407.

31. Weir BSm Hill WG. Estimating F-statistics. AnnRev Genet
2002;36:721–50.

32. Crawford DC, Akey DT, Nickerson DA. The patterns of
natural variation in human genes. Ann Rev Genomics Hum
Genet 2005;6:287–312.

33. Serre D, Hudson TJ. Resources for genetic variation studies.
Ann Rev Genomics HumGenet 2006;7:443–57.

34. Pritchard JK, Przeworski M. Linkage disequilibrium in
humans: models and data. AmJHumGenet 2001;69:1–14.

35. Neale BM, Sham PC. The future of association studies:
gene-based analysis and replication. Am J Hum Genet
2004;75:353–62.

36. McKaigue PM. Prospects for admixture mapping of
complex traits. AmJHumGenet 2005;76:1–7.

37. Risch N. The SNP endgame: a multidisciplinary approach.
AmJHumGenet 2005;76:221–6.

38. Thomas DC, Haile RW, Duggan D. Recent developments
in genomewide association scans: a workshop summary and
review. AmJHumGenet 2005;77:337–45.

39. Reich DE, Lander ES. On the allelic spectrum of human
diseases. Trends Genet 2001;17:502–10.

40. Weiss KM, Clark AG. Linkage disequilibrium and
the mapping of complex human traits. Trends Genet
2002;18;19–24.

41. Lee C. Irresistible force meets immovable object: SNP
mapping of complex diseases. Trends Genet 2002;18:67–9.

42. Nordborg M, Tavare S. Linkage disequilibrium: what
history has to tell us. Trends Genet 2002;18:83–90.

43. Cardon LR, Abecasis GR. Using haplotype blocks to map
human complex trait loci. Trends Genet 2003;19:135–40.

44. Munafo MR, Flint J. Meta-analysis of genetic association
studies. Trends Genet 2004;20:439–44.

45. Di Rienzo A, Hudson RR. An evolutionary framework for
common diseases: the ancestral-susceptibility model. Trends
Genet 2005;21:596–601.

46. Evans DM, Cardon LR. Genome-wide association: a
promising start to a long race. TrendsGenet 2006;22:350–54.

47. Lewis CM. Genetic association studies: design, analysis and
interpretation. Brief Bioinformatics 2002;3:146–53.

48. Balding DJ, Bishop M, Cannings C., edited. Handbook of
Statistical Genetics. 3rd edn. John Wiley & Sons,
Chichester, UK, 2007.

49. Agresti A. Categorical Data Analysis. 2nd edn. Wiley 2002
2nd edn. Wiley, 2007.

50. Gomes I, Collins A, Lonjou C, et al. Hardy-Weinberg
quality control. AnnHumGenet 1999;63:535–8.

51. Venables WN. AnIntroduction toR. 2002; Network Theory,
Bristol, UK.

52. Venables WN, Ripley BD. Modern Applied Statistics with S.
4th edn. Springer, New York, 2002.

53. Freidlin B, Zheng G, Li Z, etal. Trend tests for case-control
studies of genetic markers: power, sample size and
robustness. HumHered 2002;53:146–52.

54. Zheng G, Freidlin B, Gastwirth JL. Comparison of robust
tests for genetic association using case-control studies.
In: Rojo J (ed.). Optimality: The Second Erich L. Lehmann
Symposium ^ IMS Lecture Notes, Vol. 49, 2006: 253–65.
Institute of Mathematical Statistics, Bethesda, MD.

55. Sasieni PD. From genotypes to genes: doubling the sample
size, Biometrics 1997;53:1253–61.

56. Suh YJ, Li W. Genotype-based case-control analysis,
violation of Hardy-Weinberg equilibrium, and phase
diagrams. In: Proceedings 5th Asia-Pacific Bioinformatics
Conference eds. D Sankoff, L Wang, F Chin, Imperial
College Press, London, 2007: 185–94.

57. Davies RB. Hypothesis testing when a nuisance parameter
is present only under the alternative. Biometrika
1977;64:247–54.

58. Freidlin B, Podgor MJ, Gastwirth JL. Efficiency robust
tests for survival or ordered categorical data. Biometrics
1999;55:883–6.

59. Woolf B. On estimating the relation between blood and
disease. AnnHumGenet 1955;19:251–3.

60. Agresti A. On logit confidence intervals for the odds ratio
with small samples. Biometrics 1999;55:597–602.

61. Weir BS. Genetic Data Analysis II. Sunderland, MA: Sinauer
Associations, 1996.

62. Li W. Mutual information functions versus correlation
functions. J Stat Phys 1990;60:823–37.

63. Li W, Reich J. A complete enumeration and classification of
two-locus models. HumHered 2000;50:334–49.

64. Nothnagel M. The Definition of Multilocus Haplotype Blocks
and Common Diseases. PhD Thesis, Humboldt-Universität
zu: Berlin, 2004.

12 Li



65. Liu Z, Lin S. Multilocus LD measures and tagging selec-
tion with generalized mutual information. Genet Epi
2005;29:353–64.

66. Nielsen DM, Ehm MG, Weir BS. Detecting marker-disease
association by testing for Hardy-Weinberg disequilibrium at
a marker locus. AmJHumGenet 1999;63:1531–40.

67. Terwilliger JD, Hiekkalinna T. An utter refutation of the
‘‘fundamental theorem of the HapMap’’. EuroJ Hum Genet
2006;14:426–37.

68. Moskvina V, O’Donovan MC. Detailed analysis of the
relative power of direct and indirect studies and the implica-
tions for their interpretation. HumHered, 2007;64:63–73.

69. Hamilton DC, Cole DEC. Standardizing a composite
measure of linkage disequilibrium. Ann Hum Genet
2004;68:234–39.

70. Dempster A, Laird N, Rubin D. Maximum likelihood from
incomplete data via the EM algorithm. J R Stat Soc Ser B
1977; 39:1–38.

71. Smith CAB. Counting methods in genetical statistics. Ann
HumGenet 1957;21:254–76.

72. Sham P. Statistics inHumanGenetics. London: Arnold, 1998.

73. Ott J. Analysis of Human Genetic Linkage. Johns Hopkins
University Press, Baltimore, MD, 1997.

74. Lange K. Mathematical and Statistical Methods for Genetic
Analysis. 2nd edn. Springer, New York, 2002.

75. Mano S, Yasuda N, Katoh T, et al. Notes on the maximum
likelihood estimation of haplotype frequencies. Ann Hum
Genet 2004;68:257–264.

76. Spielman RS, Ewens WJ. The TDT and other family-based
tests for linkage disequilibrium and association. AmJ Hum
Genet 1996;59:983–9.

77. Schaid DJ. Transmission disequilibrium, family controls, and
great expectations. AmJHumGenet 1998;63:935–41.

78. Stigler SM. Statistics on the Table: The History of Statistical
Concepts and Methods. Harvard University Press,
Cambridge, MA, 2002.

79. Simpson EH. The interpretation of interaction in con-
tingency tables. J RStat Soc Ser B 1951;13:238–41.

80. Good IJ, Mittal Y. The amalgamation and geometry of
two-by-two contingency tables. AnnStat 1987;15:694–711.

81. Tan A. A geometric interpretations of Simpson’s paradox.
CollegeMathJ 1986;17:340–1.

82. Knowler WC, Williams RC, Pettitt DJ, et al. Gm3:5;13;14

and type 2 diabetes mellitus: an association in American
Indians with genetic admixture. Am J Hum Genet
1988;43:520–26.

83. Hartl DL, Clark AG. Principles ofPopulationGenetics. 4th edn.
Sunderland, MA: Sinauer Associations, 2006.
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