INFO-0064 Embedded systems

Exercise session 6
Electronic design

Kevin Hogan
kevin.hogan@ulg.ac.be
Planning for today

• Electronic design
• Electronic schematics
• Printed Circuit Board
• gEDA
• Best practices
• Example of what not to do
• Debugging procedure
Electronic design

• What not to do

Image source: wikimedia commons
Electronic design

• Electronic circuit design

1. System specifications & constraints
2. Define a global solution
3. Conceive an electronic schematic that meets specifications
4. Prototype realization & tests (return to 2 if needed)
5. Design & realization of a **printed circuit board** (pcb)
Electronic schematic

• Example: Blinky

Oscillator

Programming

Power supply
Electronic schematic

Schematic = elements + connections (*netlist*)

→ Purpose: Clear **understanding** of the circuit

- Displays all the elements
- Displays all the connections between elements
- Does not display the physical locations
- Divided in functional blocs
Prototyping

• Use a breadboard
• Try to make it as clear and clean as possible

Avoid that

That’s what we want
Printed Circuit Board

• Holds mechanically all the components
• Performs all the electrical connections
• May perform an active role (antenna, ground plane, ...)
• Composed of several layers
• Easy and cost-efficient production
Packaging types

Through-hole technology

- Dual In-line Package (DIP)
- Transistor Outline (TO-220)

Surface-mount technology

- Dual/Quad-Flat No-leads (DFN/QFN)
- Small Outline Integrated Circuit (SOIC)
- Quad Flat Package (QFP)
- Surface-mount components (SMC)
gEDA

gpl Electronic Design Automation

• Open-source software
• Manages all the process from schematics to pcb
• Runs on Linux, Mac and (a bit) on Windows
• Full suite and toolkit
gEDA

• Full suite and toolkits:
 • gschem: Schematics design
 • pcb: PCB design
 • gerbv: Gerber file viewer
 • ngspice: SPICE circuit simulator
 • Etc.

You can also check out KiCad, another open source EDA software
gEDA

- **Three steps process**

 Schematics design
 gschem

 Conversion from schematics to PCB
 gsch2pcb

 PCB design
 pcb

```
$ gsch2pcb myfile.sch
```
gEDA

1. Schematic design - gschem

• An element = 1 (or more) symbols
• Already contains many elements and symbols libraries
• For more ➔ http://www.gedasymbols.org/
• To create your own library with your own symbols:
 1. Create a text file named "gafrc" in /home/.gEDA/
 2. Inside “gafrc”:
 (component-library-search "directory_address" "library_name")
 3. Place your .sym files in directory_address
1. Schematic design - gschem

- Create your own symbols
 1. From an existing symbol: modify an already existing .sym file
 2. From scratch

- !! Pinout !! Be sure to be in agreement with the datasheet!
gEDA

1. Schematic design - *gschem*

• Each element must have a refdes
 ➔ Leave the “?” (R?, C?, ...) till the end and use *autonumber*

• **Always specify the element footprint** (edit attribute footprint)
 ➔ It associates the element to its physical package
gEDA

2. From schematics to PCB – *gsch2pcb*

- In a terminal: run `$ gsch2pcb myfile.sch`
 ➔ Creates the netlist, the .pcb file with all the footprints
- Check the instructions given in the terminal (missing footprint, ...)
2. From schematics to PCB – *gsch2pcb*

• You can also use a project file

⇒ Add your own footprints, mix different schematics, ...

1. Create a text file `myproject` and place the following inside:

   ```
   schematics myfile1.sch myfile2.sch
   elements-dir /footprint_directory1_address/
   elements-dir /footprint_directory2_address/
   output-name mypcb
   ```

2. In a terminal: run `$ gsch2pcb myproject`

⇒ Creates a `mypcb.pcb` file using `myfile{1,2}` and footprints from

 `/footprint_directory{1,2}_address/`
gEDA

3. PCB design – pcb

- Define elements & connections physical locations
- Commonly used unit: mil

 1 mil = 1/1000 inch = 0.0254 mm

- Create your own footprint
 - !! Use element datasheet !!
 - !! Pin/pads numeration !!
 - ALWAYS print a 1:1 paper version to check dimensions
- **One mistake = all the board is useless**
PCB Design – best practices

General
• Always write PCB & author name on the board
• Size tracks width to the current
• Space elements
• Place several LEDs or buttons for debugging
• Print a 1:1 paper version to check that dimensions are correct
PCB Design – best practices

• Size tracks width to the current
• It may also depend on the manufacturer design rules
• If realization in Montefiore [mils]
 • Normal track width: 24 (min 16)
 • Power track width: 30
 • Via: 82x82 (min 70x70)
 • Via hole: 18
 • Clearance: 12

From: Eurocircuit Design Rules
PCB Design – best practices

• Leave a 3mm spacing between circuit and board outline
• Hole in every corner (i.e. place the PCB on screws)
• Decoupling capacitors have to be as close as possible to the component they protect
• !! Ground loop = current going through the ground between two points ➔ potential difference
• Ground star topology

NO

YES

YES

TO AVOID ➔ USE THE ‘GRID’
Example: What not to do
Debugging procedure

Trust no one!

- Keep calm
- Use the oscilloscope
- Check **elements connections & pinout**
- Check soldering
- Check the power voltage
- Check pin voltages
- Process step-by-step and repeat this procedure