Planning for today

• Practical information
• ADC
• PWM
• Application example: Dimmer
Practical information

• Someone from each group, send me an email today, with every member of your group as copy.
• If you still don’t have any group, send me an email.
• Each group will have a small budget to buy components on be.farnell.com or befr.rs-online.com
PWM module

• Pulse Width Modulation

Two parameters:

⇒ T_{PWM} : PWM period
⇒ d : Duty cycle

We have a modulation of the average value of the signal

$$
\overline{V_{out}} = \frac{1}{T_{PWM}} \int_{0}^{T_{PWM}} V_{out}(t) \, dt = d \, V
$$
PWM module

- Pulse Width Modulation
 - T_{PWM}: PWM period
 - d: Duty cycle
PWM module: PIC18F4620

- 10-bit resolution PWM output = 10-bit duty cycle [0..1023]
- Timer2 is used
- PWM period is set by PR2 register + TMR2 Prescaler
- PWM duty cycle is set by CCPRxL + CCPxCON<5:4>

Figure 15-4:

Equation 15-1:

\[
\text{PWM Period} = [(PR2) + 1] \cdot 4 \cdot \text{Tosc} \cdot (\text{TMR2 Prescale Value})
\]

Equation 15-2:

\[
\text{PWM Duty Cycle} = (\text{CCPRxL}:\text{CCPxCON}<5:4>) \cdot \text{Tosc} \cdot (\text{TMR2 Prescale Value})
\]
15.4.4 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCPx module for PWM operation:

1. Set the PWM period by writing to the PR2 register.
2. Set the PWM duty cycle by writing to the CCPRxL register and CCPxCON<5:4> bits.
3. Make the CCPx pin an output by clearing the appropriate TRIS bit.
4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
5. Configure the CCPx module for PWM operation.

```
movlw 0xFF ;
movwf PIR2 ; set the PWM period

movlw 0x3F ;
movwf CCPR1L ;
bcf CCP1CON , 4 ; set the 10-bit PWM
bcf CCP1CON , 5 ; duty cycle

bcf TRISC , 3 ; RC2 = output

movlw b'00000111' ;
movwf T2CON ; configure TMR2

movlw b'00001100' ;
movwf CCP1CON ; set the PWM
```
PWM exemple: Servomotors

• Servomotor ➔ send a given PWM signal to obtain a certain position

• 3 inputs: Vdd, GND, PWM

Exemple: Servo HS-85BB

• Power supply: 4,8V .. 6V DC

• PWM control:
 • Amplitude: 3V .. 5V
 • Period = 20 ms
 • Duty cycle = [600 .. 2400] µs

The period is out of rang! What can we do?

Figures taken from:
PWM exemple: Servomotors

- Servomotor control
 ➔ PWM using timer

We have to configure the timer in such way that we have enough resolution to control the PWM.

- Timer 16bits: 1,5 interrupts/period
- Timer 8bits: 390 interrupts/period
- Timer 8bits + Prescaler 1:4:
 ➔ 97 interrupts/period
A/D Converter

- Concept

\[V_{\text{meas}} = \left(\frac{N \text{ bit word}}{2^N} \right) V_{\text{ref}} \]
A/D Converter

How does it work?

⇒ Successive approximation concept

\[V_{in} [V] \rightarrow \text{Sample & Hold} \rightarrow \text{Comparator} \rightarrow \frac{N \text{ bit word}}{2^N} V_{ref} \]
A/D Converter

- **Sample & Hold circuit**
 - samples the input signal and holds the value of the voltage constant during the time of the conversion

- Based upon a switch which samples the voltage and stays on long enough in order to let the capacitor fully charge.
- The minimum acquisition time ($t_{ACQ,MIN}$) is the time needed to charge the capacitor to the input channel voltage level. It is proportional to the RC circuit time constant $\tau = (R_s + R_{ic} + R_{ss}) \cdot C_{hold}$.

In order to minimize the acquisition time, the maximum recommended impedance for analog sources (R_s) is 2.5 kOhm for the PIC18F4620! (cf. datasheet)
A/D Converter

How does it work?

→ Successive approximation concept

- $V_{DA} = $ voltage corresponding to the value stored in the register:
 $$V_{DA} = \frac{\text{register}}{2^{10}} \times V_{REF}$$
- Initially, the register is cleared ($V_{DA} = 0 \text{ V}$)
- Starting from the MSB to the LSB:
 - Current bit is set;
 - If $V_{DA} < V_{S&H}$, current bit stays set
 - If $V_{DA} > V_{S&H}$, current bit is clear
- At the end, the value stored in the register corresponds to the converted voltage
A/D Converter

4-bits register exemple

\[V_{DA} = \left(\text{register}/2^4 \right) \times V_{ref} \]

- \[V_{DA} = V_{ref}/2, \ V_{S&H} > V_{DA} \]
 - bit3 = 1
- \[V_{DA} = (3/4) \times V_{ref}, \ V_{S&H} > V_{DA} \]
 - bit2 = 1
- \[V_{DA} = (7/8) \times V_{ref}, \ V_{S&H} < V_{DA} \]
 - bit1 = 0
- \[V_{DA} = (13/16) \times V_{ref}, \ V_{S&H} > V_{DA} \]
 - bit0 = 1
A/D Converter: PIC18F4620

• Output = 10-bit digital number = [0 .. 1023]
• 3 SFR are used to control the A/D converter:
 • ADCON0: on/off, go/done, channel selection
 • ADCON1: Vref, A/D Port configuration bit
 • ADCON2: L/R justification, acquisition time & conversion clock
• The result is stored in two SFR: **ADRESH** (MSB) and **ADRESL** (LSB)

\[
V_{meas} = \frac{result}{1024} \cdot V_{ref}
\]

How to use it?
A/D Converter: PIC18F4620

The following steps should be followed to perform an A/D conversion:

1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
3. Wait the required acquisition time (if required).
4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)
5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared
 OR
 - Waiting for the A/D interrupt
6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.
A/D Converter: PIC18F4620

movlw b'00001110'
movwf ADCON1 ; configure ADCON1

movlw b'00000000'
movwf ADCON0 ; configure ADCON0

movlw b'00000001'
movwf ADCON2 ; configure ADCON2

movlw b'00000001'
movwf ADCON0 ; A/D converter on

; start conversion
bsf ADCON0, GO

; clear the interrupt flag
bcf PIR1, ADIF

(use ADRESH and ADRESL)
return

; clear interrupt flag for ADC
bcf PIR1, ADIF

; enable interrupt for ADC
bsf PIE1, ADIE
A/D Converter: application examples

Temperature sensor
Exemple: TMP35
A/D Converter: application exemples

Proximity sensor
Exemple: Sharp GP2Y0A21YK
Application exemple: Dimmer

Goal: control the luminosity of a led with a potentiometer + blinky

How can we implement that?

LED powered by a PWM signal with a varying duty cycle
Voltage of the potentiometer ➔ ADC
Acquired voltage becomes the new duty cycle
Application exemple: Dimmer
Ideas for your project

• Wii Nunchuck
• Line tracking robot
• Spirograph
• Inverted pendulum
• Propeller clock