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Summary

This main objective of this thesis is to develop and improve techniques for estimating
and predicting rotor angles, speeds and accelerations in the time frame of transient
(angle) stability of electric power systems. The investigated dynamic state estimation
technique is based on the use of voltage and current phasors that can be acquired in
real-time using a PMU (phasor measurement unit) located at the EHV bus of the
power system. The research is based on simulation data because techniques for the

direct measurement of rotor angle were not available.



Abbreviations and nomenclature

Main abbreviations used:

ac Alternating current

AL Automatic learning

ANN Artificial Neural Network

COlI Centre of inertia

dc Direct current

EHV Extra High Voltage

EPS Electrical Power System

FFT Fast Fourier Transform’

MIS Mexican Interconnected System
MLP Multilayer Perceptron

OMIB One Machine Infinite Bus system
PMU Phasor Measurement Unit
PSCAD Power System Computer Aided Design
DT Decision trees

RT Regression Trees

DFT Discrete Fourier Transform
GPS Global Position Satellite
Notations

S Rotor angle

(0] Rotor speed

E) Rotor angle predicted

1) Rotor speed predicted

H Mean

(o Standard deviation

r Linear correlation coefficient
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CHAPTER 1 MOTIVATION

CHAPTER 1 MOTIVATION
1.1 CONTEXT AND MOTIVATIONS

1.1.1 Transient Stability Assessment (TSA).

In conventional practice, security assessment rsiecaout in preventive mode by
analytically modeling the network and solving addlw equation or a time-domain
simulation repeatedly for all of the prescribedtutisances, one contingency at a time.
This normal practice is not entirely satisfactopgcause the computations are lengthy
and are necessarily limited to a small subset efilige set of possible contingencies. It
is therefore desirable to develop emergency conéahniques able to process rapidly
enough real-time measurements in order to detstabilities and compute appropriate
control actions.

Power system transient (angle) stability assessimwamists of evaluating the ability of
the system to face various disturbances withowt tfssynchronism and of proposing
appropriate remedial actions whenever deemed reage8ERV00]. To monitor and
control in real-time transient stability, the rotangle and speed of the synchronous
generators are the most important reference giemtindeed, if these quantities can be
estimated with sufficient accuracy and speed, ttaybe exploited in order to monitor in
real-time loss of synchronism and devise automeltised loop stabilization schemes
[WREPOS5].

There are differences between the real-time stalpitediction problem and conventional
transient stability assessment. In conventionalsient stability assessment, the critical
clearing time (CCT) is to be found via repeated wations of the power system
dynamics with different values of the fault clearitime. On the other hand, in the real-
time stability prediction problem, the CCT is ndt iaterest. Instead, one wishes to
monitor the progress of the system dynamics intiesd thanks to synchronized phasor
measurements acquired subsequently to the actudt faception and clearing
[RLLM *95].

PMUs (Phasor Measurement Units) are power systenctefethat provide an accurate

13



CHAPTER 1 MOTIVATION

measurement of real-time phasors of bus voltagddiae currents. A number of PMUs
are already installed in several utilities arouhne world for various applications such as
monitoring, control, protection, and state estioati The capabilities of a PMU are
illustrated in Fig. 1.1. The measurements set mpmsed of the bus voltage magnitude

Vz and anglg;, as well as the line and injection currents maglgt and angles

1, 05,15,1,,6,,6,,6,, andg, .

A Izei52

| i _
PMU L%

Y
ILeiéL
Figure 1.1 Phasor measurements from a PMU. Addpbea [LT95]

Assuming that a PMU is installed in the substatdra power plant, one can use its
measurements in order to estimate electromechastiata@-variables of each generator of
this plant, such as rotor angles and speed, aptetiict the trajectory of these quantities
over a certain interval of time. The simplest waydetermine rotor angles from phasor
measurements is to rely on the classical genenaiodel to compute rotor angles
[RLLM *95] by

E'056=V,06, - jX'1,06,, (1.1)
where E' is the internal electromotive force of the genamaV, is generator terminal
voltage magnitudex' is the generator’s transient reactance in thetiaeis, andi,
is the generator terminal current. Having calcwdatetor angles at successive time
instants the rotor speed can then be approximated b

o) = 9tr2)-al) (1.2)

At
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CHAPTER 1 MOTIVATION

These formulas assume that the generator termoitdge, i.e. MV (medium voltage),
and its terminal currents phasors are availablembre general situations, phasor
measurements are not taken directly from genefaises. In this case, for algebraic

relation of measured voltages, and the generator (internal) voltages and curreéhés

reduced admittance matrig, g can be solved for the generator internal voltages,
{'_g} {Yn le}{"_g} (1.3)
0 Y21 Y22 Vm

where Vv, are the exact values of the measured voltagesare the generator internal
voltages and , are the generator internal currents.

Taking into account measurement errors, a simpl@punéation gives,

YoV, + YV +8=0 = V, ==Y, YV, +¢& (1.4)
This equation can then be solved for the genexatiteges by a least squares approach. It
is important to observe that the use of relatidng, (1.2, 1.3 and 1.4) requires a priori
knowledge of system parameters or reduced admétanatrix whose entries may
experience changes due to factors influencing itl aeliable system parameter
identification may be required.
Another problem that may arise and obstacle phasasurements from providing a real
picture of rotor angles is the lack of direct measuwents of the plant auxiliaries. To make
better use of PMUs it is necessary to cope withagpects identified above.
Since PMUs are mainly placed at EHV network busg&ssuppose in this thesis that the
power plants whose dynamic state one wishes to toroare equipped with a PMU
located at the EHV side of the step-up transformétbe generators of this power plant.
The measurements provided by such a PMU can beitegblin order to estimate and
predict the center of angle (COA) and its derivativather than individual generator
angles and speeds. A good and fast estimate armtictiwa of the centre of angle
dynamics obtained from local information only shibbke sufficient to detect impending
loss of synchronism of a power plant before ibis fate to react.
Synchronized phasor measurements have been reedgioffer a unique opportunity

for improving the response of protection and cdrgystems to an evolving power swing.
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CHAPTER 1 MOTIVATION

At the foundation of all possible improvementshe prospect of predicting in real-time
the outcome of an evolving electromechanical temtsioscillation [Pha93]. These
oscillations are in fact related in a non-lineastfion to the electrical variables that can
be measured by PMUs and the main idea develop#isithesis is to employ a machine
learning approach to map the patterns of inputesc{etal variables measured by PMU)
to outputs (the mechanical rotor angle and spedideofenerators of a power plant).

The proposed approach using Artificial Neural neksoto estimate and predict rotor
angles and speeds based on real-time phasor meesuseis motivated by the growing
need for the real-time monitoring and control ofveo systems transient dynamics and
by the fact that PMU devices become more and madelyavailable on real systems
(WECC, USA [BPA99], Spain and Italy [DWO02], Nordmountries [ELOO0O0], Brazil
[DEAS'04], Hydro-Québec, Canada [KG02,KGHO01].

To realize the mapping of the variables measureBMY to the rotor quantities we use
the multilayer feed-forward Artificial Neural Netwo (ANN). The reason for choosing
this kind of method is related to its advantagesraonventional computing methods.
Those advantages are robustness to input and systesm, learning from examples,
ability to handle situations of incomplete informoat and corrupted data, and performing

in real time.

1.2 OBJECTIVE OF THE THESIS

The main objective of this doctoral thesis is tovelep and improve techniques for
estimating and predicting rotor angles and speedthe time-frame of transient (angle)

stability of electric power systems. For this puspave use Artificial Neural Networks

trained by supervised learning algorithms; an ANNcharacterized by its architecture,
training or learning algorithms and activation ftions. The architecture describes the
connections between the neurons. It consists ofnpat layer, an output layer and

generally, one or more hidden layers. In supervAHUls, the learning algorithm makes

use of both input-output data. The weights are tgatifor every set of input/output data.
The Multilayer Perceptron falls into this categand we have used it in this thesis.

The investigated dynamic state estimation technigusased on the use of voltage and

current phasors that can be acquired in real-tisiegua PMU located at the Extra-High
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CHAPTER 1 MOTIVATION

Voltage bus of a power plant. The research is basedimulated data because direct
measurements of rotor angles and PMU quantitiee wet available.

Based on simulations with a very detailed powetesysmodel, our objective is hence to
show the feasibility of using multi-layer perceptsoto estimate and predict rotor angles
and speeds sufficiently accurately and sufficiemjlyckly for closed loop emergency

control.

1.3 ORGANIZATION OF THE THESIS

The thesis is organized as follows:

Chapter 2 covers a brief description of the backgdoof Electric Power Systems (EPS)
and Automatic Learning (AL). We provide some basafinitions, talk about different
algorithms of AL, and elaborate about why we dedidee ANNS in this thesis.

Chapter 3 describes the problem formulation thatvaat to tackle in real-time and the
basic principle of the proposed approach based féfine training of multilayer
perceptrons.

Chapter 4 discusses a first set of results obtaimgdraining neural networks on
simulated datasets from a single-phase electromeziamodel of a One-Machine-
Infinite-Bus (OMIB) obtained with MATLAB SIMULINK.

Chapter 5 is devoted to the main results of theishéased on training neural networks
on a simulated dataset for a three-phase EMTPrtygg-machine model of a part of the
Mexican Interconnected System (MIS) obtained whh PSCAD software.

Chapter 6 gives the main conclusions and discussi®r work directions.

Appendix A provides a short explication of the Symmous Machine, Exciter and
Governor modelling used in our work. Appendix Beagivsome basic definitions of PMU
and describes also the algorithm used in PSCADremvient in order to model the
PMUs.
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CHAPTER 2 BACKGROUND
2.1 POWER SYSTEMS DYNAMICS

2.1.1 Electrical power systems. A historical survey [MEHOO].

Power Systems have evolved from the original cémeaerating station concept to a
modern highly interconnected system with improvechhologies affecting each part of
the system separately [SP98].

In 1881, the first central station electric powengration was opened in New York. This
station had a capacity of four 250-hp boilers syppl steam to six engine-dynamo sets.
This central station used a 110-dc undergroundriliigion network with copper
conductors insulated with a jute wrapping. The miian of the transformer, then known
as the “inductorium”, made ac systems possible.fifsepractical ac distribution system
in the United States was installed in Massachugett866. Early ac distribution utilized
1000 V overhead lines. By 1895, Philadelphia hasuabwyenty electric companies with
distribution systems operating at 100 V and 50@vg-tvire dc and 220 V three-wire dc,
single-phase, two-phase and three-phase ac; vatjuéncies of 60, 66, 125, and 133
cycles per second; and feeders at 1000-1200 V &@D-2400 V. Underground
distribution of voltage up to 5 kV was made possiby the development of rubber-base
insulated cables and paper insulate, lead-coveredthe early 1900s. Common
distribution voltages in today’s systems are id%, 25, 35, and 69 kV voltage classes.
The growth in size of power plants and in the higlwtage equipment was accompanied
by interconnections of the generation facilitiehie3e interconnections decreased the
probability of service interruptions, made the iméition of the most economical units
possible, and decreased the total reserve capaegtyired to meet forced equipment
outages [MEHOQ].

Extra high voltage (EHV) has become the dominactiofain the transmission of electric
power over long distances. By 1896, an 11 kV tlplease line was transmitting 10 MW

from Niagara Falls to Buffalo over a distance ofrilles. Today, transmission voltages
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of 230 kv, 287 kV, 345 kV, 500 kV, 735 kV, and 7&% are commonplace. One
prototype is the 1200 kV transmission tower.

Protecting isolated systems has been a relativelgls task, which is carried out using
over current directional relays with selectivityirge obtained by time grading. High-
speed relays have been developed to meet the sectesdnort-circuit currents due to the
large size units and the complex interconnections.

For reliable service an electric power system nmestain intact and be capable of
withstanding a wide variety of disturbances. lessential that the system be operated so
that more probable contingencies can be sustain#auwt loss of load and so that the
most adverse possible contingencies do not resultidespread and cascading power
interruption [MEHOO].

An electric power system is a set of interconnededces that allow the transportation
of electrical energy from power generation statitmshe centers of consumption. The
following definition can be useful in order to umskand this process.
While no two electric power systems are alike, all share some common fundamental
characteristics including [ MEHOQ] :
» Electric power is generated using synchronous machines that are driven by
turbines (steam, diesel, hydraulic, or internal combustion).
» Generated power is transmitted from the generating sites over long distances to
load centers that are spread over wide areas.
» Three phase ac systems comprise the main means of generation, transmission and
distribution of electric power.
» Voltage and frequency levels are required to remain within tight tolerance levels
to assure a high quality product.

The following definitions mentioned below have béaken from [PM94] and [Kun04].
Power System: A “power system” is a conglomeration of generating units, transfers

(of all kinds), transmission lines, loads, capasit@hunt / series), reactors (shunt /series),

static VAR compensators, conversion equipmentffigDC integration) with associated
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auxiliaries, and switch-gears to connect variousymanents. Of course, this is not to
exclude the remainder of power plants, protectidrsgstems and control subsystems.

Operating state: An “operating condition” or” operating point” or “operating state” of a
power system is a set of physical quantities oisplay variables that can be measured or
calculated and which can meaningfully describe #tate (status) of the system

completely i.e. characterize the system.

Steady-state operating condition: of power system is an operating condition in vahic
all the physical quantities that characterize ty&tesn can be considered to be constant

for the purpose of analysis.

Synchronous operation of a machine: A machine is in synchronous operation with a
network or another machine to which it is connecifieds average electrical speed
(product of its rotor angular velocity and the nienbf pole-pairs) is equal to the angular

frequency of the ac network voltage or to the elegtspeed of another machine

Synchronous operation of a power system: A power system is in synchronous
operation if all its connected synchronous machexesin synchronous operation with
the ac network and with each other.

2.1.2 Power system dynamics.

The major components of a power system can begepted in a block-diagram format,

as shown in Figure 2.1.
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Figure 2.1 System dynamic structure. Adapted fiSRO8]

While this block diagram representation does naiwslall of the complex dynamic
interactions between components and their contiblserves to broadly describe the
dynamic structures involved. Historically, thereshéeen a major division into
mechanical and electrical subsystems as shown. diision is not absolute, however,
since the electrical side clearly contains comptsevith mechanical dynamics (tap-
changing-under-load transformers, motor loads, at@) the mechanical side clearly
contains components with electrical dynamics (aarxil motor drives, process controls,
etc.). Furthermore, both sides are coupled thrahghmonitoring and control functions
of the energy control center [SP98].

Mathematically, dynamics of a power system can éscdbed by a set of algebraic-
differential equations,

x=f(xy), (2.1)

0=g(xy), (2.2)
where the first set of differential equations ddses the dynamical part of the system
(generators, motors, including their controls, ater devices whose dynamics are
modeled), while the second set of algebraic egnataescribes the static part (what is
considered as the static part depends on the plartisroblem of interest), x is the vector
of dynamical variables and y is vector of statidatsles. For example, in the framework
of transient stability, the dynamical variablesttage modeled correspond to phenomena

which time-constants range between a few millisdsdon a few seconds, while the static
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part concern the slower phenomena (e.g. relatdéxbiter and water reservoir dynamics)
which are considered invariant, and the faster qeeg. related to electromagnetic
transients, electronic devices) which are modeletheir equilibrium equations.
Imposing in the equations (2.1¥=0 yields the overall equilibrium equations, which
allow one to compute the steady state conditiorth@fsystem in its pre-fault state or in
its post-fault state [PERVOO].

2.1.3 Power system security.

Security is a very important property of electramangr systems. Security is freedom from
risk or danger. Power Systems, however, can negesegure in this absolute sense.
Accordingly, in a power system context, security caly be a qualified absence of risk,
specifically of risk of disruption of continued $gm operation. From a control

perspective, the objective of power system opamnasoto keep the electrical flows and

bus voltage magnitudes and angles within acceplabits, despite changes in load or
available resources and despite external pertormatiFrom this perspective, security
may be defined as the probability of the systengerating point to remain in a viable

state space, given the probabilities of the chamgdke system (contingencies) and its
environment (weather, customer demands, etc) [BEBB9

The determination of security levels, for given @ieg conditions, traditionally has
been done using deterministic criteria. Under aei@istic criteria, an operating
condition is identified as secure if it can withglathe effects of each and every
contingency in a pre-specified contingency set.hgfanding the effects means that the
given contingencies will not violate branch loadiognodal voltage criteria in steady
state conditions or make the system dynamicallyalnhs [I[EEEO04].

The task of assessing the level of security foivergoperating condition or topology
configuration, often leads to the definition ofsecurity margin using some selected
variables or parameters. The choice of these Magaly parameters depends on the type
of phenomena limiting the system. Given the higmglexity of power systems and the

large range of time constants of its dynamics,stiaely of power system security has led

22



CHAPTER 2 BACKGROUND

to the decomposition of the notion of security imyious sub-problems along different
criteria. Below, we introduce the main notions aedinitions that have been introduced
in this field.

Power system stability. Stability is the ability of an electrical powerssem, for a given
initial operating condition, to regain a state peoating equilibrium after being subjected
to a physical disturbance, with most system vaesldounded so that practically the
entire system remains intact [IEEE/CIGREO4].

The terminology about power system stability pregabs [[EEE/CIGREO04] is based on
the following considerations:
. The physical nature of the resulting mode of inétglas indicated by
the main system variable in which instability candibserved.
. The size of the disturbance considered which imites the method of
calculation and prediction of stability.
. The devices, process and the time span that mustaken into
consideration in order to assess stability.

There are several main divisions in the study ofgrosystem dynamics and stability

[SP98]. De Mello classified dynamic processes thtee categories:

. Electrical machine and system dynamics.
. System governors and generating control.
. Prime-mover energy supply dynamics and control.

Concordia and Schultz classify dynamics studiesoraing to four concepts [SP98,
CS75]:

. The time of the system condition: past, presentfande.
. The time range of the study: microsecond througirlgagesponse.
. The nature of the system under study: new statiew, line, etc.
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. The technical scope of the study: fault analysisdl shedding, sub

synchronous resonance, etc.

All these classifications share a common threaely #mphasize that the system is not in
steady state and that many models for various caeme must be used in varying
degrees of detail to allow efficient and practiaahlysis [SP98].

Disturbance. A disturbance in a power system is a sudden @hamgsequence of
changes in one or more of the parameters of thtersy®r in one or more of the physical
guantities [PM94].

Small disturbance. A small disturbance is a disturbance for whicé slet of equations

that describe the power system may be linearizedumpose of analysis [PM94].

Large disturbance. A large disturbance is a disturbance for whica #@guations that

describe the power system cannot be linearizeth®purpose of analysis [PM94].

Prefault system. A power system immediately preceding the initiatiof a large
disturbance is termed a “pre-disturbance (prefasytstem”. The system is usually
considered to be in steady state in this phase figM9

Fault-on system. In the during disturbance (or during fault orlfsan) system the power
system is under the continuous influence of a distoce (or a sequence of disturbances);
this phase lasts for the entire duration of théudmance. This is the initial stage of the
transient period [PM94].

Post-fault system: A power system immediately following the complételation of a
large disturbance is termed a “post-disturbancst{fault) system”. During the post-fault
phase the transient period continues and the systaynor may not eventually reach a
steady-state. The post-disturbance phase decidethevhthe system is stable or not
[PM94].
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Figure 2.2 gives the overall picture of the powestem stability problem, identifying its
categories and subcategories.

CONSIDERATION FOR

Power System Stabilty CLASSIFICATION

I
Ability to remain in operating equilibrium
Equilibriun between opposing forces

Angle Frequence Voltage .Physical nature |
Stability Stability Stability Main System parameter
* Ability to maintain synchronisrt * Ability to maintain frequency * Ability to maintain staed)

acceptable voltages

’ Balance between mechanical anc within nominal range * Load restoration dynamics

electromagnetic tor]ue of synchronous machine * System generation/load balance
Small Signa Transien! Smal Large N .
Stability Stability Disturbanc Disturbance Size of disturbance
(Smal (Large Voltage Voltage
Disturbance) Disturbance) Stability Stability

Time Span

Short Short Long
Term Term Term

Figure 2.2 Classification of Transient Stabilitgdapted from [Kun94].

Classification of power security assessment andrabrcan be defined as follows
[RVO3]:

Static security assessment (SSA), are methodologies that verify bus voltage and line
power flow limits for the post-contingency steadwats operating condition,
considering that the transition between the prdaigancy and the post-
contingency steady state operating states has fallkee without suffering any
instability phenomena in any part of the systematiStsecurity assessment
essentially verifies the existence of a post-fatdady state that satisfies all
constraints deemed important for this state toigarfor a long enough period of

time.
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Dynamic Security Assessment (DSA), are methodologies for evaluating the stability
and quality of the transient processes betweenptiecontingency and post-
contingency steady states. DSA aims at ensuringthigasystem will be stable
after the contingency occurrence and that the iahscaused by such
contingency will be well damped, of small amplituated with little impact on the
qguality of service. Dynamic security assessmenerggsdly verifies that the
system will reach and remain in a neighborhoodt®fpost-fault steady state
conditions.

The following are description of the correspondiogns of instability phenomena:

Voltage instability is the inability of a power system to maintainastg voltages at all
buses in the system after being subjected to arbmtce from a given initial
operating condition. It depends on the ability taimtain/restore equilibrium,
between load demand and load supply from the pasystem. Voltage
instabilities generally occur in the form of a pregsive fall or rise of voltages

of some buses [Kun04].

Frequency instability refers to the inability of a power system to maiimtsteady
frequency following a severe system upset resultirg significant imbalance
between generation and load. It depends on théyabdl maintain/restore
equilibrium between system generation and load) minimum unintentional
loss of load. Frequency instability generally oscum the form of rapid

frequency drops leading to tripping of generatingsiand/or loads [Kun04].

Rotor angle instability is the inability of synchronous machines of an recdanected
power system to remain in synchronism after beulgested to a disturbance.
It depends on the ability to maintain/restore ebuidm between
electromagnetic torque and mechanical torque ofi sgachronous machine
in the system. Transient instability may occursthe form of increasing

angular swings of some generators leading to theg of synchronism with
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other generators [Kun04]. One often distinguishetwben plant mode
instability, where a single power plant loosesdtability and inter-area mode
instability where all the plants of large area Bdbkeir synchronism with

respect to the rest of the interconnection.

For convenience in analysis and for gaining usefsight into the nature of stability
problems, it is useful to characterize rotor angiability in terms of the following two

subcategories [Kun04]:

Small-disturbance (or small-signal) rotor angle instability is concerned with the
inability of the power system to maintain syncheoni under small
disturbances. In today’s power systems, small-thsioce rotor angle stability
problem is usually associated with insufficient gamg of oscillations. It is
generally characterized by negatively damped paswings among remote
generators of the interconnection, typically legdito the tripping of

interconnection lines and/or generators.

Large-disturbance rotor angle instability or Transient Stability is concerned with the
inability of the power system to maintain synchesniwhen subjected to a
severe disturbance, such as a short circuit cansinission line. The resulting
system response involves large excursions of gtarerator angles and

speeds, followed by generator tripping due to @ramnder speed protections.

And finally, perhaps the most import classificatmidynamic phenomena is their natural
time range of response. A typical classificatiorsi®wn in figure 2.2. This time-range
classification is important because of its impant amponent modeling and on the
response speed of control and protective devicedslateto counter the corresponding
instabilities. It should be intuitive that is natagessary to solve the complex transmission
line wave equations to investigate the impact dhange in boiler control set points. This

brings to mind the statement that “the system isimsteady state”. Depending on the
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nature of the dynamic disturbance, portions of gbever system can be considered in
“quasi-steady state” [SP98].

’ Ligthing Propagation ‘

’ Switching Surges ‘

Stator Transisnts anc
Subsynchornous Resonance

Transient
Stabilityt

Governor and Load
Frequency Contro

Boiler and Long-Term
Dynamics

107 10°* 10°¢ 01 1C 10° 10°

Time (sec)

Figure 2.3 Time Ranges of dynamic phenomena. Addpoen [SP98]

2.1.4 The swing equations

This thesis is devoted to the estimation of rotogles and speeds in the framework of
transient stability. We will therefore consider thehavior of the system immediately
following a disturbance such as a short circuitaottansmission line, the opening of a
line or the switching on a major load to name auftw.

Since a synchronous machine is a rotating body,lals of mechanics applying to
rotating bodies apply to [Kim64]. The equations of central importance in power system
transient stability analysis are the rotationalrtiaeequations describing the effect of
unbalance between the electromagnetic torque aed ntechanical torque of the
individual machines [Kun94]. A brief description tiie establishment of the swing
equation is expressed below, along the lines givgikun94].
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When there is an unbalance between the torquesgaoti the rotor, the net torque
causing acceleration or deceleration is

T,=T,- T (2.3)
Where T, denotes the accelerating torque, is the mechanical torque and,
electromagnetic torque. All units are N.m. andhe Bbove equationgm and T, are
positive for a generator and negative for a motor.
The combined inertia of the generator and turbénacicelerated by the unbalance in the

applied torques. Hence, the equation of motion is:

] dw,

=Ta=T,-T,, (2.4)

where J is the combined moment of inertia of generator amtine; kg.m, w,, IS the

angular velocity of the rotor, mech. rad/sec atwhé in seconds.

Defining the inertia constanti as the kinetic energy in watts-seconds at rategdp
divided by theVA_ . and denoting byw,, the rated angular velocity in mechanical
radians per second, the inertia constant is oldaiye

b = 13 (2.5)
2 VA

The moment of inertia in terms ofH is obtained by

_2HJ
W’om

J VA,.... (2.6)

Substituting the above equation in eq. (2.4) gives

2H
CL)ZOm

VA)ase dgt)m = Tm _Te’ (27)
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and rearranging yields

HO[ D)o Tn=Te 2.8)
dt\ w,, )] VA.e! W,

The equation of motion in per unit form is thus

doo _
2H —L =T -T,, 2.9
a (2.9)
where
o = G :L/Pf:& y (210)
oWy, WP w,

where w, is the electrical angular velocity of the rotorellectrical rad/secg, is its rated
value, andP, is number of field poles.

If 6 is the angular position of the rotor in electricadians with respect to a

synchronously rotating reference asylis its value at =0,
&) =a+ [Lw(Ddr-at . (2.11)

In other words we have

do

E:wr -, =Aw, (2.12)

and
d’d _ dw, _ d(Ac,)

dt? dt dt (2.13)
d, _  d(A@)
=w, =w, .
dt dt
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Substituting for given by the above equation in equation (2.9)gete

2
i—Hztf:T_ -T, . (2.14)
0

m

It is often desirable to explicitly isolate in tegquations a component of damping
torque which has its origin in a linear dependerafe the mechanical and/or
electromagnetic torques on the speed deviatiors THads to a slightly different swing

equation formulated as follows:

N

Hd
Wy

|o_
¥
I
—|
3

I

_|

I

-
[}

>
el

(2.15)

Equation (2.15) represents the equation of motibra ssynchronous machine. It is
commonly referred to as the swing equation becauspresents swings in rotor angie

during disturbances.

The state-space form requires the component mode# £xpressed as a set of first order
differential equations. The swing equation (2.EXpressed as two first order differential

equations, becomes

dAcw 1 /= =
L=—T -T —-K,Aw 2.16
dt 2H(m e P ) (2.16)
do _
—=wAw 2.17
dt 0 r ( )

In the above equations, timeis in seconds, rotor angk is in electrical radians, and,
is equal to27s . The block diagram form representation of equatih16) and (2.17) is

shown in figure 2.4.
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Figure 2.4 Block diagram representation of swingagipn. Adapted from [Kun 94].

Characterization of the power system oper ating states.

In his pioneering work, DyLiacco introduced theadéat the power system may operate
in the following modes: Normal, Alert, EmergencydaRestorative [EPRI81,Dyl68].
More recently, Fink and Carlsen expanded this goinbg identifying the constraints
satisfied or violated in each mode of operationre€hsets of generic equations (one
differential and two algebraic ones) govern powestam operation: the differential set
encodes the physical laws governing the dynami@weh of the systems components.
The two algebraic sets comprise ‘equality constsginvhich refer to the system’s total
load and total generation, and ‘inequality constsdj which state that some system
variables, such as currents and voltages, muséxm#ed maximum levels representing
the limitations of physical equipment [FC78]. :

. Normal: all equality and inequality constraints aa&tisfied; reserve
margins are adequate to withstand stresses.

. Alert: all constraints are still satisfied; resem®argins are such that
some disturbance could result in a violation of eommequality
constraints.

. Emergency: some inequality constraints are violatieel system is still
intact and control actions could be initiated e@store the system to at
least the alert state.

. In extremis: equality constraints and inequalitystoaints are violated;

the system will no longer be intact and a portibthe load will be lost.
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. Restorative: control actions are being taken t& pje the lost load and

to reconnect the system.

Figure 2.5 shows the five different operating ftatethe power system.
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Figure 2.5 Power system operating states. Addpbed [SCO02]
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2.2 STATE ESTIMATION AND AUTOMATIC LEARNING

2.2.1 Automatic learning
Automatic learning (AL) is a term used to denotaghly multidisciplinary research field

of methods, which aim to extract information (knedde) from databases containing
large amounts of low-level data. AL encompassesetimain families of methods:

» Statistical data analysis and modeling,

» Artificial neural networks (ANN)

» Symbolic machine learning in artificial intelligesc
During the last 20 years, many researches worketheéntopic, applying different
techniques (statistical pattern recognition, neuraiworks and machine learning) to
different power system problems (load forecastisgstem identification and state

estimation, stability assessment and control) [V&&h9

Automatic learning methods essentially aim at eing a model of a system from the
sole observation (or the simulation) of this systereome situations. By model, we mean
some relationships between the variables used trride the system in some

encountered situations or to help understatingetsaviour [Weh98].

2.2.2 Supervised learning

Supervised learning is the part of automatic leaynthat focuses on modelling
input/output relationships. More precisely, the lgffasupervised learning is to identify a
mapping from some input variables to some outptitisles on the sole basis of a sample
of observations of the values of these variablé® Variables are often called (input or
output) attributes, observations are calledbjects and the sample of objects is the
learning sample. In the context of security assessment, an obyecid thus correspond
to an operating state of a power system, or moreergdly to a simulated security
scenario. The input attributes would be relevamaipeters describing its electrical state
and topology and the output could be informationaesning its security, in the form of
either a discrete classification (e.g. secure/iasgcor a numerical security margin
[Weh9g].
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The general problem of supervised learning is fdlsnstated as follows [Geu02]:
For any value of N and a learning sample LsN and without any a priori
knowledge of the functions P(.), Y(.), or, A(.), find a function f(.) defined on A
which minimizes the expected prediction error defined by:

Err(f)=E,{L(Y. f(A))} = [ L(y(0). f (a(0)))dP(0) (2.18)

where U denotes the universe of all possible objects, y(.) the output attribute (a
function defined on U) and a(.) the vector of input attributes (another function
defined on U). L(.,.) is a loss function which measures the discrepancy between its
two arguments, P(.) is a sampling probability distribution defined over U and LsN
isa sample of N observed objects for which both y and a are given as inputs to the
supervised learning algorithm.

There are two main types of supervised learninglpros:

» Classification problem: the output attribute takedinite number of discrete

values.

* Regression problem: the output attribute takesssipte infinite number of real

values.

In this thesis, we are focused integrally to thgression problem.

2.2.3 Main classes of supervised learning algorithms

In this section, we provide a brief overview of tmain types of supervised algorithms
that exist in the literature. In this dissertatil® will mainly use ANNs and more

specifically MLPs. MLPs will be explained with modetails in a subsequent section.
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2.2.3.1 Linear regression

Linear regression is one of the oldest forms of mrex learning. It is a long established
statistical technique that involves simply fittindine (or a hyperplane) to some data. The
easiest case for linear regression is when the pgbesimhave a single numeric input
attribute and a numeric output value, i;e; if thareN examples, where the attributes for

each example is calleg and the label for each ig. We can envision each example as
being a point in 2-dimensional space, with an xrdowte of x, and a y-coordinate of, .
Linear regression would seek the liri¢x)=mx+b that minimizes the sum-of-squares-

error for the training samples:

g(yi - f(x ))2 . (2.19)

The quantity‘yi - f(xi)1 is the distance from the value predicted by thgoliyesis line to

the actual value — the error of the hypothesigHertraining sample Squaring this value
gives grater emphasis to large errors and savedealng with complicated absolute

values in the mathematics while minimizing eq. 2.4,, mandb.

2.2.3.2 Decision trees

Decision tree learning is a method for classifmatproblems, in which the learned
function is represented by a decision tree. Leatressb can also be represented as sets of
if-then rules to improve human readability. Deaisibees classify instances by sorting
them down the tree from the root to some leaf nadech provides the classification of
the instance. each node in the tree specifiesofesbme attribute of the instance, and
each brand descending from that node correspondsemf the possible values for this
attribute. An instance is classified by startingtta# root node of the tree, testing the
attribute specified by this node, then moving ddia tree branch corresponding to the
value of the attribute in the given example. Thiegess is then repeat for the subtree
rooted at the new node. [Mit97].

Figure 2.6 illustrates a typical learned decisie®t
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Outlook
Sunny Overcast Rain
Humidity Yes Wind
/Hig h Nor m< Strong Weak
No Yes No Yes

Figure 2.6 A decision tree for the concept PlaynienAdapted from [Mit97]

The decision tree shown in Fig. 2.6 correspondbdexpression:

(Outlook =Sunny 0O Humidity = Normal)

O (Outlook = Overcast) (2.20)

g (Outlook =Rain 0O Wnd =Weak)
A decision tree (DT) is obtained from a partitiogitree by attaching classes to its
terminal nodes. The tree is seen as a functiocagsg to any object the class attached
to the terminal node, which contains the object f@8].
The main strength of decision trees is their ineigbility. By merely looking at the test
nodes of a tree one can easily sort out the mdisnsattribute and find out how they
influence the output. Another very important ass¢he ability of the method to identify
the most relevant attributes for each problem. Tast characteristic od DT is
computational efficiency: tree growing computatioo@amplexity is practically linear in
the number of candidate attributes and in numbeleaming states, allowing one to
tackle easily problems with a few hundred candidateibutes and a few thousand

learning states [Weh98].
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Although variety of decision tree learning methddse been developed with somewhat
differing capabilities and requirements, decisimetlearning is generally best suited to
problems with the following characteristics [Mit97]

» Instances are represented by attribute-value pbissances are described by a
fixed set of attributes and their values.

» The target function has discrete output valuesd#wsion tree in Fig. 2.6 assigns
a Boolean classification to each example (i.e.ora®).

» Disjunctive description may be required: decisiopes naturally represent
disjunctive expressions.

* The training data may contain errors: Decision teaening methods are robust to
errors, both errors in classification of the tramiexamples and errors in the
attribute values that describe these examples.

* The training data may contain missing attributesgal Decision tree methods can

be used even when some training examples have wmknalues.

2.2.3.3 Regression trees

Regression trees may be considered as a variandeoision trees, designed to
approximate real-valued functions instead of beisgd for classifications tasks.

The inner nodes of regression trees are marked tggh as in decision trees. The
difference is, that the leaves of regression treag be marked with arbitrary real values,
whereas in decision trees the leafs may only be&ebarith elements of a finite set of
discrete values. A further extension is to allome&r functions as label of leaf nodes. In
this case the function at the leaf node reachea fpecific example is evaluated for the
instance’s attributes values, to determine theevaluthe target attribute. This allows for
global approximating by using multiple local approations.

Regression tree induction is a well-known approechimproving along a continuous,
output dimension [BFOS84].

Regression trees decompose the attribute spaceihterarchy of regions. Similary to
decision trees, regression trees are built in adtopn approach: starting with the top-

node and the complete learning set, an attrilautand a threshold value are selected
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to decompose the learning set into two subsetsegponding to states for whid <v.
and a =V, respectively.

The procedure continues splitting until either Yagiance has been sufficiently reduced
or it is not possible to reduce it further in aistecally significant way [Weh96].
Figure 2.7shows a representation of a regression tree andpanoximation of the

numerical output.

y
&
4
& 6
15
<8, >a, Sa
a, a
15 4

Figure 2.7 Example of a regression tree. Adapteuh fiOla04]

Regression trees have been used in fields as diasrair pollution, criminal justice, and
the molecular structure of toxic substances. Ituery has been generally competitive
with linear regression. It can be much more aceuoat non linear problems but tends to

be somewhat less accurate on problems with goediistructure [BFOS84].

2.2.3.4 Ensemble methods.

Ensemble methods consist in growing several modgls a classical machine learning
algorithm. Then, the predictions of these models aggregated to provide a final
prediction potentially better than individual on€3ne of the most popular family of
ensemble methods is defined by Perturb and ConmbetBods, that consist in perturbing
the learning algorithm and/or the learning samplas to produce different models from
the same learning sample. The predictions of thes#els are then aggregate bya simple

average or a majority vote in the case of classifin [Geu03].
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Bagging

The Bagging Algorithm Bootstrapaggregatng) by Breiman [Bre96] votes classifiers
generated by different bootstrap samples (repkgate bootstrap sample is generated by
uniformly samplingm instances from the training set with replacemdntbootstrap

samples B,,B,,...,.B; are generated and a classifi€ is built from each bootstrap

sample B. A final classifier C" is built from C,C,,...,.C, whose output is the class

predicted most often by its sub-classifiers, widls toroken arbitrarily.

Table 2.1 shown the Bagging algorithm how works:

Table 2.1 The Bagging algorithm. Adapted from [BK99

Input: training sef , InduceX , integer(number of bootstrap samples

foi = 2o T{
S =bootstrap samplerh S (i.i.d. sample with replaceme
G

J@s)

}

C k)= arg max Z 1 (the stoften predicted label y

yov i (x)=y

o M wbdh e

Output : classifieC”

For a given bootstrap sample, an instance in #igig set has probability-(1-1/m)"
of being selected at least once in timetime instances are randomly selected from the
training set. For largen, this is aboutl-1/e= 63.2%, which means that each bootstrap

sample contains only about 63.2 % unique instafroes the training set [BK99].

Boosting
Boosting was introduce by Schapire early 90’'s agethod for boosting the performance

of a weak learning algorithm. The Adaboost algonittAdaptive Boosting), introduced
by Freund & Schapire [FS99], solve many of the ficat difficulties of the earlier
boosting algorithms. The AdaBoost algorithm is give Table 2.2. the algorithm takes

as input a training sefx,y,),...(X.,.¥n) Where eachx belongs to somelomain or
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instance space X , and each labey, is in some label set . AdaBoost calls a givenweak
or base learning algorithm repeatedly in a series of roundsl,....,T . One of the main
ideas of the algorithm is to maintain a distribotmr set of weights over the training set.

The weight of this distribution on training samplen round is denoted, (l) .

The weak learner’s job is to find a weak hypothdgisX — {—1,+]} appropriate for the

distribution Dt. The goodness of a weak hypothssiseasured by its error

e=Pr,[h(x)zy]= X D@ (2.21)

R (4)#y;
In practice, the weak learner may be an algorithat tan use the weightS, on the

training samples. Alternatively, when this is natsgpible, a subset of the training

examples can be sampled accordingXq and these (unweighted) resampled examples
can be used to train the weak learner.

Table 2.2 the Boosting algorithm AdBoost. Adapteshf [FS99]

Given:(xi yi),...(xm ym) whereg O X yOY ={ -4}1

Initialize D, (i) =%1

Fort=1,...,T :

» Train weak learner using distrubutibp
+ Getweak hypothesig X — { +1} 1 with error

&= Rr[h(x)=y]

Choosecrz1 IVE]'_—Q] .
2 &

Update:

D‘(l)x{ eﬁu‘ Ifh(XW) = yl
e ifh(x) £y,

D, (i)exp(-a,y;h (x))
Z

t

whereZ, is a normalization fact@hpsen so thdd,,, will be a distributio

Output the final hypothesis:

H &)= sign[lzzl:ath (x)j )
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ExtraTrees

Geurts [Geu03] presents a new learning algorithsetbaon decision tree ensembles,
where the trees of the ensemble are built by setgthe tests during their induction fully

at random. This extreme randomization makes thstoaction of the ensemble very fast
even on very large datasets with high dimensionalit

The extra-trees algorithm builds an ensemble ofrwmgd decision or regression trees
according to the classical top-down proceduretwis main differences with other tree-

based ensemble methods are that it splits nodehdysing cut-points fully at random

and that it uses the whole learning sample (réathen a bootstrap replica) to grow the

trees.

Table 2.3 Extra-Trees splitting algorithm for nuial attributes [GEWO06].

Split_a_node(S)

Input: the local learning subs&t corresponding to théenwe want to split

Output: a split[a< ac] or nothing

- If Stop_split(S) is TRUE then return nothing.

- Otherwise seledt attribtﬂ{aai, .. .aK} among all non constant 8n anclidate attribute:
- DrawK splits{s, , .. 5.} ,wherg = Pick_a_random_split S(a, Wi = 1,.K, ;

- Return a split,s such that Scaeg |, =) max, Score§ S).

Pick_a random_split(S,a)
Inputs: a subse8 and an attribuge
Output: a split

S
min

-Letad  anda’, denote the maximal and minimal valua af S;

- Draw a random cut-poirg,  uniforgin [aﬁm ,aflin];

- Return the splifa<a,] .

Stop_split(S)

Input: a subsef

Output: a boolean

- If |§/< N, then return TRUE;

- If all attributes are constant & , then retufiRUE;
- If the output is costant inS , then return TRUE;
- Otherwise, return FALSE

min?

Table 2.3 shows the Extra-Tree procedure for nurakattributes. It has two parameters:

K, the number of attributes randomly selected aheaode and nmin, the minimum
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smple size for splitting a node. It is used a s@vitmes with the (full) original learning
sample to generate an ensemble model (denoted kjieMhumber of trees of this
ensemble). The predictions of the trees are agtgdga yield the final prediction, by

majority vote in classification problems and ari#ttio average in regression problems.

Fuzzy Decision Trees

A fuzzy decision tree is a method able to partitios input space into a set of rectangles
and then approximate the output in each rectangle lsmooth curve, instead of a
constant or a class like in the case of crisp b@sed methods. A fuzzy tree is an
approximation structure to compute the degree ahbeship of objects to a particular
class (or concept) or to compute a numerical outubbjects, as a function of the
attribute values of these objects. The goal is redeely split the input space into
(overlapping) subregions of objects which havestiime membership degree to the target
class ( in the case of classification problems}har same output value (in the case of

regression problems) [Ola04].

Figure 2.8 shows an example of splitting a fuzzy decisiore tead its correspondent

graph.
e
a P, A
1.0 — — 2 5
<o, ca+B
2 2
a 0.8
B, J2
<q,-£2 >q,+£2
% T 0.0 > a
aZ al
0.2 0.5

Figure 2.8 Example of a fuzzy decision tree. Addgtem [Ola04].

A fuzzy decision tree structure is determined &/ dghaph of the tree and by the attributes

attached to the its test nodes. The discretizatiogsholds & ) and width (3) values of

all these attributes, shown in Fig. 2.8, together labels of all the terminal nodes
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represent the parameters of the tree-based moldeteTs a search over both structure

and parameter spaces so as to learn a model frpemierce [Ola04].
2.2.3.5 Nearest Neighbor algorithm

The Nearest-Neighbor (1NN) method has been appbeth for classification and

regression. Let an arbitrary instance x be desdridyethe attribute vector
(a(x),8,(x),..a,(x)), (2.22)
where a,(x) denotes the value of theh attribute of instancex. Then the distance

between two instanceg and x; is define to bed ()g,xj ) , Where

n

d()g,xj)z\/Z(aT(x)—aT(xj))2 : (2.23)

r=1
In Nearest-Neighbor learning the target functionyrba either discrete-valued or real-

valued. Considering learning discrete-valued tafgaettions of the formf " -V,

whereV is the finite se{v ,...,vs}. Thek-Nearest-Neighbor algorithm is shown in Table
2.4, the valuef(xq) returned by this algorithm as its estimatefc(fxq) IS just the most
common value off among thek training examples nearest xp. If we chose k=1, then
the 1-Nearest-Neigbor algorithm assignsft()xq) the value of f (xq) where xi is the

training instance nearest tq,. For larger values ok, the algorithm assigns the most

common value among the nearest training sample [Mit97].
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Table 2.4 k-Nearest-Neighbor algorithm for approadion of a discrete value [MIT97].

Training algorithm:
* For each training samp(ex f (x)> , add the examplbe listtraining _examples

Classification algorithm:
+ Given a query instanog  to be classified,
+ Lek ...x  denote th& instances framining examples tthee nearest tg,
* Return

f(xq) —  ganax Zk:cf(v,f (xi))

viv i=1

whered(a b)= 1 i=b and wher@(a b)= 0 otherwise.

The main advantages of this algorithm are thait io principle represent very complex
input-output relations very well and is very simpéeimplement. On the other hand, the
disadvantages can be numbered as follows:

* It does not handle many irrelevant attributes wéllve have lots of irrelevant
attributes, the distance between examples is daedray the differences in these
irrelevant attributes and so becomes meaningless.

* It doesn’t look much like humans learning.

» Hypothesis function is too complex to describe exghy.

» Computational inefficiency.

The nearest neighbor algorithm and its variants pagticularly well suited to

collaborative filtering, where a system is to potdi given person’s preference based on
others people’s preferences. Collaborative filigriits into the nearest neighbor search
well because attributes tend to be numeric andasinm nature, so it makes sense to give

them equal weight in the distance computation [@¢uO
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2.2.4 Artificial neural networks (ANN)

2.2.4.1 Biological neural networks

A neuron is a special biological cell that procegsrmation. It is composed of a cell
body and two types of out-reaching tree-like brascihthe axon and the dendrites as
shown in Figure.9. A neuron receive signals (impulses) from othexgrans through its
dendrites (Receivers) and transmits signals gestbray its cell body along the axon
(transmitter), which eventually branches into stisand sub strands. At the terminal of
these strands are the synapses. A synapse israangey structure and functional unit
between two neurons (an axon strand of one neurdmalendrite of another). When the
impulse reaches the synapse’s terminal, certaimicaés called neurotransmitters are
released. The neurotransmitters diffuse acrossyhaptic gap, to enhance or inhibit,
depending on the type of synapse, the receptoron&uown tendency to emit electrical
impulses. The synapse’s effectiveness can be adjist the signal passing through it so
that the synapses can learn from the activitieshicth their participate. This dependence
on history acts as a memory, which is possiblyaasible for human memory [JMM96].
The cerebral cortex contains about'10eurons, this neurons are massively connected.
Each neuron is connected t0°16 10" other neurons. In total, the human brain contains

approximately 18 to 10° interconnections.

Axon

Homa —_—

Dendrite

Figure 2.9 A sketch of a biological neuron. Adapften [JMM96.]
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2.2.4.2 Background

Artificial Neural networks (ANNSs) are inspired byolbgical nervous systems and they
were first introduced as early as 1960. Nowadayslies of ANNs are growing rapidly
for many reasons:

* ANNSs work with pattern recognition at large

* ANNSs have a high degree of robustness and abditgdrn

* ANNSs are prepared to work with incomplete and uedeen input data
The development of artificial neural networks stdrseveral decades ago with the work
on the perceptron [Hay94]. The perceptron is b#gieassimple linear threshold unit, thus
able to represent only linear boundaries in thebate space; its limited representation
capabilities have motivated the consideration ofreancomplexes ANNs composed of
multiple interconnected layers of perceptrons [Wah%nd called Multi-Layer
Perceptrons (MLPs).
ANNSs can be viewed as weighted directed graphshichvartificial neurons are nodes
are directed edges (with weights) are connecti@t@dren neurons outputs and neurons
inputs. Based on the connection pattern (architeittANN’s can be grouped into two
categories [JMM96]:

» feed-forward networks, in which graphs have no fop

» recurrent (or feedback) networks, in which loopsurchecause of feedback

connections.

An MLP is characterized by its architecture, tragior learning algorithms and
activation functions. The architecture describes dbnnections between the neurons. It
consists of an input layer, an output layer andegaly, one or more hidden layers in-
between. To each connection feeding hidden or outprers corresponds a weight.
These weights can then be adjusted to tune thd-oyiput relationship of an MLP to

solve a given problem.

MLPs are normally used for supervised learningthis context, the learning algorithm

makes use of both input-output data. Base on afseput-output data, the weights are
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updated so as to minimize the discrepancy betwezgiven outputs and those computed
by the MLP from the given inputs. In this researtiie most common algorithm,
backpropagation, is used. Backpropagation derataslly an efficient algorithm for
computing the derivatives of the MLP output witlspect to the weight values. It is used
as a main building block construct gradient desaanguasi-Newton algorithms to
minimize the discrepancy between MPL outputs arel desired ones provide in a

training sample..

Once trained, a network response can be, to a el@gsensitive to minor variations in its
input. This ability to see through noise and disbor to the pattern that lies within the

inputs is vital to pattern recognition in a realigdoenvironment.

A multi-layer network with one hidden layer is shom Figure2.1010.

Hidden layer

Output layer

Input

Figure2.10 MLP with a single hidden layer

2.2.4.3The backpropagation method [Hay94,Nat97]

Backpropagation was created generalizing the Widdoff learning rule to multiple-
layer networks and nonlinear differentiable acimatfunctions.

Standard back propagation is a gradient descemtritign, as is the Widrow-Hoff
learning rule, in which the network weights are maalong the negative of the gradient
of the performance function. The telbackpropagation refers to the manner in which the
gradient is computed or nonlinear multiplayer nekgoThere are a number of variations

on the basic algorithm that are based on othedatdnoptimization techniques, such as
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conjugate gradient and Newton methods. Properigddabackpropagation networks tend
to give reasonable answers when presented withtanthat they have never seen.
Typically, a new input leads to an output similarthhe correct output for inputs vectors
used in training that are similar to the new inpging presented. The simplest
implementation of backpropagation learning upd#tesnetwork weights and biases in
the direction in which the performance function r@@ses most rapidly — the negative of
the gradient

There are two different ways in which this gradiesgscent algorithm can be

implemented: incremental mode and batch mode.dnntremental mode, the gradient is
computed and the weights are updated after each is@pplied to the network. In the

batch mode the weights and biases of the netwakupdated only after the entire

training set has been applied to the network. Tiaelignts calculated at each training
example are added together to determine the chiarthe weights and biases. The batch

mode was used in this work.

The learning phase of a layered perceptron is wiadiréts arc weight are adjusted
according to a specified learning rule in ordemimimize a specified objective function
(energy function). A commonly used objective fuantE is the mean square error (MSE)
between the actual neural network outputs andphbeified targets for a set of N training
patterns. The weight updating problem is to finded of weights that minimizes the

predefined objective function [EIS96].

2.2.4.4 The Levenberg-Marquardt algorithm [HM94]

The Levenberg-Marquardt algorithm was designed gpr@ach second-order training
speed without having to compute the Hessian métnx square matrix of second partial
derivatives of a scalar-valued function). Whenpgkeormance function has the form of a
sum of squares (as is typical in training feed-fandvnetworks), then the Hessian matrix
can be approximate as

H=J"J 2.22

and the gradient can be computed as
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g=J"e 2.23
Where J is the Jacobian matrix that contains first denxes of the network errors with
respect to the weights and biases, anés a vector of network errors. The Jacobian
matrix can be computed trough a standard backpetigagtechnique that is much less

complex than computing the Hessian matrix.

Suppose that we have a functim(g) which we want to minimize with respect to the

parameter vectok, then Newtons’s methods would be

Ax=-[0V (x)] 0OV (x) (2.24)

where Dz\/(l() is the Hessian matrix, defined as follows [Zur92]:

0V (x)=0,[0V(x)] (2.25)
A A A
x> OxP0X, OX0X,
oV oV 0V
2
Tv(n TP e P 226
oV oV oV
| 0%,0%  0%,0%, x|

Note that the Hessian matrix is of size nxn anglyremetric. The matrix is often denoted

by H, thusO%V (x) =H.

and OV (x) is the gradient and is equal:

oV ]
ax,
v
OV (x)£| 0x, (2.27)

v
0x,

If we assumed tha¥ (x)is a sum of squared function
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V(x) :Zqz (x) 2.28)

Then it can be shown that
03V (x) =37 (x) I (x)+S(x) (2.29)
OV (x) =37 (x)e(x) (2.30)

where J(x) is the Jacobian matrix

0g(x) Oe(x)  de(x)

0x, 0X, 0X,
de,(x) de,(x)  9e,(x)

J(x)=| ox X, 0X, (2.31)

deu() de()  da(x)
0x, 0X, 0x,

and

S(x)=Y & (x)T%e () (2.32)

=
For the Gauss-Newton method it is assumed S(g:t) =0, and update (2.24) becomes
ax=[37(x)3(x)] 3" (x) e(x) (2.33)
The Levenberg-Marquardt modification to the Gaussvidn method is
Ax=[ 37 (x) I (x)+ 1 37 (x) e(x) (2.34)
The parametex is multiplied by some facto(,&’) whenever a step would result in an
increasedV (x). When a step reducas(x), u is divided by 3. Notice that wheny is

large the algorithm becomes steepest descent &téghl/4), while for small 4 the

algorithm becomes Gauss-Newton. The Levenberg-Madjualgorithm can be
considered a trust-region modification to Gauss-fdew Table 2.5 illustrates the

Levenberg-Marquardt modification to the backprop@gea algorithm.
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Table 2.5 Levenberg-Marquardt algorithm. AdaptefiHM94].

1) Present all inputs to the network and computectirresponding network outputs,
and errors(nggq ng) . Compute the sum of squares ofeawer all inputs (V(x)).

wheree,, is the error for thggh input ancgq“" is the output of thewetk when the gth input is present
2) Compute the Jacobian matrix.
3) Solve (2.34) to obtaiA  x.
4) Recompute the sum of squares of errors us#fyx

If this new sum of squares is smaller tahn taht egetpin step 1, then reduge By

letx = x+Ax, and go back to step 1. If the sum of segi&s not reduced, then increase Soy

and go bacto step 3.

5) the algorithm is assumed to have converged wenorm of the gradient (2.30) is less

than some predetermined value, or when thedalsguares has been reduced to some error goal.

2.2.4.5 Feed-forward neural networks

Figure2.11 depicts an example feed-forward neural networknef@ral network can have
any number ofayers, units per layernetwork inputs, andnetwork outputs. This network
has four units in the first layer (layer A) anddérunits in the second layer (layer B),
which are callechidden layers. This network has one unit in the third layery@aC),
which is called theoutput layer. Finally, this network has four network inputsdaone
network output. Some texts consider the netwopis to be an additional layer, the
input layer, but since the network inputs do noplement any of the functionality of a

unit, the network inputs will not be considerecgdr in this discussion.

Network Layer A Layer B Layer C
inputs Units Units Units

Network
Output

i Unit to Unit
Network input to Connections

Unit connections

Figure 2.11 MLP with two hidden layers
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If a unit is in the first layer, it has the samemter of inputs as there are network inputs;
if a unit is in succeeding layers, it has the sammber of inputs as the number of units
in the preceding layer. Each network-input-to-wamtl unit-to-unitconnection (the lines

in Figure 2.11) is modified by weight. In addition, each unit has an extra input tkat i
assumed to have a constant value of one. The w#igh modifies this extra input is
called thebias. All data propagate along the connections in divection from the

network inputs to the network outputs, hence tha feed-forward
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CHAPTER 3 PROBLEM FORMULATION

3.1 ROTOR ANGLE AND SPEED ESTIMATION AND PREDICTION
PROBLEM.

It has been shown in the literature [SP89, APSA8E8K95, ABDA'96, CKP98,
LSTW99, LT95, AR96, SLT99, LT00, KGLO1, KK02, BGO4hat it is possible to
detect impending loss of synchronism by monitoniatpr angles and speeds of the
main power plants of an interconnection and that gossible to use this information
to determine in real-time and in a closed loop ifasttontrol actions in the form of
generator tripping, dynamic breaking or fast-vadviklowever, for these emergency
control schemes to work properly, it is necessarglitain highly accurate estimates
of rotor angles and speeds. Also, to minimize tble of detecting and reacting when
it is already too late (loss of synchronism mayg®pin some circumstances within
less than a few hundred milliseconds after faudeption), it is necessary to obtain
these estimates as quickly as possible, and ifilesahead in time via appropriate

prediction schemes.

Synchronous time frame rotor angles and speedsotéenobtained easily by direct
measurements. On the other hand, their estimationat least in principle, be carried
out from the three-phase voltage and current psasdhe machine’s low voltage bus
[RLLM "95]. However, given the better accuracy of EHV quhianeasurements with
respect to medium voltage ones, we suppose thaPM¥s will in practice be

installed on the EHV side of the step up transferofethe power plant. Also, since

each individual generator of a given power plang ywopose to use phasor
measurements from the EHV side of the step-up fmamer to estimate and predict

only the rotor angle and speed of the COI of thestered power plant.

A PMU is a power system device that provides mesamants of real-time phasors of
bus voltage and line currents. Basically, it samplsame time sampling) input
voltage and current waveforms using a common symihing signal from the global

positional satellite, GPS [Pha93], and calculatptasor (modulus and angle) for the
fundamental frequency via Discrete Fourier Tramsfapplied on a moving data

window whose width can vary from fraction of a simave cycle to multiple of the
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cycle [Pha93,IEEE95]. These quantities are typycptbvided for the nodal voltage
and line and transformer currents in all three phaat the bus were the PMU is

connected.

In other words, the problem to be tackled can bmttated as follows:
Given, a time-series of three-phase voltage phasors and of out-flowing (three-
phase) current phasors acquired at the EHV side of a power plant, sampled at a
certain rate (typically one or two cycles), and represented in a synchronous
reference-frame at nominal frequency, compute an estimate of rotor angle and
speed of the centre of inertia of the power plant in the same reference-frame, and
compute a prediction of these quantities at the next and subsequent time-steps.

Our work will aim at showing the feasibility of du@a local dynamic state estimation
scheme for aggregated rotor dynamics of a powentt @ad we will also evaluate at
the same time how long ahead in time it would bespme to predict angles and
speeds.

3.2 APPROACH PROPOSAL TO SOLVE THE PROBLEM.

The relationship between EHV PMU measurements la@adlynamic state of the COI
of the power plant is essentially non-linear angidglly corrupted by measurement
noise and modelling uncertainties. Therefore, wappse to use automatic learning
techniques, more specifically supervised multilagerceptron training in order to
provide a black-box state estimation algorithm ableope with such difficulties.
Indeed, it is well known that neural networks, andre generally automatic learning,
can cope with uncertainties and non-linearities, l@ast provided that the
dimensionality of their input space remains moderhiote that this is the case in our
analysis, since typically the number of input viales will be in the range of a few
tens (at most 100) while by simulation it is poksito generate automatically a very
large sample of training scenarios (typically a teausand). These scenarios can thus
cover a representative sample of power system guanaiions, fault scenarios,
modelling assumptions and they can also take immouwnt measurement noise.
Training a neural network on such very large amtagentative scenarios thus may
presumably lead to a robust and at the same timg efficient state estimation

algorithm.
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The approach investigated in this thesis thus ¢isdlgrconsists in generating off-line,
and based on numerical simulations, a represeataning set composed of system
trajectories comprising inputs (sequences of veltagnd current phasor
measurements) and output sequences of rotor aagtbspeeds of the COI of the
studied power plant. Obviously, it is of paramountportance that the set of
simulation scenarios is representative of all pogystem configurations and fault
scenarios.

It is clear that the neural network model needddoupdated when major changes
occur in the power system around the studied pgeert, such as the installation of a
new transmission or generation equipment. On therdtand, since the relationship
between the COI of the power plant and PMU measenésndepends on the number
of generators in operation in the plant, one suggess to train different neural
network models for each combination of generatoregeration, and to use in real-
time the one corresponding to the actual configomat

In order to evaluate the feasibility of the propbsspproach we will carry out
experiments with two different power system mod#is: first one is a One-Machine-
Infinite-Bus (OMIB) system and the second one red@uced version of the Mexican
Interconnected System (MIS). In our simulations, have take care to use rather
detailed models of the power system dynamics andJRMvice and we have
considered unbalanced as well as unbalanced comslifie.g. due to single phase

faults).
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CHAPTER 4 OMIB TEST SYSTEM.

CHAPTER 4 EXPERIMENTS WITH THE OMIB SYSTEM.

4.1 THE OMIB SYSTEM MODEL [Kun94]

The OMIB test system, shown in Fig. 4.1, represaritseermal generating plant consisting of
four 555 MVA, 24 kV, 60 HZ units, connected to trest of the system through a double
circuit transmission line. The equivalent machsenodeled with two damper windings in the
g-axis The network reactances shown in Fig. 4.1 are inupgron 2220 MVA, 24 kV base.
Resistances are assumed to be negligible andfih#garbus was modeled as an ideal 3-phase
AC voltage source (zero source impedance). Goveimarot modeled in this example.
Mechanical powerPm is considered constant. Although very simple tystem is very

helpful in understanding transient stability basfilects and concepts [Kun94].

vt Bus2 Vinf
S.M. j0.15pu. ’_D L jO.5pu. Infinite Bus
( ) 3¢ L2 j0.93pu.
T
3¢ Fault 3¢ Fault
P.M.U

Figure 4.1 OMIB test system (single-phase diagraxdppted from [Kun94].

The parameters of the synchronous machine in pgram2220 MVA, 60 Hz base are
provided in Table 4.1.

The excitation system used is an IEEE standard AiBA, and the parameters of this device
are given in Table 4.2 and 4.3 while the block caagis illustrated in Figure 4.2.
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Table 4.1 Synchronous Machine Parameters OMI|Bsiestem

Vbase 24 [kV]
Ibase 13.3512312 [KA]
w 376.991118 [rad/s]
H 3.5 [MW/MVA]
D 0.0 [p.u.]
Ra 0.003 [p.u.]
Ta 0.278 [sec]
Xp 0.15 [p.u.]
Xd 1.81 [p.u.]
Xd' 0.30 [p.u.]
Tdo' 8.0 [sec]
Xd" 0.23 [p.u.]
Tdo" 0.030 [sec]
Xq 1.76 [p.u.]
Xq' 0.65 [p.u.]
Tqo' 1.0 [sec]
Xq" 0.25 [p.u.]
Tqo" 0.070 [sec]

Table 4.2 IEEE Alternator type AC1A Forward PathdPaeters

Lead Time Constant (TC) 0.0 sec

Lag Time Constant (TB) 0.0 sec
Regulator Gain (KA) 200 p.u.

Regulator Time Constant (TA) 0.015 sec

MaxReg. Internal Volatge (VAMAX) 7.0 p.u.
MinReg. Internal Voltage (VAMIN) -6.4 p.u.
Max Regulator Output (VRMAX) 6.03 p.u.

Min Regulator Output (VRMIN) -5.43 p.u.

Table 4.3 IEEE Alternator type AC1A Exciter Paraerst

Rate Feedback Gain (KF) 0.03 p.u.
Rate Feedback Time Constant (TF) 1.0 sec
Exciter time Constant (TE) 0.80 sec
Exct. Constants related to fiel (KE) 1.0 p.u.
Filed circuit Conmutatinf react (KC) 0.20 p.u.
Demagnitizing factor (KD) 0.38 p.u.
Saturation at VE1 0.1 p.u.
Exciter Voltage for SE1 4.18 p.u.
Saturation at VE2 0.03 p.u.
Exciter Voltage for SE2 3.14 p.u.
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Figure 4.2 Exciter IEEE standard type AC1A. Adopften [Hyd0O]

4.2 DEVELOPMENT OF THE NEURAL NETWORKS FOR ROTOR
ANGLE AND SPEED ESTIMATION

The purpose of the ANNSs is to estimate the rot@lemand speed of a synchronous machine
using voltage and current measurements, which lat&ned by the PMU. We have trained

two different neural networks: one to estimatertiter angle (ANN1) and another to estimate
the rotor speed (ANN2).

4.2.1 Input selection

The inputs to the neural network ANN1 are the \g@tecurrent, angle of voltage and angle of
current at the EHV bus, at time instants-1 and t-2,(where the time step is 16.66 ms),
totaling 12 inputs. The output of the neural netwvanodel consists of one neuron

representing the rotor angle for a specific opegationdition,

J(t) - f{v(t),v(t =1),v(t-2),i(t),i(t-1),i(t-2),6, (t),} 4.1)

6,(t-1),6,(t-2),6 1),6(t-1),6 (t-2)

where v(t) andi(t) are the positive sequence terminal voltage andeotrat the timet,
v(t-1), v(t-2), i(t-1) andit-2) are the voltage and current at the timea andt-2, 6, and
6, are the voltage and current angles at the saneeitistants.

On the other hand, for ANN2 we use the same ingsitwith ANN1, with three inputs added,
the rotor angle obtained from the output of ANNZiate instantst, t-1 andt-2. For this
reason the number of inputs for ANN2 is 15. Thepaubf the ANN2 consists of one neuron

representing the rotor speed as illustrated in £ig).
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Figure 4.3 Arrangement of the ANNs for angle anelespestimation

4.2.2 Selection of ANN

The ANNs used are of the multi-layer feed-forwaypet, with one hidden layer. Fig. 4.4

represents the multi-layer feed-forward networkduee the purpose.

I nput Layer Hi dden Layer Out put Layer
v(t-2) — = n
v<t)4>
\\\‘\\\\\.“‘7
-2 —OSNASS
i(t-1) ."%,?,

Figure 4.4 Proposed layered feed-forward ANN mdaietotor angle estimation

The number of units in the hidden layer is detesdirexperimentally, from studying the
network behavior during the training process takintp consideration some factors like
convergence rate, error criteria, etc. In this régdifferent configurations were tested and the
best suitable configuration was selected basedemdcuracy level required. The number of
hidden units for the ANNL1 is 40 and the number idflen units for ANN2 is 35. Hyperbolic
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tangent activation functions are used for thesesuwihile a linear activation function is used

for the output neurons for borh of ANNs . The néuetworks were trained off-line.

4.3 SIMULATION RESULTS

The Neural Network Toolbox from the MATLAB™ [Nat97] software tool was used to
create, train and test the neural networks. Thmitig algorithm used is the Levenberg-
Marquardt algorithm because it provides fast cogeece.

The initial weights as well as the initial biaseaptoyed random values between 0-1. The

inputs and targets are normalized so that they hiakees between -1 and 1.

A power system may be subjected to different kiofdgisturbances. It is impossible to use all
the responses of the teaching system under diffetisturbances as the training set. The
contingencies represented in this well-kwon testesy are three-phase short circuit at
beginning of the transmission line L2 and at the ehthe same line near to infinite bus.

All the three-phase faults were applied at 0.1 Jdw faults were released either by self-
clearance or by tripping the faulted line. Thiz@nmon practice in stability studies. All the
disturbances were applied to different generatamels [1100, 850, 600, 500, and 300 MW].
The training data uses 180 patterns, each contaBOninput-output pairs (in average). Total
number of input-output pairs is equal to 144001831 the neural networks 60 unseen patterns
are used. Generation of the data for training astlrtg is summarized in Table 4.4. For each
short-circuit and generation level, 3 out of 9 gats are with fault duration randomly chosen
from interval [0.05,CCT-0.01ins, 3 from interval [CCT-0.01,CCT+0.01ps, and 3 from
interval [CCT+0.01,0.35ins.

Table 4.4 Generation of training and testing data

Training Testing

Gen. Self-clearing | Tripping the line| Self-clearing fault  Tripping thiae
Level fault

(MW) | Beg. | Endof| Beg. | End of | Beg.of | End of | Beg. | End of

of L2 L2 of L2 L2 L2 L2 of L2 L2

1100 9 9 9 9 3 3 3 3
850 9 9 9 9 3 3 3 3
600 9 9 9 9 3 3 3 3
500 9 9 9 9 3 3 3 3
300 9 9 9 9 3 3 3 3
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Testing patterns consist of one pattern from akéhabove mentioned, intervals that are not
used in training. All real-time environments exhi&ome level of noise from instrumentation.
The effects of noise on the response of the systemassessed by randomly perturbing the
inputs (additive noise uniformly distributed in trenge [-0.02,0.02]) to the neural networks.
The noise is added to voltage and current magnitadly. First the ANNL1 is trained and
tested, according to the procedure described alane,then the same training and testing

patterns are used with the ANN2

To generate the ANNs training and validation dag¢ss,sthe MATLAB™ SIMULINK

software tool [HydO0O] is used. Also, using this slation tool the values of voltage and
current phasors to compute the rotor angle anddspemg the generator classical model,
were obtained. The sampling interval in the simafet is taken equal to 20 ms (every cycle
of fundamental frequency, this is reasonable valugew of the fact that modern PMUs are

capable to provide the measurements every 1-5<y€hey00]).

As a measure of performance, the root mean squamedefined as:

RMSE = /%Z(tp—op)z (4.2)
p

is determined for each of two ANNs after 1000 itiewas of the training rule. In (4.2)p
represents the number of input-output training aiy is the target output for the-th
training, o, is the output of the ANN. The RMSEs for trainingdaesting are given in Table

4.5. For the comparison, the RMSEs obtained usiaglassical generator model for all three
presented cases are given in Table 4.6 (in equédi@) target output is replaced by exact
angle and speed values and the output of the ANN thé values obtained using the classical

generator model).
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Table 4.5 Root mean square error after 1000 itaati

ANN Training error Testing error
ANN1 0.0020 (rad.) 0.0092 (rad.)
ANN2 0.0004 (rad./s) 0.0024 (rad./s)

Table 4.6 Root Mean Square Error for the Cladsenerator Model

Stable Unstable | Critically stable
Angle (rad) | 0.1307 0.1607 0.1803
Speed (rad/s) 0.6004 0.9576 0.6988

Results obtained for three cases (stable, crijicgtthble, and unstable) are presented and
compared against the computation of the varialdsed on the classical generator model. All
three presented cases correspond to the faultseabeaginning of the line L2 released by
opening the faulted line. CCT is equal to 0.292os€ds for this particular fault. If the fault
duration is less than the CCT, the system respignstable. The evolution of rotor angles and
speeds (exact, estimated, and obtained based ssicalagenerator model) are illustrated in

Fig. 4.5 and 4.6. As the exact values of the ratogles and speeds are considered those
extracted directly from the simulation model.

25

exact
, . J— = classical model

rotor angle & (rad)

0.5

| |
] 0.2 04 0.6 0.8 1 1.2 14 16
time (sec)

Figure 4.5 Rotor angle (stable case)
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rotor speed w (rad/s)

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6

Figure 4.6 Rotor speed (stable case)

An unstable system response (fault duration grehaser the CCT) is illustrated in Fig. 4.7 and
4.8. When the fault duration is equal to the CC3taym becomes critically stable. Fig. 4.9 and

4.10 represent the variables evolution for thigcas
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Figure 4.7 Rotor angle (unstable case)
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Figure 4.8 Rotor speed (unstable case)
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Observe from Fig. 4.5, 4.7 and 4.9 that much betssking of the rotor angle was obtained
by its estimation using the proposed methodologyntt we rely on the classical generator
model and simple algebraic relations (1.1,1.2) cespter 1 of this thesis. Presence of the
noise in measured variables results in slightlyshaspect of rotor angle calculated by (1.1).
Rather harsh aspect in rotor speed is obsenablal presented system responses if
analytical formulas (1.1,1.2) derived from the siaal generator model are used. The harsh
aspects in rotor angle and speed are much lessvab$e in the estimation using the ANNSs.
If the level of accuracy, in transient d#igbassessment and control, is high then
observed errors in the computation of the variahisig (1.1,.1.2) can result in wrong
prediction and control actions determinati®he results clearly indicate that the ANN-
based approach to estimate rotor angles and sfeadgphasor measurements, has potential

to be useful in tracking transient behavior of asposystem following a disturbance.
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Figure 4.9 Rotor angle (critically stable case)
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Figure 4.10 Rotor speed (critically stable case)

67



CHAPTER 5 SIMULATIONS AND TRAINING RESULTS ON
THE MEXICAN INTERCONNECTED SYSTEM

5.1 MODELS

In this section we introduce the models used fer Mexican Interconnected System
(MIS) that we have used in order to generate auukition results. All the simulations
reported in this thesis were carried out using R®CAD/EMTDC software [Man03,

Man03a].

5.1.1 Mexican interconnected system (MIS)

General structure of the MIS

The bulk Mexican interconnected system comprisésige 400/230 kV transmission
system stretching from the border with Central Aiggeto its interconnection with USA.

The MIS consists of six areas designated as ndithnrth-eastern (NE), western (W),
central (C), south-eastern (SE), and the peninssjatems. A simplified diagram of

major system elements is shown in Fig. 5.1.

svc aM O, pee Nogry'ligrs:ern

Western

System  AGR, P
AGM Y 8
[

Guadalajara
city

H (:EIL South-eastern
o PET .. gystem)

Figure 5.1 Mexican Interconnected System. AdoptethffRRC97]

The test system used in our simulations is a retlveesion of the MIS shown on Fig.

5.1. It is formed by one power plant which has Blrbygenerators, three transmission
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lines that connect this power plant with the rédhe system, one load in the 400 kV bus
bar of the power plant and the rest of the systempresented by two large synchronous
machines and two large equivalent loads (see bi§sand 5.6). A detailed model is used
to represent these latter two synchronous maclsimesar to the salient pole rotor one
used in the power plant. Excitation systems andegows are also modeled for all
synchronous machines. A standard IEEE exciter A&Q&A was used as AVR model for

these two large synchronous machines..

Parameters of a part of South-East Mexican Interconected System in PSCAD.

The synchronous machine represents a hydraulieiisadole) generator model with one
damper winding in the g-axis. The set of equatithas represent this model are given in
Appendix A and correspond to equations (A.10-A.T@ble 5.1 shows the parameters

used for each one of the five machines of the hydizat.

Table 5.1 Parameters of synchronous machine fo¥itiSetest system (Power Plant)

Synchronous machine parameter for the MIS

T 40 5.2 sec
T 4o 0.029 sec
T 40 0.034 sec
H 4.3
D 1.0
X4 0.75 p.u;
Xq 0.43 p.u.
X4 0.24 p.u.
X" 4 0.17 p.u.
X" 4 0.17 p.u.
X 0.11 p.u.

The exciter is based on an IEEE type SCRX solitest&citer. The schematic diagram is

shown in Fig. 5.2 and its parameter in Table 5.2.
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Figure 5.2EEE Excitation system type SCRX [MANO3]

Table 5.2 Parameters of the excitation system SRCX

Ta 1.02 (sec)
Ts 15.0 (sec)
K 220.0 (p.u.)
Te 0.03 (sec)
Emin -3.0 (p.u).
Emax 4.2 (p.u.)

The hydro-turbine is modeled using the same deshoavn in A.4. The parameters used

in our simulations are given in Tables 5.3 and 5.4.

Table 5.3Hydro-Turbine Rated Conditions

Head at rated conditions 1.0 (p.u.)
Output power at rated conditions 1.0, 0.90, 0.8D @m0
Gate position at rated conditions 1.0 (p.u.)

Rated No-load Flow 0.5 (p.u).
Initial Output Power 1.0 (p.u).
Initial Operating Head 1.0 (p.u.)

Table 5.4Hydro-Turbine Non-Elastic Water column parameters

Water Starting Time (TW) 2.26 (sec.)
Penstock Head Loss Coefficient (fp) 0.02 (p.u.)
Turbine Damping Constant (D) 0.5

The hydro-governor model used is shown in A.5 asgarameters for this specific case
are shown in Table 5.5.
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Table 5.5Hydro-Governor Parameters

Dead Value Band 0.0 (p.u.)
Permanent Droop (Rp) 0.25 (p.u.)
Maximun Gate Position (Gmax) 0.8945 (p.u.)
Munimun Gate Position (Gmin) 0.50 (p.u.)
Max Gate Opening Rate (MXGTOR) 0.17 (p.u./s)
Min Gate closing Rate -0.17 (p.u./s)
Pilot Valve Servomotor Tiem Constant (Tp) 0.05 Jsec
Servo gain (Q) 5 (p.u.)
Main Servo Time Constant 0.2 (sec)
Temporary Droop (Rt) 0.4 (p.u.)
Reset or dashpottime constant 5.0 (sec)

The step-up transformers have a delta-star cordigur. Their model is based on the

theory of mutual coupling. Table 5.6 gives the paters of each transformer.

Table 5.6Transformer parameters for the MIS test sytem

Tmva 150.0 (MVA)
f 60.0 (Hz)
Xl 0.1 (p.u.)
Vi 13.8 (kV)
V2 400 (kV)

The transmission lines were modeled using a sitmiple Pl section model, whose

parameter are shown in Table 5.7.

Table 5.7 Transmission line parameters for the Mk system

Parameter TL#1 TL#2 TL#3
F 60.0 Hz 60.0 Hz 60.0 Hz
V.. rated 230.0 kv 230.0 kV 230.0 kV
MVA 100.0 MVA 100.0 MVA 100.0 MVA
R 0.0013 p.u. 0.0016 p.u. 0.0041 p.u.
X 0.0177p.u. 0.0216p.u. 0.0599p.u.
B 0.5072 p.u. 1.6181p.u. 1.417 p.u.
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Loads were represented as a function of voltagenmate and frequency, where the load

real and reactive power our considered separasghguhe well known expressions:

F=F, -[1]NP (14K, -dF)
e (5.1)

(5.2)

In order to represent transformation and any digtion transmission that might exist
between the connection point and the actual loaé, above characteristics are
approximated through representation by a seriesciadce, selected as 10% of the
impedance of the real power portion of the loathe Teal power is represented as a shunt
resistance and the reactive power as a shunt imdiurciparallel with the shunt resistor,

both connected to ground. The parameters of tleedoaillustrated in Table 5.8

Table 5.8 Load parameters for MIS

Rated Real Power 47.133 MW
Rated Reactive Power 6.1333 MVAR

Rated Load Voltage (rms L-G) 7.967 kv
Volt index for Power (dP/dV) 2

Volt index for Q (dQ/dV) 2
Freq index for Power (dP/dF) 0

Freq index for Q (dQ/dF) 0

Fundamental Frequency 60 Hz
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5.2 DATA BASE GENERATION

5.2.1 Principle

The database generation aims at obtaining a regegse sample of simulation scenarios
from which the data can be extracted that will beduto train the neural network models
used for rotor angle/speed estimation and predict@ach simulation scenario is defined
by first combining a steady state operating coaditand a fault scenario (type, location,
duration, clearing scheme).

For the MIS test system, the database generat®nded different levels of generation to
define the steady state operating condition as alchanges in the topology of the
network. Single and three phase faults were modededisturbances and different places
were chosen also to apply the disturbance togetiterdifferent assumptions about the
fault clearing mechanism. The data was generatéuy UBSCAD software, and the
training and testing process were carried out wth PEPITo software [Pep04]. Below
we describe in details the conditions that weredusegenerate these simulation results

used to build up our training and testing database.

a) Active power generation

We have considered four different levels of acpesver generation in the studied power
plant. In addition to full loading of all units, weave considered 90%, 80% and 70%
loading of the units. The load level was essentiedipt unchanged, and thus the change
in generation of the studied power plant was corsgid by increasing the generation of
the two large equivalent power plants. The detaifédrmation about the active power
generations and the local load are shown in Talfle 5
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Table 5.9 Active Power generation and local loaascanption

Active Power 100 % (MW) 90 % (MW) 80 % (MW) 70 % (MW)

Ul1-Us 189.54 170.0 151.4 132.8
SM1 19391.7 19459.4 19531.4 19603.3
SM2 7592.05 7618.56 7646.74 7674.93
Power Plant  947.70 850.63 757.22 664.1
Local Load 144.2 144.3 144.3 144.4

The steady state rotor angleof the units Ul to U5 (the rotor angle referenctates at

nominal frequencyw, ) under these generation levels is summarized lmeTa 10.

Table 5.10 Rotor angle at different generationleve

Level Rotor angled
generation in degrees
100 % 33.22
90% 30.33°
80 % 27.57
70 % 24.22

b) Topology

The changes in the topology of the network were etted changing the impedance’s
value of the transmission line 1 and 2. In thisec#lsis value was modified -5 % and +10
% .

c) Disturbances

The disturbances considered in our simulationghardollowing:

» Three phase fault to ground

* Single-phase fault to ground
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The disturbance were releases in three differegswa
» Self-clearing
» Tripping the faulted line
» Tripping and reclosing the faulted line

Figure 5.7 shows the fault locations on the one-tiiragram.
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TL3 | » ~.) Large Synchronous
T5 ‘ Machine 2
us (: ) @ 193 km
Load 2
T6 )

BUS 2989

BUS 2003

Local Load

Figure 5.7 Test system diagram

5.2.2 Practical procedure for the database generation

For the generation of the database, direct measusmirom PSCAD software of
voltage, current with their respective phase angies three-phase form, i.e.
V., V.. V., 1,1, 1., etc, were gather for each simulation. In thiscpss, a FFT device is
used to represent the PMU in order to obtain thesasurements (see Appendix B). Also
the actual values of the rotor angl&)(and the rotor speedd) were taken from PSCAD

via ideal measurements.
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The next step was selected two points in the nétwehnere three-phase and single-phase
faults are applied. The near end of the transmmslnes #1 and #3 was selected for this
proposes. Where place # 1 is the beginning of Tla#d place #2 the beginning of TL
#3.

For each steady state condition (combination ofgrayeneration level and topology), the
Critical Clearing Time (CCT) was calculated andhnihis value we selected different
fault clearing times in order to obtain stable amdstable cases (loss or not of
synchronism) of the generators of the power plant.

For example, for the1l00 % generation level base,dhsee-phase fault placed # 1 for
the fault location and release by self-extinctithe CCT is 0.30 sec., and we used the

fault clearing times shown in Table 5.11.

Table 5.11 Fault clearing times used for 100 %llgeaeration, case base, 3-phase fault

0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.24 0.25 0.26
0.27 0.28 029 030 0302 0.31 0.32 0.33 0.34 0.35

These 20 fault clearing times have been combindti single vs three phase fault
assumptions and three clearing schemes mentiormd,dbading to 120 PSCAD time-
domain simulations for the 100% load level case=lzaxl location #1 of the fault.

In the same way, we considered the 24 combinatiérks generation levels, 3 topology

assumptions and 2 fault locations, yielding altotember of 2880 simulations.

The duration of the simulation period was fixed.tb sec, the fault was applied at 0.1 sec

and PSCAD simulations where carried with a fixedetistep of 5Qus.

5.2.3 Post-processing of the simulation results

When a simulation with PSCAD is finished, the netdp is to arrange the raw output
information contained in the output files generagdPSCAD into files that MATLAB
and PEPITo can read. In these files we includéhalinputs and outputs to be used in the
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training of the neural network, and keep only thkies at the appropriate times step (one
sample every cycle, at 60Hz).

The variables used as input are:

* Voltage at the bus 2000.
* Currents flow the three transmission lines.
e Current through local load (bus 2003)

We have three phase measurements with their régpgidiase angles for each variable

as follow:

Table 5.12 Input arrangement to the NN using alatiributes

voltage at bus 2000 &z Vp Ve

and phase angle 0. By Oc

current T.L. #1 la I l1c

and phase angle B2  Opp 01¢

current T.L. # 2 da oo l2c

and phase angle 022 B2 02c

current T.L. # 3 da s ER

and phase angle 032 B3 03¢
current local load (bus 2003) oah  lioad lioad
and phase angle Bload  Bload Bi0ad

All'in all, including the recording of output valsi¢rotor angles and speeds), this leads to
a files containing 2912 numbers for each simulat=hario.

Taking into account the fact that in our work we ugput values of three successive time

samples(t,t -1t- 2) in order to estimate rotor angles and and spedits@t andt+1,

each input/output pair is represented Ky ), Xy, X, Y1 Y, Where X, is the
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value of input attribute vector at tinte X,_,) and X, correspond to the value of each

attribute at the two previous time steps, arag (respectiverY(Hl)) correspond to the

two output quantities at the present time and one step ahead into the future.

All'in all, the resulting database thus containedghly 24 million values, organized into

a matrix of (roughly) 260,000 lines and 94 columns

5.2.4 Separation of the database into learning and test sets.

The above database was split into a learning d@edtaet in the following way. For each
conditions, combining a steady state conditionawtflocation, a fault type and a fault
clearing scenarios, the 20 scenarios corresportdirZ) different fault clearing times
were separated into a subset of 15 learning sasnand 5 testing scenarios, chosen so as

to have both stable and unstable case in both &subse

This leads to a total number of about 200,000 imuuput pairs in the learning set and
60,000 in the test set.
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5.3 RESULTS

The results are organized into 4 successive seactidime first section provides

preliminary results about the design of a neuravogk scheme for the estimation of the
rotor angle directly. Since these results were satisfactory, we propose in the second
section an alternative scheme were the outputseohéural network target the sinus and
cosinus of the rotor angle (we call this the regtdar representation of the rotor angle).
The results obtained with this scheme are muchehetind we believe sufficiently

accurate for practical use. The third section fesusn the estimation of the rotor speed,
and the two last sections provide some prelimimasults concerning the prediction of

rotor angle and speed some time steps ahead in time

5.3.1 Direct estimation of the rotor angle &.

In the preliminary trials reported in this sectighe output value on which the neural
networks are trained is the rotor angle, relatov@ tsynchronous reference. For all these
trials we used 50% of the available data, in otdeeduce computing times.

We study first the case were we train the neuralowk for both unbalanced and
balanced fault conditions. In that case, we comsiila training set of 88200 samples and
a test set of 28800 samples and 90 input variables.

Then we study a simpler situation, were only batanfault conditions are considered,
which allows to reduce the number of training aesting samples by a factor of 2 and
the number input variables by a factor of 3 (coesidy only the quantities of a single
phase, instead of all three phases).

We have considered different neural network stmestwsing either one or two hidden

layers with various numbers of units.
Case MLP configuration 90 — X -6

We used as inputs all the 90 variables given inlerakl2, the output is the rotor angle,

each variable is estimate in a different Neuralwdek. The networks are trained on
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88200 samples drawn from both balanced and unbedafawult conditions. They tested
on an independent test set of 28800 drawn fromstrae balanced and unbalanced

conditions simulated with different fault clearitigmes.

With respect to number of hidden units used, 5, 26,and 30 hidden units were
employed. The results for this kind of configuratere shown in Table 5.13.

The mean square error (MSE) is defined as

M$:%Zaf%f (5.1)

where p represents the number of input-output trainingspaj, is the target output for

the p-th training, o, is the output of the ANN. In the case of estimatad the rotor

p
angle the units are given in degrees and for tee o&rotor speed estimation the unit is
in p.u. the number of training cycles varying fréto 100, in our case cycles means the
number of epochs during the ANN training processeér correlation coefficient is a
statistic representation how closely two varialdesvary. It can vary from -1 (perfect
negative correlation through 0 (no correlationyfo(perfect positive correlation).

The correlation factor is defined by [Sap90]:

1gbviﬂm-w

=1 (5.2)
SS
wheres, ands, are the standard deviation rfand y,
1L =
$=—2.(x %) (5.3)
n=
1 _
s =-2.(%-9) (5.4)

i=1

and the numerator is the covariance observed.
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Table 5.13 MLP configuration 90-8- Errors and correlation factor varying the numbfhidden units

Net MSE MSE Correlation  Error Error  cycles
configuration (LS) (TS) factor (TS) min MaxTS
TS(deg) (deg)
90-5-d 0.1014 0.1248 0.9032 -732.44 1.19E3 50
90-15-% 0.03567 0.0475 0.9644 -717.16 870.14 50
90-208 0.01964  0.02767 0.9796 -461.77 568.24 50
90-20-0(a) 0.01134 0.01912 0.9857 -682.90 529.00 100

We observe that the MSE error decreases (both enL8 and on the TS) and the
correlation factor increases when we increase thmber of hidden units in the MLP

under study. However, the maximum and minimum er(computed on the test sample)
are very large ( -732.44and 1.19 E3). Notice that increasing the number of training

cycles did not allow us to reduce these errorsifsogmtly.

Case MLP configuration 90 — X - X -0

In the next trials we have added one hidden layable 5.14 shows the obtained results
after training the MLP.

Table 5.14MLP configuration 90-X-X& - Errors and correlation factor varying the numbiehnidden units

Net MSE MSE Correlation  Error Error  cycles
configuration (LS) (TS) factor min(deg) Max(deg)
90 -15-150 0.003288 0.008084 0.994 -455.62  510.069 70
90 -18-189 0.002406 0.007462 0.9945 -577.77 575.21 100

Figure 5.8 illustrates these results graphically.
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Figure 5.8 True vs. estimate rotor angle for MLP-B8-184d. Stable test scenario (a) and unstable test
scenario(b)
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We observe that this configuration leads to sigaift improvement of the average error

rates with respect to the previous configuratiout, the maximum and minimun errors

remain still very large.

Given the disappointing results obtained above,masle a further set of trials on a
simplified version of the problem, where we havesidered only balanced (i.e. three-
phase) fault conditions. This allowed also to digantly reduce the amount of training
and testing data (the number of samples is dewiglerl factor 2, and the amount of input
variables by a factor 3, by using only the valuegl@ase A). These results are reported in

the next 3 subsections.
Case MLP configuration 30 — X -0
The number of hidden units used for this NN confagion were of 7 and 10.

Table 5.15 summarizes the results obtains usisgkthd of configuration.

Table 5.15 Results using 30-XMLP configuration (angles in degrees)

NN configuration 30-70 30-1096
MSE(LS) 0.01435 0.02140
MSE(TS) 0.02090 0.03070
Correlation factor 0.9838 0.9792
Error min. -539.89 -533.02
Error max. 717.77 696
cycles 150 100

Maximum and minimum errors are again unacceptairtyel.

Case MLP configuration 30 —X - X -0

This new configuration tested is basically the sdaha used above, with the difference
that we have added one hidden layer.

The results obtained with this configuration arevgh in Table 5.16
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Table 5.16Results using 30-X-X&MLP configuration (angles in degrees)

Net MSE MSE Correlation Error Error cycles
configuration (LS) (TS) factor min(deg) Max(deg)
30-25-59 0.002348 0.00665 0.9949 -190.52 538.70 100
30-25-259 0.002729 0.00720 0.9945 -487.48 439.01 150

30-20-55 0.003098 0.00852 0.9935 -271.35 495.16 100

We observe again an improvement in accuracy regultiom the introduction of a

second hidden layer. Nevertheless, there arevetyl large errors.

Case MLP configuration 18 —X - X -0

Finally, a further set of simulations were obtaifmdfurther reducing the input variables
to the neural nets, by using the magnitude andephagle of voltage measurements of
phase A, and only the current magnitudes as inputise neural network. Current phase
angles were thus not used for this configuratieading to 18 input variables. The best

results were again obtained with two hidden layged are displayed in Table 5.17.

Table 5.17 Results using 18 —X —X -configuration (angles in degrees)

Net MSE MSE Correlation Error Error cycles
configuration (LS) (TS) factor min(deg) Max(deg)
18-20-100 0.002299 0.005969 0.9954 -191.69 480.69 250
18 —20-200 0.001962 0.005391 0.9959 -154.30 526.39 200
18-30-105 0.0020 0.00551 0.9958 -282.29 481.23 250

As one can see from these results, this simpliioadbnly marginally improved accuracy,
which still remains below expectations. To furttmghlight this, Figure 5.9 provides a
graphical comparison of actual rotor angle and eghobtained from neural network
predictions. These latter show some very large geagparently appearing at random

places during the transients.
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5.3.2 Estimation of & by using a rectangular representation.

On the use of a rectangular representation of theator angle.

The difficulty to obtain accurate results in theedi estimation of rotor angles, as carried
out in the previous sections, can be explainedhbyfact that these rotor angles become
quite large in the context of unstable scenariasu@ly unbounded), while the phases
and amplitudes of the phasor measurements usepats ito the neural network remain
bounded (phases within the interval [-18@C’], amplitude between 0 and some upper
bound fixed by system parameters). This makedfitdit, if not impossible, to yield an
estimation scheme using a limited number of pasasmements to provide good
accuracy both for the large excursions (over P00 the rotor angle in unstable cases
and the smaller variations (typically °t80°) in stables ones. We believe that the training
of the MLPs in such conditions actually leads terfitting the unstable scenarious at the
price of a rather bad approximation of the stallesp as shown in Figs. 5.8 and 5.9.

In order to circumvent this problem, we proposede instead of the direct estimation of
the rotor angl®, an indirect scheme where two neural networkgrareed in parallel, in
order to respectively provide an approximationia{® and cosd). Indeed, these values
have the advantage of remaining bounded even itabiesconditions, and at the same
time they vary smoothly over time. On the other dhathe rotor angle can be
straightforwarly recovered from these values (umtmultiple of 360).

It is import remake that the estimation of rotoesp (v we don’t find this problem,

because in both cases stable and unstable thefealamega remaining bounded.

Rectangular representation of the rotor angle for hree phase faults cases only.

Table 5.18 shows training and testing results abthfor two such MLPs, both with two
hidden layers of 8 neurons each, and a linear outpuron. In these simulations we
considered only the three phase faults as thetadtguration mentioned above, with the
same training and testing scenarios. Notice thahénpresent case we also decided to
drop from the 30 input variables the values comesgng tot-1 cycle, since we found

that they didn’t bring a significant amount of imation (thus the MLPs use only twenty
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inputs). In order to recover the rotor angle frame tapproximations of sin(delta) and
cos(delta), we used the two MLPs obtained after t§bles of training, which
corresponded to convergence of the MSE both otréint@ng and on the testing samples.

Notice that no overfitting is observed with these&ures and input and output variables.

Table 5.18Results of training and testing MLPs with rectarguépresentation @

Net MSE (Is) MSE (ts) Correlation Error Error cycles
configuration factor(ts)  min(ts) max(ts)
20-8-8-sinp) 0.004229 0.005422 0.9951 -0.593 0.586 50
20-8-8-sinp) 0.003219 0.004265 0.9962 -0.563 0.495 100
20-8-8-sinp) 0.003118 0.005422 0.9962 -0.546 0.474 150
20-8-8-cosf) 0.001957 0.002743 0.9976 -0.352 0.331 50
20-8-8-cosf) 0.001378 0.002121 0.9982 -0.510 0.323 100
20-8-8-cosf) 0.001205 0.001840 0.9984 -0.547 0.335 150

Compared to the previous results we obtained afgignt increase in accuracy when

using this approach to estimate the rotor angledd, except for a small number of large
errors, the approximation provides a standard oorthe test sample) of 3.73 degrees,
with minimum and maximum errors of respectively.8and 26.5 degrees. The quality

of this estimation scheme is illustrated on nexuifes.

Figure 5.10 shows a few test scenarios both tlee(tre. taken from the simulations) rotor
angle, and the approximation recomputed from the MLLP outputs. Both are trimmed
to the interval [-180,18C].

Figure 5.11, on the other hand, illustrates the faat sometimes there remain large
errors, but we see that these are merely due téatiiehat the signal discontunuety at
180 does appear at two different (but successive) steps for the true signal and its
estimation. Although such errors appear as larger@iuence the accuracy statistics in a
negative way, from a practical point of view theg aot problematic.

Figure 5.12 further highlights the overall performas by a scatter-plot representing the
true angle and its estimation for all the 1440@ sasnples. It shows that, except for the

already discussed large errors, the approximasiah very good quality.
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In figure 5.13 we illustrate two training scenar{tise two first in our data set), showing
some small estimation errors at fault applicatiod alearing instants. These small peaks
of limited amplitude of one or two examples arei¢gperrors incurred by this scheme.
We deem that this kind of estimation error coulksbabe easily detected and corrected in

real time, taking advantage of the fact that ratogles must vary smoothy.
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Figure 5.10 Rotor angle vs estimation for six sgginarios (2 stable, 2 unstables, 2 stables).
20-8-8-sind)and 20-8-8cog) trained for 150 cycles.
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Figure 5.11 Rotor angle vs estimation for a stallewed by an unstable test scenario.
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Figure 5.13 Rotor angle vs estimation for all tve first test scenarios

Rectangular representation for both balanced and ubalanced faults.
Table 5.19 shows training and testing results.

Table 5.19Results using 60 -10 -10 —si(cos@) MLP configuration (angles in degrees)

Net MSE MSE Correlation Error Error cycles
configuration (LS) (TS) factor min Max
60-10-10-cosp) 8.83E- 0.00144 0.9988 -0.318 0.467 100
4
60-10-10-sind) 0.002 0.004116 0.9963 -0.5079 0.5290 100
580
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Figure 5.14 shows for two test scenarios the tmierrangle (solid line), and the
approximation recomputed from the two MLP outpulstied line).
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Figure 5.14Rotor angle vs estimation for a stable test scenari

Figure 5.15 shows two test unstable scenariospitadto the interval [-18018C].

92



CHAPTER 5 SIMULATIONS AND TRAINING RESULTS ON THE MEXICAN
INTERCONNECTED SYSTEM

o o
:
5
8 so-
_1(x) [
_lm [
— Deltafrom PSCAD
""" Delta estimation from PEPITo
200t | | T T T T 1 I 1
280 300 320 340 360 380 400 420 440
Points

Figure 5.19Rotor angle vs estimation for unstable test scerari

Figure 5.16 is devoted for a few test scenariosrd@esent a single-phase fault.
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Figure 5.16Rotor angle vs estimation for single phase fautuoence.
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Figure 5.17 shows a single phase faults followed btable three phase fault.
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Figure 5.17Rotor angle vs estimation for a single phase fallbwed by an stable three phase fault test
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Figure 5.18 Rotor angle vs estimation for a stadllewed by an unstable test scenario.
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Figure 5.18 illustrates the estimation of rotorlardglta for a single phase fault, showing

some small estimation errors at fault applicatiod elearing instants.

Discussion

Our investigations have shown that direct estinmtd the rotor angle with neural
networks led to inappropriate results, essentibgause the phasors computed by the
PMU device are trimmed to the interval [-28BC] while the output quantity may
become very large in the case of unstable scenarios

Among the different possible approaches that ctalde been proposed to circumvent
this difficulty, we have proposed to use a rectdagrepresentation of the rotor angle
leading to an estimation scheme were two neuralorés are used, one to estimate the
sinus of the rotor angle and the other one to egéirthe cosinus of it. These quantities
are smooth functions of the rotor angle, whichlitgaries smoothly over time, and from
them it is possible to recover the rotor angleaip tnultiple of 360 degrees.

The resulting scheme leads to robust rotor andiemason both in the case of balanced

and unbalanced fault conditions.

5.3.3 Estimation of wfor the MIS

This approach used in this thesis can be extended straightforward way to the
estimation of rotor angles by substitutingt)for J(t), in the data preparation step.

For estimating the value of rotor speed, the MLRfiguration used had the form 60 —
X-X- w, were X denotes the number of hidden neurons (in our vas@layed with
three different numbers of configurations) Theriag set and testing set remain the
same that for the case of rotor angle estimation.

Table 5.20 shows training and testing results abthifrom this kind of MLPs, where

Mu () is the Mean and sigmi@) is the standard deviation.
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Table 5.20 Results using 60 — X —¢§-configuration (in p.u.)

Net Correlation Error min.  Error max. Mu (u) Sigma 6)
configuration factor
60-5-5w 0.988 -47.72E-3  103.26E-3 25.88E-6 3.57E-3
60-8-8w 0.995 -82.57e-3 55.47e-3 21.66e-6 2.35e-3
60-10-10¢0 0.997 -32.74e-3 59.76e-3 14.55e-6 1.69e-3

Figure 5.19 further highlights the overall perfomnas by a scatter-plot representing the
true rotor speed and its estimation for all thé sasnples. It shows, the approximation if

of very good quality.
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Figure 5.19 Rotor speed vs estimation for all sashples MLP 60 -10-10ev configuration

Figure 5.20 shows a test stable scenario the tiee speed taken from simulation and
the approximation using two different configuratioh MLP, both with two hidden
layers, and ones used 8 neuron units each aneétoad using 10 neuron units. The best

approximation according to the Table 5.20 and se#irs picture, we find that NN with
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10 neuron units had the best performance. Fig@® iSustrates an unstable test scenario
also doing the comparison between this two kindooffiguration.
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Figure 5.21Comparison true vs. estimate rotor speed for diffeMLP configurations. Unstable scenario

Figure 5.22 shows a few test scenarios both tleertitor speed (solid line), taken from
PSCAD simulations, and the approximation from Mt#irting.(dashed line) under stable

conditions and Figure 5.23 shows the unstable cases
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Figure 5.22True vs. estimate rotor speed for MLP 60 -10e10-
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Figure 5.23True vs. estimate rotor speed for MLP 60 -10e10-
Figure 5.24 and 5.26 shows for a few test scendnllswing a single phase fault

showing some small estimation errors at fault ajapion and clearing instants. Figure

5.25 show two test scenarios representing a thinesepfault occurrence.
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Figure 5.24True vs. estimate rotor speed for MLP 60 -10e10-
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Figure 5.25True vs. estimate rotor angle MLP 60 -10h0-
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Figure 5.26True vs. estimate rotor angle for MLP 60 -10€h0-

Discussion

The previous result show that rotor angle estinmatian be carried out directly from

phasor measurement quantities in an already sattsjaway. Further investigations

should be carried out in order to see whether usirg estimated rotor angles as
additional input to the neural network could impgahe speed estimation. Also, some
postprocessing would be needed in order to filtdr evrors appearing during the fault

application and clearing.

5.3.4 Prediction of o for the MIS
We extend the approach of section 5.3.2 in a $ttfmgvard way to the prediction of

rotor angles by substituting(t) for J{t +At) , in the data preparation step. In our trials
we used a value it equal to 16.66 ms.

For this case, the set of scenarios was split 10&? training scenarios and 355 testing
scenarios, yielding a training set of 94680 samatebsa testing set of 31950 samples.
Except for a small number of large errors, duehtfact that the signal discontinuity at
180 ° does appear at two different (but successive) staps for the true signal and its

prediction., the prediction of rotor angle deltaypdes a minimum and maximum errors
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of -29.90 and 45.78 respectively. The good quality of this predictimmshown on
Figures 2.28 to 5.32.

Table 5.21 shows testing results obtained for twohsMLPs, both with two hidden
layers of 8 neurons each, and a linear output meunothese simulations we considerer
three phase faults and single phase faults. Onré&ig27 the points in the upper left and
lower right corner correspond to 94 large instaatas errors. If we not take in account
this large errors, the correlation factor is 0.9968ure 5.28 we represent the true value

of rotor angle (solid line) obtained from PSCAD siations, dotted line represents the

value computed from the 60 — 8 -si8y( 5) and 60 — 8 —&05(5) trained for 100 cycles.

Table 5.21 Results using 60 — 8 —&configuration (5' in degrees.)

Net Correlation Error Error Mu(p) Sigmag) cycles
configuration factor min(deg Max(deg)
60-8-8-cos@) 0.998 -0.677 0.401 663.01e-6  38.39e-3 100
60-8-8-sin(5) 0.9930 -0.600 0.514 3.68e-3 49.09e-3 100
200
150k i
1001 ,
s |
)
g o f
S o i
& 50
100+ i
150+ i
B0 150 100 0 0 % 100 150 200

Rotor Angle (deg) from PMU

Figure 5.27 Rotor angle vs prediction for all 31986t samples.
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Figure 5.28True vs. predicted rotor angle for MLP 60 86%

Figure 5.29 shows two test scenarios form an ulestedse, as the figures mentioned
above, the solid line represents the true valueravdr angle, and the prediction
recomputed from the two MLPs outputs in dotted,lingth are trimmed to the interval [-
180r,18C°]. Figure 5.30 illustrates a few test scenarios tdmarespond to a single phase

fault.

102



CHAPTER 5 SIMULATIONS AND TRAINING RESULTS ON THE MEXICAN
INTERCONNECTED SYSTEM

MLP 60-8-88

rotor anglé (deg
o

100+ I
I
I
‘ |
150} |
“
!
2001 | | | | | | | | |
280 300 320 340 360 380 400 420 440
points

Figure 5.29True vs. predicted rotor angle for MLP 60 86%

Figures 5.31 and 5.32 suggest that the predictiootor angle is of very good quality.
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Figure 5.30 True vs. predicted rotor angle for IVBIP-8-8-5'
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Figure 5.31 True vs. predicted rotor angle for lVB!P—8-8-5
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Figure 5.32 True vs. predicted rotor angle for I\/BLP—S-S-OA_

5.3.5 Prediction of wfor the MIS

This approach used in this thesis can be extended straightforward way to the
prediction of rotor angles by substitutimgt) for aft + At), in the data preparation step.

For this case, the set of scenarios was split 10&? training scenarios and 355 testing
scenarios, yielding a training set of 94680 samples a testing set of 31950 samples,
each one described by 90 instantaneous input vahegene outputt).

Table 5.22 shows testing results obtained for Miviag) two hidden layers changing the
number of hidden units, and a linear output neuharthese simulations we considerer
three phase faults and single phase faults. Onefi§ud3 further highlights the overall
performances by a scatter-plot representing the rotor speed and its prediction for all
the 31950 test samples. Figure 5.34 we represeritub value of rotor speed (solid line)
obtained from PSCAD simulations, dotted line reprgs the value computed from the 60

— 15 - 5 wtrained for 100 cycles.
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Table 5.22Results using 60 — X — )@z)configuration @inp.u.)

Net Correlation Error min.  Error max. Mu () Sigma
configuration factor (o)
60-8-8-w 0.993 -36.09E-3  66.90E-3 277.65E-6 2.65E-3
60-10-10-w 0.997 -74.84e-3 53.70e-3  18.79e-6 1.87e-3
60-15-5-@w 0.997 -37.30e-3 26.67e-3  -2.19e-6 1.87e-3
MLP-15-5-OMEGA-OUTPUT
1125 { Correlation factor (**) : 0.997 )
1.1
1.075
1.05]
1.025]
1]
0975
095 T T T T T
095 0.975 1 1.025 1.05 1.075 1.1

OMEGA

Figure 5.33 Rotor speed vs prediction for all 31986t samples MLP 60 -15-&
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Figure 5.35 True vs. predicted rotor speed for MiOR15-5-0. Unstable test scenario
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Figure 5.36 True vs. predicted for MLP 60 -153- Single phase fault test scenario
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Figure 5.37 True vs. predicted rotor speed for NBOR 15-5-(0. Stable test scenario
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Figure 5.38 True vs. predicted rotor speed for MiOR15-5-(. Single phase fault case

5.3.6 Discussion

In this chapter we have provided our investigatiosieg a detailed model of a part of
the MIS which allowed to simulate the transientdabur of a power plant subject the a
large variety of balanced and unbalanced fault tmm$, while extracting measurements
of three-phase phasors by a module which simutheeactual PMU device.

We found that it is possible to obtain accurateresion and prediction of rotor angles
and speeds, provided that an appropriate codimgafal network outputs is used for the
rotor angles (so-called rectangular representation)

Although our results would need to be further \atlédl, by using a richer set of testing
scenarios, and also by taking into account measemearrors and variations in settings
of the power plant control loops, we believe tlmase conclusions will remain valid.
From a methodological point of view, although geoeslults were obtained by using
MLPs, it would also be interesting to assess ttssipdity of using other supervised

learning methods, and possibly other sets of imptiaibles.
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CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 CONCLUSIONS

This thesis focused on the estimation and prediadiorotor angles and rotor speeds of
synchronous machines using PMU measurements assitgartificial neural networks,
in order to train them over the data sets and et@ltheir performances over independent
test sets.

We have chosen multi-layer perceptrons over othgpervised learning methods because
this kind of algorithm is known to provide a gooéngralization provided enough
training data is available in comparison to the ehisionality of the input space. Ideed,
MLPs are smooth universal approximators, and wewamking in a context where the
input space is of relatively low dimensionality ehthe target input-output mapping is
rather smooth. Another practically very importahti@acteristic that has motivated the
use of MLPs is that, in spite of a rather slowlofé training algorithm, they can be used
in a very efficient manner to estimate or predie guantities of interest in real-time.
This very high computational efficiency is partiaty important in the context of
transient stability monitoring where it is necegstar reduce as much as possible delays

due to complex data processing.

In order to familiarize with the problem, we starteur investigations by using a simple
test case, that consisted of an OMIB system. Is ¢bntext, we used rather small data
sets of pairs of input-output data using a simgdifdynamic model of the simulated
power system, implemented in MATLAB-SIMULINK. Thimodel used a single phase
model of the system, assuming balanced conditicars] considered only the
electromechanical dynamics modeled in transienbilgta studies. This first set of
investigations used also the MATLAB neural netwarkdule and did not consider the
prediction of angles and speeds ahead in timeieldgd however promising results,

specially in comparison with an analytical appro&osiploiting the classical model to
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compute rotor quantities from electrical phasorse Tesults of this preliminary study

were published in a conference paper [DAGWO03].

In a second stage, we have applied the same apvaaite considering a much more
detailed and realistic test system. In particularfake into account the behavior of a
multi-machine system, we used a simplified modeltlod# Mexican interconnected
system. This system consists basically of a powantpvith five synchronous generators
represented in detail, that are interconnectechimetlines to the rest of system. The rest
of the system is represented by two large synclu®moachines in order to represent
with more fidelity the behavior of a real world . In the simulations carried out on
this system we have also used a detailed ‘eleciyoetec-transient and three-phase’
dynamical model and a more exact representatidtheoPMU device (modeling the FFT
used to compute phasors from instantaneous measot€nmThe higher complexity of
this problem obliged us to use a larger databasémoflation scenarios to train the neural
networks. Hence we used the professional PEPITgO@#elata mining software in most
of the experiments on this system. In this studyfeumd out that it was preferable to use
rectangular coordinates to represent the rotoreatayigeted by the MLP [DAGHES].
Further investigations have been reported in thesis showing also quite promising
results concerning the possibility of predictingoroangles and speed ahead of time.

These latter results have not yet been published.

6.2 FUTURE WORK

There are many possible directions for future work.

The most direct continuation would be to enhance vhalidation of the proposed

approach by considering other test power systemspdirticular focusing on hydro-

plants), a more accurate representation of the EBlice (including measurement noise,
distortions to measurement transformers, and tittey jdue to the limited accuracy of

GPS signals) and more extensive simulations omader range of system conditions.

A second direction of future research would consistpplying other supervised learning
methods to our datasets. In particular, we belithat it is worth comparing more

systematically the compromise between precision @mtputational requirements of
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multilayer perceptrons with other methods receptigposed in the automatic learning
literature (ensemble methods, kernel-based metlsoggort-vector machines etc.).

Also, since the long-term goal of our researclhoienable real-time emergency control
for limiting the risk of loss of synchronism, weliege that it would be of interest to
investigate more deeply how automatic learning @de# used in order to determine
directly the appropriate control actions. In thientext, it would be particularly
interesting to investigate the possibility of detering these control actions by using
only locally acquired PMU measurements.

Finally, the approach investigated in this thedisudd certainly be considered as a
candidate for other power systems instability mmmig questions, such as voltage

instability and negatively damped oscillations.
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Appendix A Modeling Power System Components

Generator model

A salient/round rotor Synchronous Machine fully developed model is available in
PSCAD/EMTDC. The model is programmed in state variable form, using generalized
machine theory.

The generalized machine model transforms the stator windings into equivalent commutador
windings, using the dq0 transformation as follows:

ud cos(@) cos(@—120°) cos(8@—240° | |Va
Ug |=|sin(@) sin(@—120°) cos(@—240°) |-| Vb (A.1)
Uo 1/2 1/2 1/2 Ve

The three-phase rotor winding may also be transformed into a two-phase equivalent winding,
with additional windings added to each axis to fully represent that particular machine, as is
shown in Figure A.l. Support subroutines are included in the machine model library for
calculating the equivalent circuit parameters of a synchronous machine from commonly
supplied data.

The d-axis equivalent circuit for the generalized machine is shown in figure A.2. Figure A.3
illustrates the flux paths associated with various d-axis inductances.

Stator wwindings

T S
Sy Equivalent ™

Commutator |
Wiindings

Figure A.1 Conceptual diagram of the three phase and dq windings

where,
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k = Amortisseur windings

f = Field windings

a,b,c = Stator windings

d = Direct-axis ( d-axis) windings

q = Quadrature-axis (g-axis) windings

R- L Loap Lo R:p

Figure A.2 D-axis Equivalent Circuit

MD

Stator , . .
Air Gap Amortisseur Field

Figure A.3 Flux Paths Associated with Various d-axis Inductances

A second damper winding on the g-axis is included and it can also be used as a round rotor
machine to model steam turbine generator.

Referring to Figures A.4 and A.5, the d-axis voltage Up, and current Ip, are the field voltage
and current respectively. The damper circuit consist of parameters L;p and R3p with Ups=0.
The additional inductance L,3p accounts for the mutual flux, which link only the damper and
field windings and not the stator windings. the following equations can be derived:

Up —@-¥,—R, ip J ip
Upy —Ryp “ips =Ly I Ip) (A.2)
Ups = Rsp -ips Ip3

where,
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Lyp +L, Lyip Lyp
Lp=| Lyp Lyp +Lyp +Lyp Lyp +Lasp (A.3)
Lyp Lyp +Lysp Lyp +Lyp +Lsp
Wy=Liig+Lyg '(in +igo +iQ3) (A4)
do
®=-—
dt (A.5)

Similar equations hold for the g-axis except the speed voltage term, v-y,, is positive, and:

Wy =Ly ip +Lyp lipg +ip, + iD3) (A.6)

Inversion of equation A.2 gives the standard state variable form X = AX + BU with state vector
X consisting of the currents, and the input vector U, applied voltages. That is:

d ip1 —V-Y,—R;-ip Upi

. -1 . 4

T ipy |=Lp | —Ryp-ipy +Lp |Upy (A7)
ip3 —R3p -ip; Ups

J ig1 —VY,— R g Uoi

iz =Ly"| —Rypigy  |+Lg ' |Ugs (A.8)
ig3 —R3p -ip3 Ups

In the above form, Equation A.7 and A.8 are particularly easy to integrate. The equations are
solved using trapezoidal integration to obtain the currents. The torque equation is given as:

T=y,ip—V, g (A.9)

The dg-axis model includes the transient and sub transient characteristics of the machine and
the set of differential equations describing the generator dynamics is given by equations A.10
—A.15:

E,-E) (Ef+(X,-X,)I,~E
pE;:( r—E,) (B + (X - X0) 1, - E) 10

PE; = = (A.11)
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E/-V,=R,1,-X]I,

Ej-V,=R,-X]I,

(Ey+(x0-X1)1, -

A
) (E;, +(x;-x])1, —E;,’)
PE; =

144
Ty

The final two state equations are provide by the rotor swing equations :

do _ 1 (T, - T, - Dw)
M
do
— =0, (0-1
dt 5 )

where,

Tm — turbine torque

Te — electrical torque

M - inertia constant

D — Damping constant

- Machine speed

s — Synchronous speed
d - Rotor angle

Governor

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

The governor can be represent by IEEE type thermal governor model. In this case the

approximate mechanical-hydraulic control (GOV1) was used. The schematic diagram for this

device is given in figure A.4
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A
D ot
Gate () O 7y T A At P
(@) p Q/G VS Head -t hy 5Tw - mae
Flowe (h)
(q)
ho | fp A
Figure A.4 hydro turbine model representation in PSCAD software.
Pilol Valva Sfiﬁfif M
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[
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L]
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Transkent. Drocp
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Figure A.5 hydro governor model type IEEE GOV 1
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Appendix B Phasor Measurements Units (PM U)

I ntroduction.

Phasors are basic tools of ac circuit analysisallisintroduced as a means of representing
steady state sinusoidal waveforms of fundamentakpdrequency.

Even when a power system is not quite in a stetatg,gphasor are often useful in describing
the behaviour of the power system. When the powstem is undergoing electromechanical

oscillations during power swings, the waveformsvoltages and currents are not in steady
state, and neither is the frequency of the powstesy at its nominal value. Under these

conditions, as the variations of the voltages amdents are relatively slow, phasor may still

be used to describe the performance of the netwekyariations being treated as a series of
steady state conditions. Recent developments ia symchronized techniques, coupled with

the computer based measurement technique, haved@doa novel opportunity to measure

the phasors, and phase angle differences in real ti

Consider the steady state waveform of a nominalgodrequency signal as shown in Figure

B.1. Starting to observe the waveform at the irtstéme steady-state waveform may be

represented by a complex number with a magnitudaléq the RMS value of the signal and

with a phase angle equal to angleln a digital measurement system, samples of the

waveform for one (nominal) period are collectedaading att =0, and the fundamental
frequency component of the Discrete Fourier Tramsf(DFT) is calculated according to the

relation:

Nz

N .
X :sz X, 712N (B.1)
k=1

where N is the total number of samples in one peri¥d,is the phasor, and, is the wave
form samples. This definition of the phasor has riexit that it uses a number of samples
(N) of the wave form, and is the correct represemtatib the fundamental frequency

component, when other transient component are prr§8pra93].
Phasors can be measured for each of the three l@sé, c), and the positive sequence

phasor can be computed according to its definition:

x1=%(xa+axb+a2xc) (B.2)
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whereqg = £'#"3,

\J

t=0

Figure B.1 Phasor representation of a sinusoidakfeam. Adapted from [Pha03].

Synchronization signals could be distributed over af the traditional communication media
currently in use in power systems. Most communicatsystems, such as leased lines,
microwave, or AM radio broadcasts, place a limit ¢me achievable accuracy of
synchronization, which is too coarse to be in pcatuse. Fibre-optic links could be used to
provide high precision synchronization signals,aifdedicated fibre is available for this
purpose. If a multiplexed fibre channel is usedjcéyonization errors of the order of 100
microseconds are possible, and are not acceptablpoiwer system measurements. The
Geostationary Operational Environmental Satel{@®ES) systems have also been used for
synchronization purposes, but their performane®tssufficiently accurate [Wil92].

The technique of choice at present is the Navstabdb Positioning System (GPS) satellite
transmissions. This systems is designed primaoitynfvigation purposes, but if furnishes a
common-access timing pulse, which is accurate thimvil microsecond at any location at
earth. The system uses transmissions from a ctaiginl of satellites in non stationary orbits
at about 10 000 miles above the earth’s surfaceaEcurate acquisition of the timing pulse,
only one of the satellites need be visible to theeana. The experience with the availability

and dependability of the GPS satellite transmishi@mmbeen exceptionally good. [Pha93].
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FFT Algorithm.
Fast Fourier Transform (FFT) is a classic filtermgthod. By performing Fourier transforms

over a window of N points, the frequency componekts/N (where f, is the sampling

frequency) can be calculate using the formula below

wherev, = v[;—j :

More generally,X (k) can be considered as the output from a filter imputsv(t), with

_ASE e
X(k)—ﬁ’_ovi &2, (B.3)

exponential coefficients. We thus have:

1 = ~j2p
X(k): X(k'n)zﬁivnﬂ—NﬂEE N (B4)
i=0
The relationship between FFT and demodulationus #xpressed as follows:
1 8 -jop™t
X (k)=X(1n)= h DZVM_NH} e N (B.5)
i=0

The filter for cutting out the high frequency comgat consists in averaging ovsr points,

which cancels out frequencies which are multiplesfg'N . If the sampling frequency is

right (i.e. if it is multiple of the frequency whiccontains the data signal) this filter will

remove the2 f, frequency together with the various harmonics [[HOH].

Basic definitions.
The follow definition of a real-time or synchrontzphasor is provided in the IEEE Standard
1344-1995 [IEEE95]:

* Anti-aliasing: By the Nyquist Theorem, the maximum reproducfiodguency is one-
half the sampling rate. Aliasing is caused wheqguencies higher than one-half of the
sampling rate are present. This results in thedriffiequencies being ‘aliased’ down
to look like lower frequency components. Anti-airgsis providing low pass filtering
to block out frequencies higher than those thameaccurately reproduced by the

given sampling rate.
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* Nyquist rate: the minimum rate that an analog signal must Imepéad in order to be
represented in digital form. This rate is twice tlegjuency of that signal.

* Phaselock: the sate of synchronization between two ac sgymaivhich they remain
at the same frequency and with constant phaserelite. This term is typically
applied to a circuit that synchronized a varialdeiltator with an independent signal

* Phasor: a complex equivalent of a simple sine wave qtyamstich that the complex
modulus in the sine wave amplitude and the comategte (in polar form) is the sine
wave phase angle.

» Synchronism: the state where connected alternating-currertesys machines, or a
combination operate at the same frequency and wher@hase angle displacement
between voltages in them are constant, or vary tahosteady and stable average
value.

» Synchronized phasor: a phasor calculated from data examples usingralatd time
signal as the reference for the sampling procesthi$ case, the phasors form remote
sites have a defined common phase relationship.

With real-time waveforms, it is necessary to defintme reference to measure phase angles
synchronously. The IEEE standard 1344-1995[IEEERSInes the start of the second as the
time reference for establishing the phasor phagkamlue.

The synchronized Phasor measurements conventghowgn in Figure B.2

The instantaneous phase angle measurement renosisisict at rated frequency when using
the start of the second phase reference. If theabkigs at off-nominal frequency, the
instantaneous phase varies with time. The IEEEdst@n1344-1995 defines a steady-state
waveform where the magnitude, frequency, and phagé measurement performance for a
waveform do not change. This standard has no reeints regarding Phasor measurement

performance for a wave form in transient state [B&|G
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| » Startof the seconc

e

| » Start of the seconc

@=-90°
VO -90°
1 \% ‘

Figure B.2 Synchrophasor measurement conventidnmegipect to time. Adopted from [BSGO04].

Phasor M easuring Units.

The PMU was developed at the Virginia Polytechnstitute, Blacksburg, in the mid-1980s.
The GPS time-synchronized PMU measures current \anfichges in Phasor detail (i.e.
magnitude and phase). Phasor Measurements proveledpability to investigate power
system stability in greater detail [HHNO5].

Phasor measuring units (PMU) using synchronizasignals from the GPS satellite system
have evolved into mature tools and are now beinguf@etured commercially. Figure B.3
shows a typical synchronized Phasor measurementernsysonfiguration. The GPS
transmission is received by the receiver sectidnchvdelivers a phase-locked sampling clock
pulse to the analogue-to-digital converter systdine sampled data are converted to a
complex number which represents the Phasor of déimepked wave. Phasors of the three

phases are combined to produce the positive segquaeasurement [BNKI95].
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The GPS receiver provides the 1 pulse-per-secanmb)( signal, and a time tag, which
consists of the year, day, hour, minute and secdhd.time could be the local time, or the
UTC (Universal Time Coordinate). The 1-pps sigralusually divide by a phase-locked
oscillator into the required number of pulses pErosid for sampling of the analog signals.
These signals are derived from the voltage andenurransformer secondary sides, with

appropriate anti-aliasing and surge filtering.

GPS receiver

A/D Microprocessor

Phasor dats
(time stampec’

Serial comm port

Figure B.3 Phasor measurement unit. Adopte fromBRD5]

PMU representation in PSCAD [Man03a].

PSCAD include as a device the Fast Fourier Transi®+T), Figure B.4 shows this device
in the PSCAD environment, which can determine taemtonic magnitude and phase of the
input signal as a function of time. The input silgnfirst sampled before they are decomposed
into harmonic constituents. Options are providedde one, two or three inputs. In the case
of three inputs, the component can provide outpdihé form of sequence components. In our
simulations we have selected the three 1-phase EBifbined in one block. The input is
processed to provide the magnitudéag and phase angkeh of the fundamental frequency
and its harmonics (including the DC compongajt

v

FET )
—y | Ph2
7 )
s o Pha
F=60.0[Hz _{?:I

ldﬁ:’l Iﬂc? ||:I::3

Figure B.4 FFT representation in PSCAD. AdoptedrfiMan03].
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In Fig. B.4 the number 7 means the number of hartsdhat FFT block calculates and its

imply that the number of samples per period offtlmElamental frequency is set to be 16.

The task of frequency scanning involves a few gataessing stages:
* Low-Pass Filtering (Anti-Aliasing)
» Sampling & Fourier Transform

* Phase and Magnitude Error Correction.

Figure B.5 illustrates graphically this processdeshe FFT block.

i Magnitude > Harmonic
Input signa >
P > LowP »| Sampling » FFT - anc . components
o Algorithrr Phase _ in the input
corrector _ signa

Figure B.5 On-line frequency scanner in PSCAD/EMTDC

Computations are performed on-line, at each samgptistance, and are based on a sampled
data window of the preceding input signal cycle. atcordance with the Nyquist Criteria,
data sampling is performed at a frequency grehter touble the highest harmonic frequency
of interest. Sampling rates may be one of, 16, @2, 127 or 255 samples/cycle of
fundamental frequency, which are written to a buffie our simulations 16 samples/cycles is
selected.

Since the number of samples in a window represemisriod of fundamental frequency, the
dynamics of a cycle preceding a sample are capiardte computations. It should be noted
that outputs of this subroutine contain valid infation only if a complete data window is
available for computations

It is important to be aware of the inherent ahgseffects due to sampling of the input signal.
A low pass, anti-aliasing filter is recommendedadit times, unless the input signal is
guaranteed not to have any higher order harmonibss filter is provided within the

component.

The harmonic computations are based on a standastl Fourier Transformation (FFT)

technique, used in digital signal processing. bhasis function for computation of phase
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angle can either be a fundamental frequency casaweform or a sine waveform starting at
time = 0.

The harmonics computed are with respect to a goarstant fundamental frequency. For
situations where the fundamental frequency is béegiahe use of a frequency-tracking device
is available to the user. The frequency-tracking uses the fundamental component of the
input signal corresponding to the previous samplimgtance (as computed by the FFT
routine), to monitor small changes in the frequeoicthe input signal. This element is meant
to monitor minor fluctuations of frequency. Fregogtracking may be enabled or disabled at

users discretion.

Gibbs ringing effect, as a result of rectangulaiadaindows, is usually not a problem with
harmonics of the fundamental frequency. Howevérthe sampling frequency is not
synchronized to the fundamental frequency of thmitirsignal, the Gibbs effect distortions
introduced on the measurement of harmonics mayidpgfisant. Therefore, use of the
frequency-tracking feature may not be needed untess fundamental component is

guaranteed to be free of frequency swings.
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