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Summary 
 

This main objective of this thesis is to develop and improve techniques for estimating 

and predicting rotor angles, speeds and accelerations in the time frame of transient 

(angle) stability of electric power systems. The investigated dynamic state estimation 

technique is based on the use of voltage and current phasors that can be acquired in 

real-time using a PMU (phasor measurement unit) located at the EHV bus of the 

power system. The research is based on simulation data because techniques for the 

direct measurement of rotor angle were not available. 
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Abbreviations and nomenclature 
 

Main abbreviations used: 

 

ac Alternating current 

AL Automatic learning 

ANN Artificial Neural Network 

COI Centre of inertia 

dc Direct current 

EHV Extra High Voltage 

EPS Electrical Power System 

FFT Fast Fourier Transform
*
 

MIS Mexican Interconnected System 

MLP Multilayer Perceptron 

OMIB One Machine Infinite Bus system 

PMU Phasor Measurement Unit 

PSCAD Power System Computer Aided Design 

DT Decision trees 

RT Regression Trees 

DFT Discrete Fourier Transform 

GPS Global Position Satellite 

  

  

  

  

 

 

Notations 

 

δ Rotor angle 

ϖ Rotor speed 

δ̂  Rotor angle predicted 

ω̂   Rotor speed predicted 
µ  Mean 

σ  Standard deviation 

r  Linear correlation coefficient 
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CHAPTER 1  MOTIVATION 

1.1 CONTEXT AND MOTIVATIONS 
 

1.1.1 Transient Stability Assessment (TSA). 
 
In conventional practice, security assessment is carried out in preventive mode by 

analytically modeling the network and solving a load-flow equation or a time-domain 

simulation repeatedly for all of the prescribed disturbances, one contingency at a time. 

This normal practice is not entirely satisfactory, because the computations are lengthy 

and are necessarily limited to a small subset of the huge set of possible contingencies. It 

is therefore desirable to develop emergency control techniques able to process rapidly 

enough real-time measurements in order to detect instabilities and compute appropriate 

control actions.  

Power system transient (angle) stability assessment consists of evaluating the ability of 

the system to face various disturbances without loss of synchronism and of proposing 

appropriate remedial actions whenever deemed necessary [PERV00]. To monitor and 

control in real-time transient stability, the rotor angle and speed of the synchronous 

generators are the most important reference quantities. Indeed, if these quantities can be 

estimated with sufficient accuracy and speed, they can be exploited in order to monitor in 

real-time loss of synchronism and devise automatic closed loop stabilization schemes 

[WREP05].  

There are differences between the real-time stability prediction problem and conventional 

transient stability assessment. In conventional transient stability assessment, the critical 

clearing time (CCT) is to be found via repeated simulations of the power system 

dynamics with different values of the fault clearing time. On the other hand, in the real-

time stability prediction problem, the CCT is not of interest. Instead, one wishes to 

monitor the progress of the system dynamics in real-time thanks to synchronized phasor 

measurements acquired subsequently to the actual fault inception and clearing 

[RLLM +95]. 

PMUs (Phasor Measurement Units) are power system devices that provide an accurate 
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measurement of real-time phasors of bus voltages and line currents. A number of PMUs 

are already installed in several utilities around the world for various applications such as 

monitoring, control, protection, and state estimation. The capabilities of a PMU are 

illustrated in Fig. 1.1. The measurements set is composed of the bus voltage magnitude 

BV  and angleBθ , as well as the line and injection currents magnitude and angles 

,,,,,,, 321321 θθθLIIII  and Lθ . 

 

PMU

I2e
j 2

I3e
j

I1e
j

ILe
j L

VBe
j

 

Figure 1.1 Phasor measurements from a PMU. Adopted from [LT95] 
 

Assuming that a PMU is installed in the substation of a power plant, one can use its 

measurements in order to estimate electromechanical state-variables of each generator of 

this plant, such as rotor angles and speed, and to predict the trajectory of these quantities 

over a certain interval of time. The simplest way to determine rotor angles from phasor 

measurements is to rely on the classical generator model to compute rotor angles 

[RLLM +95] by  

tIttVt IjXVE θθδ ∠−∠=∠ '' ,     (1.1) 

where 'E  is the internal electromotive force of the generator, tV  is generator terminal 

voltage magnitude, 'X  is the generator’s transient reactance in the direct axis, and tI  

is the generator terminal current. Having calculated rotor angles at successive time 

instants the rotor speed can then be approximated by 

( ) ( ) ( )
t

tt
t

∆
−+= δδω 1  .      (1.2) 
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These formulas assume that the generator terminal voltage, i.e. MV (medium voltage), 

and its terminal currents phasors are available. In more general situations, phasor 

measurements are not taken directly from generator buses. In this case, for algebraic 

relation of measured voltages mV  and the generator (internal) voltages and currents, the 

reduced admittance matrix BUSY  can be solved for the generator internal voltages, 




















=













m

gg

V

V

YY

YYI

2221

1211

0
      (1.3) 

 

where mV  are the exact values of the measured voltages, gV  are the generator internal 

voltages and gI  are the generator internal currents. 

Taking into account measurement errors, a simple manipulation gives, 

Y21Vg + Y22(Vm + ε) = 0 ⇒ Vm = −Y22
−1Y21Vg + ε    (1.4) 

This equation can then be solved for the generator voltages by a least squares approach. It 

is important to observe that the use of relations (1.1, 1.2, 1.3 and 1.4) requires a priori 

knowledge of system parameters or reduced admittance matrix whose entries may 

experience changes due to factors influencing it and reliable system parameter 

identification may be required.  

Another problem that may arise and obstacle phasor measurements from providing a real 

picture of rotor angles is the lack of direct measurements of the plant auxiliaries. To make 

better use of PMUs it is necessary to cope with the aspects identified above.  

Since PMUs are mainly placed at EHV network buses, we suppose in this thesis that the 

power plants whose dynamic state one wishes to monitor are equipped with a PMU 

located at the EHV side of the step-up transformers of the generators of this power plant. 

The measurements provided by such a PMU can be exploited in order to estimate and 

predict the center of angle (COA) and its derivative, rather than individual generator 

angles and speeds. A good and fast estimate and prediction of the centre of angle 

dynamics obtained from local information only should be sufficient to detect impending 

loss of synchronism of a power plant before it is too late to react.  

Synchronized phasor measurements have been recognized to offer a unique opportunity 

for improving the response of protection and control systems to an evolving power swing. 



CHAPTER 1 MOTIVATION 

 16 

At the foundation of all possible improvements is the prospect of predicting in real-time 

the outcome of an evolving electromechanical transient oscillation [Pha93]. These 

oscillations are in  fact related in a non-linear fashion to the electrical variables that can 

be measured by PMUs and the main idea developed in this thesis is to employ a machine 

learning approach to map the patterns of inputs (electrical variables measured by PMU) 

to outputs (the mechanical rotor angle and speed of the generators of a power plant). 

The proposed approach using Artificial Neural networks to estimate and predict rotor 

angles and speeds based on real-time phasor measurements is motivated by the growing 

need for the real-time monitoring and control of power systems transient dynamics and 

by the fact that PMU devices become more and more widely available on real systems 

(WECC, USA [BPA99], Spain and Italy [DW02], Nordic countries [ELO00], Brazil 

[DEAS+04], Hydro-Québec, Canada [KG02,KGH01]. 

To realize the mapping of the variables measured by PMU to the rotor quantities we use 

the multilayer feed-forward Artificial Neural Network (ANN). The reason for choosing 

this kind of method is related to its advantages over conventional computing methods. 

Those advantages are robustness to input and system noise, learning from examples, 

ability to handle situations of incomplete information and corrupted data, and performing 

in real time. 

1.2 OBJECTIVE OF THE THESIS 
 
The main objective of this doctoral thesis is to develop and improve techniques for 

estimating and predicting rotor angles and speeds, in the time-frame of transient (angle) 

stability of electric power systems. For this purpose we use Artificial Neural Networks 

trained by supervised learning algorithms; an ANN is characterized by its architecture, 

training or learning algorithms and activation functions. The architecture describes the 

connections between the neurons. It consists of an input layer, an output layer and 

generally, one or more hidden layers. In supervised ANNs, the learning algorithm makes 

use of both input-output data. The weights are updated for every set of input/output data. 

The Multilayer Perceptron falls into this category and we have used it in this thesis. 

The investigated dynamic state estimation technique is based on the use of voltage and 

current phasors that can be acquired in real-time using a PMU located at the Extra-High 
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Voltage bus of a power plant. The research is based on simulated data because direct 

measurements of rotor angles and PMU quantities were not available.  

Based on simulations with a very detailed power system model, our objective is hence to 

show the feasibility of using multi-layer perceptrons to estimate and predict rotor angles 

and speeds sufficiently accurately and sufficiently quickly for closed loop emergency 

control. 

 

1.3 ORGANIZATION OF THE THESIS 
 

The thesis is organized as follows: 

Chapter 2 covers a brief description of the background of Electric Power Systems (EPS) 

and Automatic Learning (AL). We provide some basic definitions, talk about different 

algorithms of AL, and elaborate about why we decided use ANNs in this thesis. 

Chapter 3 describes the problem formulation that we want to tackle in real-time and the 

basic principle of the proposed approach based on off-line training of multilayer 

perceptrons. 

Chapter 4 discusses a first set of results obtained by training neural networks on 

simulated datasets from a single-phase electromechanical model of a One-Machine-

Infinite-Bus (OMIB) obtained with MATLAB SIMULINK. 

Chapter 5 is devoted to the main results of the thesis, based on training neural networks 

on a simulated dataset for a three-phase EMTP type multi-machine model of a part of the 

Mexican Interconnected System (MIS) obtained with the PSCAD software.  

Chapter 6 gives the main conclusions and discusses further work directions. 

Appendix A provides a short explication of the Synchronous Machine, Exciter and 

Governor modelling used in our work. Appendix B gives some basic definitions of PMU 

and describes also the algorithm used in PSCAD environment in order to model the 

PMUs. 
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CHAPTER 2 BACKGROUND 

2.1 POWER SYSTEMS DYNAMICS 
 

2.1.1 Electrical power systems. A historical survey [MEH00]. 

 

Power Systems have evolved from the original central generating station concept to a 

modern highly interconnected system with improved technologies affecting each part of 

the system separately [SP98]. 

In 1881, the first central station electric power generation was opened in New York. This 

station had a capacity of four 250-hp boilers supplying steam to six engine-dynamo sets. 

This central station used a 110-dc underground distribution network with copper 

conductors insulated with a jute wrapping. The invention of the transformer, then known 

as the “inductorium”, made ac systems possible. The first practical ac distribution system 

in the United States was installed in Massachusetts in 1866. Early ac distribution utilized 

1000 V overhead lines. By 1895, Philadelphia had about twenty electric companies with 

distribution systems operating at 100 V and 500 V two-wire dc and 220 V three-wire dc, 

single-phase, two-phase and three-phase ac; with frequencies of 60, 66, 125, and 133 

cycles per second; and feeders at 1000-1200 V and 2000-2400 V. Underground 

distribution of voltage up to 5 kV was made possible by the development of rubber-base 

insulated cables and paper insulate, lead-covered in the early 1900s. Common 

distribution voltages in today’s systems are in 5, 15, 25, 35, and 69 kV voltage classes. 

The growth in size of power plants and in the higher voltage equipment was accompanied 

by interconnections of the generation facilities. These interconnections decreased the 

probability of service interruptions, made the utilization of the most economical units 

possible, and decreased the total reserve capacity required to meet forced equipment 

outages [MEH00]. 

Extra high voltage (EHV) has become the dominant factor in the transmission of electric 

power over long distances. By 1896, an 11 kV three-phase line was transmitting 10 MW 

from Niagara Falls to Buffalo over a distance of 20 miles. Today, transmission voltages 
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of 230 kV, 287 kV, 345 kV, 500 kV, 735 kV, and 765 kV are commonplace. One 

prototype is the 1200 kV transmission tower. 

Protecting isolated systems has been a relatively simple task, which is carried out using 

over current directional relays with selectivity being obtained by time grading. High-

speed relays have been developed to meet the increased short-circuit currents due to the 

large size units and the complex interconnections. 

For reliable service an electric power system must remain intact and be capable of 

withstanding a wide variety of disturbances. It is essential that the system be operated so 

that more probable contingencies can be sustained without loss of load and so that the 

most adverse possible contingencies do not result in widespread and cascading power 

interruption [MEH00]. 

 

An electric power system is a set of interconnected devices that allow the transportation 

of electrical energy from power generation stations to the centers of consumption. The 

following definition can be useful in order to understand this process. 

While no two electric power systems are alike, all share some common fundamental 

characteristics including [MEH00]: 

• Electric power is generated using synchronous machines that are driven by 

turbines (steam, diesel, hydraulic, or internal combustion). 

• Generated power is transmitted from the generating sites over long distances to 

load centers that are spread over wide areas. 

• Three phase ac systems comprise the main means of generation, transmission and 

distribution of electric power. 

• Voltage and frequency levels are required to remain within tight tolerance levels 

to assure a high quality product. 

 

The following definitions mentioned below have been taken from [PM94] and [Kun04]. 

 

Power System: A “power system” is a conglomeration of generating units, transformers 

(of all kinds), transmission lines, loads, capacitors (shunt / series), reactors (shunt /series), 

static VAR compensators, conversion equipment (for HVDC integration) with associated 
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auxiliaries, and switch-gears to connect various components. Of course, this is not to 

exclude the remainder of power plants, protection subsystems and control subsystems. 

 

Operating state: An “operating condition” or” operating point” or “operating state” of a 

power system is a set of physical quantities or physical variables that can be measured or 

calculated and which can meaningfully describe the state (status) of the system 

completely i.e. characterize the system. 

 

Steady-state operating condition: of power system is an operating condition in which 

all the physical quantities that characterize the system can be considered to be constant 

for the purpose of analysis. 

 

Synchronous operation of a machine: A machine is in synchronous operation with a 

network or another machine to which it is connected if its average electrical speed 

(product of its rotor angular velocity and the number of pole-pairs) is equal to the angular 

frequency of the ac network voltage or to the electrical speed of another machine. 

 

Synchronous operation of a power system: A power system is in synchronous 

operation if all its connected synchronous machines are in synchronous operation with 

the ac network and with each other. 

2.1.2 Power system dynamics. 
 

The major components of a power system can be represented in a block-diagram format, 

as shown in Figure 2.1. 
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Figure 2.1 System dynamic structure.  Adapted from [SP98] 

While this block diagram representation does not show all of the complex dynamic 

interactions between components and their controls, it serves to broadly describe the 

dynamic structures involved. Historically, there has been a major division into 

mechanical and electrical subsystems as shown. This division is not absolute, however, 

since the electrical side clearly contains components with mechanical dynamics (tap-

changing-under-load transformers, motor loads, etc) and the mechanical side clearly 

contains components with electrical dynamics (auxiliary motor drives, process controls, 

etc.). Furthermore, both sides are coupled through the monitoring and control functions 

of the energy control center [SP98]. 

 

Mathematically, dynamics of a power system can be described by a set of algebraic-

differential equations, 

( )yxfx ,=ɺ ,       (2.1) 

( )yxg ,0 = ,       (2.2) 

where the first set of differential equations describes the dynamical part of the system 

(generators, motors, including their controls, and other devices whose dynamics are 

modeled), while the second set of algebraic equations describes the static part (what is  

considered as the static part depends on the particular problem of interest), x is the vector 

of dynamical variables and y is vector of static variables. For example, in the framework 

of transient stability, the dynamical variables that are modeled correspond to phenomena 

which time-constants range between a few milliseconds to a few seconds, while the static 



 22 

part concern the slower phenomena (e.g. related to boiler and water reservoir dynamics) 

which are considered invariant, and the faster ones (e.g. related to electromagnetic 

transients, electronic devices) which are modeled by their equilibrium equations. 

Imposing in the equations (2.1) 0=xɺ  yields the overall equilibrium equations, which 

allow one to compute the steady state conditions of the system in its pre-fault state or in 

its post-fault state [PERV00]. 

 

2.1.3 Power system security. 
 

Security is a very important property of electric power systems. Security is freedom from 

risk or danger. Power Systems, however, can never be secure in this absolute sense. 

Accordingly, in a power system context, security can only be a qualified absence of risk, 

specifically of risk of disruption of continued system operation. From a control 

perspective, the objective of power system operation is to keep the electrical flows and 

bus voltage magnitudes and angles within acceptable limits, despite changes in load or 

available resources and despite external perturbations. From this perspective, security 

may be defined as the probability of the system’s operating point to remain in a viable 

state space, given the probabilities of the changes in the system (contingencies) and its 

environment (weather, customer demands, etc) [BBBB92]. 

 

The determination of security levels, for given operating conditions, traditionally has 

been done using deterministic criteria. Under deterministic criteria, an operating 

condition is identified as secure if it can withstand the effects of each and every 

contingency in a pre-specified contingency set. Withstanding the effects means that the 

given contingencies will not violate branch loading or nodal voltage criteria in steady 

state conditions or make the system dynamically unstable [IEEE04]. 

The task of assessing the level of security for a given operating condition or topology 

configuration, often leads to the definition of a security margin using some selected 

variables or parameters. The choice of these variables or parameters depends on the type 

of phenomena limiting the system. Given the high complexity of power systems and the 

large range of time constants of its dynamics, the study of power system security has led 
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to the decomposition of the notion of security into various sub-problems along different 

criteria. Below, we introduce the main notions and definitions that have been introduced 

in this field.  

 

Power system stability. Stability is the ability of an electrical power system, for a given 

initial operating condition, to regain a state of operating equilibrium after being subjected 

to a physical disturbance, with most system variables bounded so that practically the 

entire system remains intact [IEEE/CIGRE04]. 

 

The terminology about power system stability proposed in [IEEE/CIGRE04] is based on 

the following considerations: 

• The physical nature of the resulting mode of instability as indicated by 

the main system variable in which instability can be observed. 

• The size of the disturbance considered which influences the method of 

calculation and prediction of stability. 

• The devices, process and the time span that must be taken into 

consideration in order to assess stability. 

 

There are several main divisions in the study of power system dynamics and stability 

[SP98]. De Mello classified dynamic processes into three categories: 

 

• Electrical machine and system dynamics. 

• System governors and generating control. 

• Prime-mover energy supply dynamics and control. 

 

Concordia and Schultz classify dynamics studies according to four concepts [SP98, 

CS75]: 

 

• The time of the system condition: past, present and future. 

• The time range of the study: microsecond through hourly response. 

• The nature of the system under study: new station, new line, etc. 
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• The technical scope of the study: fault analysis, load shedding, sub 

synchronous resonance, etc. 

 

All these classifications share a common thread: they emphasize that the system is not in 

steady state and that many models for various components must be used in varying 

degrees of detail to allow efficient and practical analysis [SP98]. 

 

Disturbance. A disturbance in a power system is a sudden change or sequence of 

changes in one or more of the parameters of the system, or in one or more of the physical 

quantities [PM94]. 

 

Small disturbance. A small disturbance is a disturbance for which the set of equations 

that describe the power system may be linearized for purpose of analysis [PM94]. 

 

Large disturbance. A large disturbance is a disturbance for which the equations that 

describe the power system cannot be linearized for the purpose of analysis [PM94]. 

 

Pre-fault system. A power system immediately preceding the initiation of a large 

disturbance is termed a “pre-disturbance (pre-fault) system”. The system is usually 

considered to be in steady state in this phase [PM94]. 

 

Fault-on system. In the during disturbance (or during fault or fault-on) system the power 

system is under the continuous influence of a disturbance (or a sequence of disturbances); 

this phase lasts for the entire duration of the disturbance. This is the initial stage of the 

transient period [PM94]. 

 

Post-fault system: A power system immediately following the complete isolation of a 

large disturbance is termed a “post-disturbance (post-fault) system”. During the post-fault 

phase the transient period continues and the system may or may not eventually reach a 

steady-state. The post-disturbance phase decides whether the system is stable or not 

[PM94]. 
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Figure 2.2 gives the overall picture of the power system stability problem, identifying its 

categories and subcategories. 

 

 
Figure 2.2 Classification of Transient Stability.  Adapted from [Kun94]. 

 

 

Classification of power security assessment and control can be defined as follows 

[RV03]: 

 

Static security assessment (SSA), are methodologies that verify bus voltage and line 

power flow limits for the post-contingency steady state operating condition, 

considering that the transition between the pre-contingency and the post-

contingency steady state operating states has taken place without suffering any 

instability phenomena in any part of the system. Static security assessment 

essentially verifies the existence of a post-fault steady state that satisfies all 

constraints deemed important for this state to survive for a long enough period of 

time. 
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Dynamic Security Assessment (DSA), are methodologies for evaluating the stability 

and quality of the transient processes between the pre-contingency and post-

contingency steady states. DSA aims at ensuring that the system will be stable 

after the contingency occurrence and that the transient caused by such 

contingency will be well damped, of small amplitude and with little impact on the 

quality of service. Dynamic security assessment essentially verifies that the 

system will reach and remain in a neighborhood of its post-fault steady state 

conditions. 

 

The following are description of the corresponding forms of instability phenomena: 

 

Voltage instability is the inability of a power system to maintain steady voltages at all 

buses in the system after being subjected to a disturbance from a given initial 

operating condition. It depends on the ability to maintain/restore equilibrium, 

between load demand and load supply from the power system. Voltage 

instabilities generally occur in the form of a progressive fall or rise of voltages 

of some buses [Kun04]. 

 

Frequency instability refers to the inability of a power system to maintain steady 

frequency following a severe system upset resulting in a significant imbalance 

between generation and load. It depends on the ability to maintain/restore 

equilibrium between system generation and load, with minimum unintentional 

loss of load. Frequency instability generally occurs in the form of rapid 

frequency drops leading to tripping of generating units and/or loads [Kun04]. 

 

Rotor angle instability is the inability of synchronous machines of an interconnected 

power system to remain in synchronism after being subjected to a disturbance. 

It depends on the ability to maintain/restore equilibrium between 

electromagnetic torque and mechanical torque of each synchronous machine 

in the system. Transient instability may occurs in the form of increasing 

angular swings of some generators leading to their loss of synchronism with 
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other generators [Kun04]. One often distinguishes between plant mode 

instability, where a single power plant looses his stability and inter-area mode 

instability where all the plants of large area loose their synchronism with 

respect to the rest of the interconnection. 

 

 

For convenience in analysis and for gaining useful insight into the nature of stability 

problems, it is useful to characterize rotor angle instability in terms of the following two 

subcategories [Kun04]: 

 

Small-disturbance (or small-signal) rotor angle instability is concerned with the 

inability of the power system to maintain synchronism under small 

disturbances. In today’s power systems, small-disturbance rotor angle stability 

problem is usually associated with insufficient damping of oscillations. It is 

generally characterized by negatively damped power swings among remote 

generators of the interconnection, typically leading to the tripping of 

interconnection lines and/or generators. 

 

Large-disturbance rotor angle instability or Transient Stability is concerned with the 

inability of the power system to maintain synchronism when subjected to a 

severe disturbance, such as a short circuit on a transmission line. The resulting 

system response involves large excursions of generator rotor angles and 

speeds, followed by generator tripping due to over or under speed protections. 

 

And finally, perhaps the most import classification of dynamic phenomena is their natural 

time range of response. A typical classification is shown in figure 2.2. This time-range 

classification is important because of its impact on component modeling and on the 

response speed of control and protective devices needed to counter the corresponding 

instabilities. It should be intuitive that is not necessary to solve the complex transmission 

line wave equations to investigate the impact of a change in boiler control set points. This 

brings to mind the statement that “the system is not in steady state”. Depending on the 
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nature of the dynamic disturbance, portions of the power system can be considered in 

“quasi-steady state” [SP98]. 

 

 

Figure 2.3 Time Ranges of dynamic phenomena. Adapted from [SP98] 

2.1.4 The swing equations 
 

This thesis is devoted to the estimation of rotor angles and speeds in the framework of 

transient stability. We will therefore consider the behavior of the system immediately 

following a disturbance such as a short circuit on a transmission line, the opening of a 

line or the switching on a major load to name just a few. 

Since a synchronous machine is a rotating body, the laws of mechanics applying to 

rotating bodies apply to it [Kim64]. The equations of central importance in power system 

transient stability analysis are the rotational inertia equations describing the effect of 

unbalance between the electromagnetic torque and the mechanical torque of the 

individual machines [Kun94]. A brief description of the establishment of the swing 

equation is expressed below, along the lines given in [Kun94]. 
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When there is an unbalance between the torques acting on the rotor, the net torque 

causing acceleration or deceleration is 

ema TTT −=        (2.3) 

Where aT  denotes the accelerating torque, mT  is the mechanical torque and eT  

electromagnetic torque. All units are N.m. and in the above equations, Tm  and eT  are 

positive for a generator and negative for a motor. 

The combined inertia of the generator and turbine is accelerated by the unbalance in the 

applied torques. Hence, the equation of motion is: 

 

em
m TTTa

dt

d
J −==

ω
 ,     (2.4) 

 

where J  is the combined moment of inertia of generator and turbine; kg.m2, mω  is the 

angular velocity of the rotor, mech. rad/sec and t time in seconds. 

 

Defining the inertia constant H  as the kinetic energy in watts-seconds at rated speed 

divided by the VAbase  and denoting by m0ω  the rated angular velocity in mechanical 

radians per second, the inertia constant is obtained by 

H = 1
2

Jω 2
0m

VAbase

.      (2.5) 

 

The moment of inertia J  in terms of H  is obtained by 

 

base
m

VA
HJ

J
0

2

2

ω
= .     (2.6) 

 

Substituting the above equation in eq. (2.4) gives 

 

em
m

base
m

TT
dt

d
VA

H −=
ω

ω 0
2

2 ,     (2.7) 
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and rearranging yields 

 

mbase

em

m

m

VA

TT

dt

d
H

00 /
2

ωω
ω −

=







.    (2.8) 

 

The equation of motion in per unit form is thus 

 

em
r TT

dt

d
H −=

ω
2 ,      (2.9) 

where  

ω r = ωm

ω0m

=
ωr /Pf

ω0 /Pf

= ω r

ω0

 ,     (2.10) 

 

where rω  is the electrical angular velocity of the rotor in electrical rad/sec, ω0 is its rated 

value, and Pf  is  number of field poles. 

If δ  is the angular position of the rotor in electrical radians with respect to a 

synchronously rotating reference and 0δ  is its value at 0=t , 

 

δ(t) = δ0 + ωr (τ)d
0

t

∫ τ −ω0t .     (2.11) 

 

In other words we have 

 

rrdt

d ωωωδ ∆=−= 0        (2.12) 

and 

d2δ
dt 2

= dωr

dt
=

d ∆ωr( )
dt

= ω0

dω r
dt

= ω0

d ∆ω r( )
dt

.

     (2.13) 
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Substituting for 
dt

d rω  given by the above equation in equation (2.9), we get 

 

em TT
dt

dH −=
2

2

0

2 δ
ω

 .     (2.14) 

 

It is often desirable to explicitly isolate in these equations a component of damping 

torque which has its origin in a linear dependence of the mechanical and/or 

electromagnetic torques on the speed deviation. This leads to a slightly different swing 

equation formulated as follows: 

 

2H

ω0

d2δ
dt 2

= T 'm − T 'e − KD∆ω r      (2.15) 

 

Equation (2.15) represents the equation of motion of a synchronous machine. It is 

commonly referred to as the swing equation because it represents swings in rotor angle δ  

during disturbances. 

 

 

The state-space form requires the component model to be expressed as a set of first order 

differential equations. The swing equation (2.15), expressed as two first order differential 

equations, becomes 

( )rDem
r KTT

Hdt

d ωω
∆−−=

∆
2

1
     (2.16) 

 

rdt

d ωωδ ∆= 0        (2.17) 

 

In the above equations, time t  is in seconds, rotor angle δ  is in electrical radians, and 0ω  

is equal to fπ2 . The block diagram form representation of equations (2.16) and (2.17) is 

shown in figure 2.4. 
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Figure 2.4 Block diagram representation of swing equation.  Adapted from [Kun 94]. 

 
Characterization of the power system operating states. 
 
In his pioneering work, DyLiacco introduced the idea that the power system may operate 

in the following modes: Normal, Alert, Emergency and Restorative [EPRI81,Dyl68]. 

More recently, Fink and Carlsen expanded this concept by identifying the constraints 

satisfied or violated in each mode of operation. Three sets of generic equations (one 

differential and two algebraic ones) govern power system operation: the differential set 

encodes the physical laws governing the dynamic behavior of the systems components. 

The two algebraic sets comprise ‘equality constraints’, which refer to the system’s total 

load and total generation, and ‘inequality constraints’, which state that some system 

variables, such as currents and voltages, must not exceed maximum levels representing 

the limitations of physical equipment [FC78]. :  

• Normal: all equality and inequality constraints are satisfied; reserve 

margins are adequate to withstand stresses. 

• Alert: all constraints are still satisfied; reserve margins are such that 

some disturbance could result in a violation of some inequality 

constraints. 

• Emergency: some inequality constraints are violated; the system is still 

intact and control actions could be initiated  to restore the system to at 

least the alert state. 

• In extremis: equality constraints and inequality constraints are violated; 

the system will no longer be intact and a portion of the load will be lost. 
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• Restorative: control actions are being taken to pick up the lost load and 

to reconnect the system. 

 
 
Figure 2.5 shows the five different operating states of the power system. 
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Figure 2.5  Power system operating states. Adapted from [SC02]  



 34 

2.2 STATE ESTIMATION AND AUTOMATIC LEARNING 

2.2.1 Automatic learning 
Automatic learning (AL) is a term used to denote a highly multidisciplinary research field 

of methods, which aim to extract information (knowledge) from databases containing 

large amounts of low-level data. AL encompasses three main families of methods:  

• Statistical data analysis and modeling, 

• Artificial neural networks (ANN) 

• Symbolic machine learning in artificial intelligence.  

During the last 20 years, many researches worked in the topic, applying different 

techniques (statistical pattern recognition, neural networks and machine learning) to 

different power system problems (load forecasting, system identification and state 

estimation, stability assessment and control) [Weh98]. 

 

Automatic learning methods essentially aim at extracting a model of a system from the 

sole observation (or the simulation) of this system in some situations. By model, we mean 

some relationships between the variables used to describe the system in some 

encountered situations or to help understating its behaviour [Weh98]. 

2.2.2 Supervised learning 
 
Supervised learning is the part of automatic learning that focuses on modelling 

input/output relationships. More precisely, the goal of supervised learning is to identify a  

mapping from some input variables to some output variables on the sole basis of a sample 

of observations of the values of these variables. The variables are often called (input or 

output) attributes, observations are called objects and the sample of objects is the 

learning sample. In the context of security assessment, an object would thus correspond 

to an operating state of a power system, or more generally to a simulated security 

scenario. The input attributes would be relevant parameters describing its electrical state 

and topology and the output could be information concerning its security, in the form of 

either a discrete classification (e.g. secure/insecure) or a numerical security margin 

[Weh98]. 



CHAPTER 2 BACKGROUND 

 35 

 

The general problem of supervised learning is formally stated as follows [Geu02]: 

For any value of N and a learning sample LsN and without any a priori 

knowledge of the functions P(.), Y(.), or, A(.), find a function f(.) defined on A 

which minimizes the expected prediction error defined by: 

Err f( )= EA ,Y L Y, f A( )( ){ }= L(y(o), f (a(o)))dP(o)
U

∫   (2.18) 

where U denotes the universe of all possible objects, y(.) the output attribute (a 

function defined on U) and a(.) the vector of input attributes (another function 

defined on U). L(.,.) is a loss function which measures the discrepancy between its 

two arguments, P(.) is a sampling probability distribution defined over U and LsN 

is a sample of N observed objects for which both y and a are given as inputs to the 

supervised learning algorithm. 

 

There are two main types of supervised learning problems: 

• Classification problem: the output attribute takes a finite number of discrete 

values. 

• Regression problem: the output attribute takes a possible infinite number of real 

values. 

 

In this thesis, we are focused integrally to the regression problem. 

 

2.2.3 Main classes of supervised learning algorithms 
 

In this section, we provide a brief overview of the main types of supervised algorithms 

that exist in the literature. In this dissertation we will mainly use ANNs and more 

specifically MLPs. MLPs will be explained with more details in a subsequent section. 
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2.2.3.1 Linear regression 
 

Linear regression is one of the oldest forms of machine learning. It is a long established 

statistical technique that involves simply fitting a line (or a hyperplane) to some data. The 

easiest case for linear regression is when the examples have a single numeric input 

attribute and a numeric output value, i;e; if there are N examples, where the attributes for 

each example is called ix  and the label for each is iy . We can envision each example as 

being a point in 2-dimensional space, with an x-coordinate of ix  and a y-coordinate of iy . 

Linear regression would seek the line ( ) bmxxf +=  that minimizes the sum-of-squares-

error for the training samples: 

y i − f x i( )( )2

i=1

N

∑ .     (2.19) 

The quantity y i − f x i( )  is the distance from the value predicted by the hypothesis line to 

the actual value – the error of the hypothesis for the training sample i. Squaring this value 

gives grater emphasis to large errors and saves us dealing with complicated absolute 

values in the mathematics while minimizing eq. (2.19) rtω  m and b. 

 

2.2.3.2 Decision trees 
 
Decision tree learning is a method for classification problems, in which the learned 

function is represented by a decision tree. Learned trees can also be represented as sets of 

if-then rules to improve human readability. Decision trees classify instances by sorting 

them down the tree from the root to some leaf node, which provides the classification of 

the instance. each  node in the tree specifies test of some attribute of the instance, and 

each brand descending from that node corresponds to one of the possible values for this 

attribute. An instance is classified by starting at the root node of the tree, testing the 

attribute specified by this node, then moving down the tree branch corresponding to the 

value of the attribute in the given example. This process is then repeat for the subtree 

rooted at the new node. [Mit97]. 

Figure 2.6 illustrates a typical learned decision tree. 
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Figure 2.6 A decision tree for the concept Play Tennis. Adapted from [Mit97] 

 

The decision tree shown in Fig. 2.6 corresponds to the expression: 

 

( )
( )

( )WeakWindRainOutlook

OvercastOutlook

NormalHumiditySunnyOutlook

=∧=∨
=∨

=∧=
  (2.20) 

A decision tree (DT) is obtained from a partitioning tree by attaching classes to its 

terminal nodes. The tree is seen as a function; associating to any object the class attached 

to the terminal node, which contains the object [Weh98]. 

The main strength of decision trees is their interpretability. By merely looking at the test 

nodes of a tree one can easily sort out the most salient attribute and find out how they 

influence the output. Another very important asset is the ability of the  method to identify 

the most relevant attributes for each problem. The last characteristic od DT is 

computational efficiency: tree growing computational complexity is practically linear in 

the number of candidate attributes and in number or learning states, allowing one to 

tackle easily problems with a few hundred candidate attributes and a few thousand 

learning states [Weh98]. 
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Although variety of decision tree learning methods have been developed with somewhat 

differing capabilities and requirements, decision tree learning is generally best suited to 

problems with the following characteristics [Mit97] : 

• Instances are represented by attribute-value pairs: Instances are described by a 

fixed set of attributes and their values. 

• The target function has discrete output values: the decision tree in Fig. 2.6 assigns 

a Boolean classification to each example (i.e. yes or no). 

• Disjunctive description may be required: decision trees naturally represent 

disjunctive expressions. 

• The training data may contain errors: Decision tree learning methods are robust to 

errors, both errors in classification of the training examples and errors in the 

attribute values that describe these examples. 

• The training data may contain missing attribute values. Decision tree methods can 

be used even when some training examples have unknown values. 

 

2.2.3.3 Regression trees 
 
Regression trees may be considered as a variant of decision trees, designed to 

approximate real-valued functions instead of being used for classifications tasks. 

The inner nodes of regression trees are marked with test as in decision trees. The 

difference is, that the leaves of regression trees may be marked with arbitrary real values, 

whereas in decision trees the leafs may only be market with elements of a finite set of 

discrete values. A further extension is to allow linear functions as label of leaf nodes. In 

this case the function at the leaf node reached for a specific example is evaluated for the 

instance’s attributes values, to determine the value of the target attribute. This allows for 

global approximating by using multiple local approximations. 

Regression tree induction is a well-known approach for improving along a continuous, 

output dimension [BFOS84].  

Regression trees decompose the attribute space into a hierarchy of regions. Similary to 

decision trees, regression trees are built in a top-down approach: starting with the top-

node and the complete learning set, an attribute ia  and a threshold  value iv  are selected 
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to decompose the learning set into two subsets, corresponding to states for which i ia v<  

and i ia v≥  respectively. 

The procedure continues splitting until either the variance has been sufficiently reduced 

or it is not possible to reduce it further in a statistically significant way [Weh96]. 

Figure 2.7shows a representation of a regression tree and an approximation of the 

numerical output. 
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Figure 2.7 Example of a regression tree. Adapted from [Ola04] 

Regression trees have been used in fields as diverse as air pollution, criminal justice, and 

the molecular structure of toxic substances. Its accuracy has been generally competitive 

with linear regression. It can be much more accurate on non linear problems but tends to 

be somewhat less accurate on problems with good linear structure [BFOS84]. 

 

2.2.3.4 Ensemble methods. 
 
Ensemble methods consist in growing several models with a classical machine learning 

algorithm. Then, the predictions of these models are aggregated to provide a final 

prediction potentially better than individual ones. One of the most popular family of 

ensemble methods is defined by Perturb and Combine methods, that consist in perturbing 

the learning algorithm and/or the learning sample so as to produce different models from 

the same learning sample. The predictions of these models are then aggregate bya  simple 

average or a majority vote in the case of classification [Geu03]. 
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Bagging 

The Bagging Algorithm (Bootstrap aggregating) by Breiman [Bre96] votes classifiers 

generated by different bootstrap samples (replicates). A bootstrap sample is generated by 

uniformly sampling m  instances from the training set with replacement. T  bootstrap 

samples 1 2, ,..., TB B B  are generated and a classifier iC  is built from each bootstrap 

sample iB . A final classifier *C  is built from 1 2, ,..., TC C C  whose output is the class 

predicted most often by its sub-classifiers, with ties broken arbitrarily. 

Table 2.1 shown the Bagging algorithm how works: 
 

Table 2.1 The Bagging algorithm. Adapted from [BK99] 

{

Input: training set , Inducer , integer  (number of bootstrap samples)
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For a given bootstrap sample, an instance in the training set has probability ( )1- 1-1/
m

m  

of being selected at least once in the m  time instances are randomly selected from the 

training set. For large m , this is about 1 1/ 63.2%e− = , which means that each bootstrap 

sample contains only about 63.2 % unique instances from the training set [BK99]. 

 

Boosting 

Boosting was introduce by Schapire early 90’s as a method for boosting the performance 

of a weak learning algorithm. The Adaboost algorithm (Adaptive Boosting), introduced 

by Freund & Schapire [FS99], solve many of the practical difficulties of the earlier 

boosting algorithms. The AdaBoost algorithm is given in Table 2.2. the algorithm takes 

as input a training set ( ) ( )1 1, ,..., ,m mx y x y  where each ix belongs to some domain or 
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instance space X , and each label iy  is in some label set Y . AdaBoost calls a given weak 

or base learning algorithm repeatedly in a series of rounds1,...,t T= . One of the main 

ideas of the algorithm is to maintain a distribution or set of weights over the training set. 

The weight of this distribution on training sample i  on roundt  is denoted ( )tD i . 

The weak learner’s job is to find a weak hypothesis { }: 1, 1ht X → − +  appropriate for the 

distribution Dt. The goodness of a weak hypothesis is measured by its error 

( )
: ( )

Pr ( )
t

t i i

t i D t i i t
i h x y

e h x y D i
≠

 = ≠ =  ∑∼
   (2.21) 

In practice, the weak learner may be an algorithm that can use the weights tD  on the 

training samples. Alternatively, when this is not possible, a subset of the training 

examples can be sampled according to tD , and these (unweighted) resampled examples 

can be used to train the weak learner. 

Table 2.2 the Boosting algorithm AdBoost. Adapted from [FS99] 
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      where  is a normalization factor (chosen so that  will be a distribution).

Output the final hypothesis:
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ExtraTrees 

Geurts [Geu03] presents a new learning algorithm based on decision tree ensembles, 

where the trees of the ensemble are built by selecting the tests during their induction fully 

at random. This extreme randomization makes the construction of the ensemble very fast 

even on very large datasets with high dimensionality. 

The extra-trees algorithm builds an ensemble of unpruned decision or regression trees 

according to the classical top-down procedure. Its two main differences with other tree-

based ensemble methods are that it splits nodes by choosing cut-points fully at random 

and that it uses the whole learning sample (rather than a bootstrap replica) to grow the 

trees. 

Table 2.3 Extra-Trees splitting algorithm for numerical attributes [GEW06]. 

[ ]

( )
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Table 2.3 shows the Extra-Tree procedure for numerical attributes. It has two parameters: 

K, the number of attributes randomly selected at each node and nmin, the minimum 
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smple size for splitting a node. It is  used a several times with the (full) original learning 

sample to generate an ensemble model (denoted by M the number of trees of this 

ensemble). The predictions of the trees are aggregated to yield the final prediction, by 

majority vote in classification problems and arithmetic average in regression problems. 

 

Fuzzy Decision Trees 

A fuzzy decision tree is a method able to partition the input space into a set of rectangles 

and then approximate the output in each rectangle by a smooth curve, instead of a 

constant or a class like in the case of crisp tree-based methods. A fuzzy tree is an 

approximation structure to compute the degree of membership of objects to a particular 

class (or concept) or to compute a numerical output of objects, as a function of the 

attribute values of these objects. The goal is recursively split the input space into 

(overlapping) subregions of objects which have the same membership degree to the target 

class ( in the case of classification problems) or the same output value (in the case of 

regression problems) [Ola04]. 

 

Figure 2.8 shows an example of splitting a fuzzy decision tree and its correspondent 

graph. 
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Figure 2.8 Example of a fuzzy decision tree. Adapted from [Ola04]. 

 

A fuzzy decision tree structure is determined by the graph of the tree and by the attributes 

attached to the its test nodes. The discretization thresholds (α ) and width (β ) values of 

all these attributes, shown in Fig. 2.8, together the labels of all the terminal nodes 
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represent the parameters of the tree-based model. There is a search over both structure 

and parameter spaces so as to learn a model from experience [Ola04]. 

 

2.2.3.5 Nearest Neighbor algorithm 

 

The Nearest-Neighbor (1NN) method has been applied both for classification and 

regression. Let an arbitrary instance x be described by the attribute vector 

( ) ( ) ( )1 2, ,... na x a x a x ,    (2.22) 

where ( )ra x  denotes the value of the rth attribute of instance x . Then the distance 

between two instances ix  and jx  is define to be ( ),i jd x x , where 

( ) ( ) ( )( )2

1

,
n

i j r i r j
r

d x x a x a x
=

≡ −∑  .   (2.23) 

In Nearest-Neighbor learning the target function may be either discrete-valued or real-

valued. Considering learning discrete-valued target functions of the form : nf Vℜ → , 

where V  is the finite set { }1,..., sv v . The k-Nearest-Neighbor algorithm is shown in Table 

2.4, the value ( )ˆ
qf x  returned by this algorithm as its estimate of ( )qf x  is just the most 

common value of f  among the k   training examples nearest to qx . If we chose k=1, then 

the 1-Nearest-Neigbor algorithm assigns to ( )ˆ
qf x  the value of ( )qf x  where xi is the 

training instance nearest to qx . For larger values of k , the algorithm assigns the most 

common value among the k  nearest training sample [Mit97]. 
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Table 2.4 k-Nearest-Neighbor algorithm for approximation of a discrete value [MIT97]. 

( )
Training algorithm:

       For each training sample ,  , add the example to the list _

Classification algorithm:

      Given a query instance  to be classified,

                Let 
q

x f x training examples

x

•

•

•

( ) ( )( )

1

1

 . . .  denote the  instances from _  that are nearest to 

               Return

ˆ                                                 arg max  ,         

               

k q

k

q
v V i

x x k training examples x

f x v f xiδ
∈ =

•

← ∑

( ) ( )     where , 1  if  and where , 0 otherwise.a b a b a bδ δ= = =

 

The main advantages of this algorithm are that it can in principle represent very complex 

input-output relations very well and is very simple to implement. On the other hand, the 

disadvantages can be numbered as follows: 

• It does not handle many irrelevant attributes well. If we have lots of irrelevant 

attributes, the distance between examples is dominated by the differences in these 

irrelevant attributes and so becomes meaningless. 

• It doesn’t look much like humans learning. 

• Hypothesis function is too complex to describe explicitly. 

• Computational inefficiency. 

 

The nearest neighbor algorithm and its variants are particularly well suited to 

collaborative filtering, where a system is to predict a given person’s preference based on 

others people’s preferences. Collaborative filtering fits into the nearest neighbor search 

well because attributes tend to be numeric and similar in nature, so it makes sense to give 

them equal weight in the distance computation [Geu02]. 
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2.2.4 Artificial neural networks (ANN) 

2.2.4.1 Biological neural networks 
 
A neuron is a special biological cell that process information. It is composed of a cell 

body and two types of out-reaching tree-like branches: the axon and the dendrites as 

shown in Figure 2.9. A neuron receive signals (impulses) from others neurons through its 

dendrites (Receivers) and transmits signals generated by its cell body along the axon 

(transmitter), which eventually branches into strands and sub strands. At the terminal of 

these strands are the synapses. A synapse is an elementary structure and functional unit 

between two neurons (an axon strand of one neuron and a dendrite of another). When the 

impulse reaches the synapse’s terminal, certain chemicals called neurotransmitters are 

released. The neurotransmitters  diffuse across the synaptic gap, to enhance or inhibit, 

depending on the type of synapse, the receptor neuron’s own tendency to emit electrical 

impulses. The synapse’s effectiveness can be adjusted by the signal passing through it so 

that the synapses can learn from the activities in which their participate. This dependence 

on history acts as a memory, which is possibly responsible for human memory [JMM96]. 

The cerebral cortex contains about 1011 neurons, this neurons are massively connected. 

Each neuron is connected to 103 to 104 other neurons. In total, the human brain contains 

approximately 1014 to 1015 interconnections. 

 

 

Figure 2.9 A sketch of a biological neuron. Adapted from [JMM96.] 



CHAPTER 2 BACKGROUND 

 47 

2.2.4.2 Background 
 

Artificial Neural networks (ANNs) are inspired by biological nervous systems and they 

were first introduced as early as 1960. Nowadays, studies of ANNs are growing rapidly 

for many reasons: 

• ANNs work with pattern recognition at large 

• ANNs have a high degree of robustness and ability to learn 

• ANNs are prepared to work with incomplete and unforeseen input data 

The development of artificial neural networks started several decades ago with the work 

on the perceptron [Hay94]. The perceptron is basically a simple linear threshold unit, thus 

able to represent only linear boundaries in the attribute space; its limited representation 

capabilities have motivated the consideration of more complexes ANNs composed of 

multiple interconnected layers of perceptrons [Weh98] and called Multi-Layer 

Perceptrons (MLPs). 

ANNs can be viewed as weighted directed graphs in which artificial neurons are nodes 

are directed edges (with weights) are connections between neurons outputs and neurons 

inputs. Based on the connection pattern (architecture), ANN’s can be grouped into two 

categories [JMM96]: 

• feed-forward networks, in which graphs have no loops. 

• recurrent (or feedback) networks, in which loops occur because of feedback 

connections. 

 

An MLP is characterized by its architecture, training or learning algorithms and 

activation functions. The architecture describes the connections between the neurons. It 

consists of an input layer, an output layer and generally, one or more hidden layers in-

between. To each connection feeding hidden or output layers corresponds a weight. 

These weights can then be adjusted to tune the input-output relationship of an MLP to 

solve a given problem. 

 

MLPs are normally used for supervised learning. In this context, the learning algorithm 

makes use of both input-output data. Base on a set of input-output data, the weights are 
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updated so as to minimize the discrepancy between the given outputs and those computed 

by the MLP from the given inputs. In this research, the most common algorithm, 

backpropagation, is used.  Backpropagation denotes actually an efficient algorithm for 

computing the derivatives of the MLP output with respect to the weight values. It is used 

as a main building block construct gradient descent or quasi-Newton algorithms to 

minimize the discrepancy between MPL outputs and the desired ones provide in a 

training sample.. 

 

Once trained, a network response can be, to a degree, insensitive to minor variations in its 

input. This ability to see through noise and distortion to the pattern that lies within the 

inputs is vital to pattern recognition in a real world environment.  

 

A multi-layer network with one hidden layer is shown in Figure2.1010. 

Input

Hidden layer

Output layer

 
Figure2.10 MLP with a single hidden layer 

 

2.2.4.3The backpropagation method [Hay94,Nat97] 
 

Backpropagation was created generalizing the Widrow-Hoff learning rule to multiple-

layer networks and nonlinear differentiable activation functions.  

Standard back propagation is a gradient descent algorithm, as is the Widrow-Hoff 

learning rule, in which the network weights are moved along the negative of the gradient 

of the performance function. The term backpropagation refers to the manner in which the 

gradient is computed or nonlinear multiplayer networks. There are a number of variations 

on the basic algorithm that are based on other standard optimization techniques, such as 
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conjugate gradient and Newton methods. Properly trained backpropagation networks tend 

to give reasonable answers when presented with inputs that they have never seen. 

Typically, a new input leads to an output similar to the correct output for inputs vectors 

used in training that are similar to the new input being presented. The simplest 

implementation of backpropagation learning updates the network weights and biases in 

the direction in which the performance function decreases most rapidly – the negative of 

the gradient 

There are two different ways in which this gradient descent algorithm can be 

implemented: incremental mode and batch mode. In the incremental mode, the gradient is 

computed and the weights are updated after each input is applied to the network. In the 

batch mode the weights and biases of the network are updated only after the entire 

training set has been applied to the network. The gradients calculated at each training 

example are added together to determine the change in the weights and biases. The batch 

mode was used in this work. 

 

The learning phase of a layered perceptron is where all its arc weight are adjusted 

according to a specified learning rule in order to minimize a specified objective function 

(energy function). A commonly used objective function E is the mean square error (MSE) 

between the actual neural network outputs and the specified targets for a set of N training 

patterns. The weight updating problem is to find a set of weights that minimizes the 

predefined objective function [ElS96]. 

 

2.2.4.4  The Levenberg-Marquardt algorithm [HM94] 
 

The Levenberg-Marquardt algorithm was designed to approach second-order training 

speed without having to compute the Hessian matrix (the square matrix of second partial 

derivatives of a scalar-valued function). When the performance function has the form of a 

sum of squares (as is typical in training feed-forward networks), then the Hessian matrix 

can be approximate as 

JJH T=       2.22 

and the gradient can be computed as 
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eJg T=       2.23 

Where J  is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights and biases, and e  is a vector of network errors. The Jacobian 

matrix can be computed trough a standard backpropagation technique that is much less 

complex than computing the Hessian matrix. 

Suppose that we have a function ( )V x  which we want to minimize with respect to the 

parameter vector x , then Newtons’s methods would be 

( ) ( )12x V x V x
−

 ∆ = − ∇ ∇      (2.24) 

 

where ( )2V x∇  is the Hessian matrix, defined as follows [Zur92]: 

( ) ( )2
x x xV x V x ∇ = ∇ ∇      (2.25) 
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    (2.26) 

Note that the Hessian matrix is of size nxn and is symmetric. The matrix is often denoted 

by H, thus ( )2V x∇ =H. 

and ( )V x∇  is the gradient and is equal: 

( )

1

2

n

V

x

V

xV x

V

x
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     (2.27) 

If we assumed that ( )V x is a sum of squared function 
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( ) ( )2

1

N

i
i

V x e x
=

=∑      2.28) 

Then it can be shown that 

( ) ( ) ( ) ( )2 TV x J x J x S x∇ = +    (2.29) 

( ) ( ) ( )TV x J x e x∇ =     (2.30) 

 

where ( )J x  is the Jacobian matrix 
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and 

( ) ( ) ( )2

1

N

i i
i

S x e x e x
=

= ∇∑    (2.32) 

For the Gauss-Newton method it is assumed that ( ) 0S x ≈ , and update (2.24) becomes 

( ) ( ) ( ) ( )1T Tx J x J x J x e x
−

 ∆ =      (2.33) 

The Levenberg-Marquardt modification to the Gauss-Newton method is 

( ) ( ) ( ) ( )1T Tx J x J x I J x e xµ
−

 ∆ = +     (2.34) 

The parameterµ  is multiplied by some factor ( )β  whenever a step would result in an 

increased ( )V x . When a step reduces ( )V x , µ  is divided by β . Notice that when µ  is 

large the algorithm becomes steepest descent (with step 1 µ ), while for small µ  the 

algorithm becomes Gauss-Newton. The Levenberg-Marquardt algorithm  can be 

considered a trust-region modification to Gauss-Newton. Table 2.5 illustrates the 

Levenberg-Marquardt modification to the backpropagation  algorithm. 
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Table 2.5 Levenberg-Marquardt algorithm. Adapted from [HM94]. 

( )
1) Present all inputs to the network and compute the corresponding network outputs,

   and errors - . Compute the sum of squares of errors over all inputs (V(x)).

   where  is the error for the

M
q q q

q

e t a

e

=

 qth input and  is the output of the network  when the qth input is presented.

2) Compute the Jacobian matrix.

3) Solve (2.34) to obtain x.

4) Recompute the sum of squares of errors using  .

    I

M
qa

x x

∆
+ ∆

f this new sum of squares is smaller tahn taht computed in step 1, then reduce  by ,

    let , and go back to step 1. If the sum of squares is not reduced, then increase  by 

     and go back 

x x x

µ β
µ β= + ∆

to step 3.

5) the algorithm is assumed to have converged when the norm of the gradient (2.30) is less

    than some predetermined value, or when the sum of squares has been reduced to some error goal.

 

2.2.4.5 Feed-forward neural networks 
 

Figure 2.11 depicts an example feed-forward neural network.  A neural network can have 

any number of layers, units per layer, network inputs, and network outputs.  This network 

has four units in the first layer (layer A) and three units in the second layer (layer B), 

which are called hidden layers.  This network has one unit in the third layer (layer C), 

which is called the output layer.  Finally, this network has four network inputs and one 

network output.  Some texts consider the network inputs to be an additional layer, the 

input layer, but since the network inputs do not implement any of the functionality of a 

unit, the network inputs will not be considered a layer in this discussion.  

 

Network 

inputs

Layer A

Units
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Units
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Unit to Unit 
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Figure 2.11 MLP with two hidden layers 



CHAPTER 2 BACKGROUND 

 53 

 
If a unit is in the first layer, it has the same number of inputs as there are network inputs; 

if a unit is in succeeding layers, it has the same number of inputs as the number of units 

in the preceding layer.  Each network-input-to-unit and unit-to-unit connection (the lines 

in Figure 2.11) is modified by a weight.  In addition, each unit has an extra input that is 

assumed to have a constant value of one.  The weight that modifies this extra input is 

called the bias.  All data propagate along the connections in the direction from the 

network inputs to the network outputs, hence the term feed-forward 
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CHAPTER 3 PROBLEM FORMULATION 
 

3.1 ROTOR ANGLE AND SPEED ESTIMATION AND PREDICTION 
PROBLEM. 
 
It has been shown in the literature [SP89, APSZ95, MCK95, ABDA+96, CKP98, 

LSTW99, LT95, AR96, SLT99, LT00, KGL01, KK02, BG04] that it is possible to 

detect impending loss of synchronism by monitoring rotor angles and speeds of the 

main power plants of an interconnection and that it is possible to use this information 

to determine in real-time and in a closed loop fashion control actions in the form of 

generator tripping, dynamic breaking or fast-valving. However, for these emergency 

control schemes to work properly, it is necessary to obtain highly accurate estimates 

of rotor angles and speeds. Also, to minimize the risk of detecting and reacting when 

it is already too late (loss of synchronism may happen in some circumstances within 

less than a few hundred milliseconds after fault inception), it is necessary to obtain 

these estimates as quickly as possible, and if possible ahead in time via appropriate 

prediction schemes. 

Synchronous time frame rotor angles and speeds cannot be obtained easily by direct 

measurements. On the other hand, their estimation can, at least in principle, be carried 

out from the three-phase voltage and current phasors at the machine’s low voltage bus 

[RLLM +95].  However, given the better accuracy of EHV phasor measurements with 

respect to medium voltage ones, we suppose that the PMUs will in practice be 

installed on the EHV side of the step up transformer of the power plant. Also, since 

for transient instability monitoring it is not necessary to estimate angles and speeds of 

each individual generator of a given power plant, we propose to use phasor 

measurements from the EHV side of the step-up transformer to estimate and predict 

only the rotor angle and speed of the COI of the considered power plant. 

A PMU is a power system device that provides measurements of real-time phasors of 

bus voltage and line currents. Basically, it samples (same time sampling) input 

voltage and current waveforms using a common synchronizing signal from the global 

positional satellite, GPS [Pha93], and calculates a phasor (modulus and angle) for the 

fundamental frequency via Discrete Fourier Transform applied on a moving data 

window whose width can vary from fraction of a sine wave cycle to multiple of the 
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cycle [Pha93,IEEE95]. These quantities are typically provided for the nodal voltage 

and line and transformer currents in all three phases at the bus were the PMU is 

connected. 

In other words, the problem to be tackled can be formulated as follows:  

Given, a time-series of three-phase voltage phasors and of out-flowing (three-

phase) current phasors acquired at the EHV side of a power plant, sampled at a 

certain rate (typically one or two cycles), and represented in a synchronous 

reference-frame at nominal frequency, compute an estimate of rotor angle and 

speed of the centre of inertia of the power plant in the same reference-frame, and 

compute a prediction of these quantities at the next and subsequent time-steps.   

Our work will aim at showing the feasibility of such a local dynamic state estimation 
scheme for aggregated rotor dynamics of a power plant and we will also evaluate at 
the same time how long ahead in time it would be possible to predict angles and 
speeds.   
 

3.2 APPROACH PROPOSAL TO SOLVE THE PROBLEM. 
 
The relationship between EHV PMU measurements and the dynamic state of the COI 

of the power plant is essentially non-linear and typically corrupted by measurement 

noise and modelling uncertainties. Therefore, we propose to use automatic learning 

techniques, more specifically supervised multilayer perceptron training in order to 

provide a black-box state estimation algorithm able to cope with such difficulties. 

Indeed, it is well known that neural networks, and more generally automatic learning, 

can cope with uncertainties and non-linearities, at least provided that the 

dimensionality of their input space remains moderate. Note that this is the case in our 

analysis, since typically the number of input variables will be in the range of a few 

tens (at most 100) while by simulation it is possible to generate automatically a very 

large sample of training scenarios (typically a few thousand). These scenarios can thus 

cover a representative sample of power system configurations, fault scenarios, 

modelling assumptions and they can also take into account measurement noise. 

Training a neural network on such very large and representative scenarios thus may 

presumably lead to a robust and at the same time very efficient state estimation 

algorithm. 
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The approach investigated in this thesis thus essentially consists in generating off-line, 

and based on numerical simulations, a representative training set composed of system 

trajectories comprising inputs (sequences of voltage and current phasor 

measurements) and output sequences of rotor angles and speeds of the COI of the 

studied power plant. Obviously, it is of paramount importance that the set of 

simulation scenarios is representative of all power system configurations and fault 

scenarios. 

It is clear that the neural network model needs to be updated when major changes 

occur in the power system around the studied power plant, such as the installation of a 

new transmission or generation equipment. On the other hand, since the relationship 

between the COI of the power plant and PMU measurements depends on the number 

of generators in operation in the plant, one suggestion is to train different neural 

network models for each combination of generators in operation, and to use in real-

time the one corresponding to the actual configuration. 

In order to evaluate the feasibility of the proposed approach we will carry out 

experiments with two different power system models: the first one is a One-Machine-

Infinite-Bus (OMIB) system and the second one is a reduced version of the Mexican 

Interconnected System (MIS). In our simulations, we have take care to use rather 

detailed models of the power system dynamics and PMU device and we have 

considered unbalanced as well as unbalanced conditions (e.g. due to single phase 

faults).  
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CHAPTER 4 EXPERIMENTS WITH THE OMIB SYSTEM. 
 

4.1 THE OMIB SYSTEM MODEL [Kun94] 
 
The OMIB test system, shown in Fig. 4.1, represents a thermal generating plant consisting of 

four 555 MVA, 24 kV, 60 HZ units, connected to the rest of the system through a double 

circuit transmission line. The equivalent machine is modeled with two damper windings in the 

q-axis. The network reactances shown in Fig. 4.1 are in per unit on 2220 MVA, 24 kV base. 

Resistances are assumed to be negligible and the infinite bus was modeled as an ideal 3-phase 

AC voltage source (zero source impedance). Governor is not modeled in this example. 

Mechanical power Pm  is considered constant. Although very simple this system is very 

helpful in understanding transient stability basic effects and concepts [Kun94]. 

 
 

0.5 . .j p u

0.93 . .j p u

0.15 . .j p u

 
Figure 4.1 OMIB test system (single-phase diagram). Adopted from [Kun94]. 

 
 
 
 

The parameters of the synchronous machine in per unit on 2220 MVA, 60 Hz base are 

provided in Table 4.1.  

The excitation system used is an IEEE standard type AC1A, and the parameters of this device 

are given in Table 4.2 and 4.3 while the block diagram is illustrated in Figure 4.2. 
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Table 4.1 Synchronous Machine Parameters OMIB test system 

Vbase 24  [kV] 
Ibase 13.3512312 [kA] 

ω 376.991118 [rad/s] 
H 3.5 [MW/MVA] 
D 0.0 [p.u.] 
Ra 0.003 [p.u.] 
Ta 0.278 [sec] 
Xp 0.15 [p.u.] 
Xd 1.81 [p.u.] 
Xd' 0.30 [p.u.] 
Tdo' 8.0 [sec] 
Xd'' 0.23 [p.u.] 
Tdo'' 0.030 [sec] 
Xq 1.76 [p.u.] 
Xq' 0.65 [p.u.] 
Tqo' 1.0 [sec] 
Xq'' 0.25 [p.u.] 
Tqo'' 0.070 [sec] 

 

Table 4.2 IEEE Alternator type AC1A Forward Path Parameters 

Lead Time Constant (TC) 0.0 sec 
Lag Time Constant (TB) 0.0 sec 

Regulator Gain (KA) 200 p.u. 
Regulator Time Constant (TA) 0.015 sec 

MaxReg. Internal Volatge (VAMAX) 7.0 p.u. 
MinReg. Internal Voltage (VAMIN) -6.4 p.u. 
Max Regulator Output (VRMAX) 6.03 p.u. 
Min Regulator Output (VRMIN) -5.43 p.u. 

 

Table 4.3 IEEE Alternator type AC1A Exciter Parameters 

Rate Feedback Gain (KF) 0.03 p.u. 
Rate Feedback Time Constant (TF) 1.0 sec 

Exciter time Constant (TE) 0.80 sec 
Exct. Constants related to fiel (KE) 1.0 p.u. 

Filed circuit Conmutatinf react (KC) 0.20 p.u. 
Demagnitizing factor (KD) 0.38 p.u. 

Saturation at VE1 0.1 p.u. 
Exciter Voltage for SE1 4.18 p.u. 

Saturation at VE2 0.03 p.u. 
Exciter Voltage for SE2 3.14 p.u. 
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Figure 4.2 Exciter IEEE standard type AC1A. Adopted from [Hyd00] 

 

4.2 DEVELOPMENT OF THE NEURAL NETWORKS FOR ROTOR 
ANGLE AND SPEED ESTIMATION 
 
The purpose of the ANNs is to estimate the rotor angle and speed of a synchronous machine 

using voltage and current measurements, which are obtained by the PMU. We have trained 

two different neural networks: one to estimate the rotor angle (ANN1) and another to estimate 

the rotor speed (ANN2). 

4.2.1 Input selection 
 

The inputs to the neural network ANN1 are the voltage, current, angle of voltage and angle of 

current at the EHV bus, at time instantst , 1t −  and 2t − ,(where the time step is 16.66 ms), 

totaling 12 inputs. The output of the neural network model consists of one neuron 

representing the rotor angle for a specific operating condition, 
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where )(tv  and )(ti  are the positive sequence terminal voltage and current at the time t , 

)( 1tv − , )2( −tv , )( 1ti −  and )( 2ti −  are the voltage and current at the time 1t −  and 2t − , vθ  and 

iθ  are the voltage and current angles at the same time instants.  

On the other hand, for ANN2 we use the same inputs as with ANN1, with three inputs added, 

the rotor angle obtained from the output of ANN1 at time instants t , 1t −  and 2t − . For this 

reason the number of inputs for ANN2 is 15. The output of the ANN2 consists of one neuron 

representing the rotor speed as illustrated in Fig. 4.3. 
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Figure 4.3 Arrangement of the ANNs for angle and speed estimation 

 

4.2.2 Selection of ANN 
 
The ANNs used are of the multi-layer feed-forward type, with one hidden layer. Fig. 4.4 

represents the multi-layer feed-forward network used for the purpose.  

δδδδ
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Figure 4.4 Proposed layered feed-forward ANN model for rotor angle estimation 

 

The number of units in the hidden layer is determined experimentally, from studying the 

network behavior during the training process taking into consideration some factors like 

convergence rate, error criteria, etc. In this regard, different configurations were tested and the 

best suitable configuration was selected based on the accuracy level required. The number of 

hidden units for the ANN1 is 40 and the number of hidden units for ANN2 is 35. Hyperbolic 
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tangent activation functions are used for these units, while a linear activation function is used 

for the output neurons for borh of ANNs . The neural networks were trained off-line. 

4.3  SIMULATION RESULTS 
 
The Neural Network Toolbox from the MATLAB [Nat97] software tool  was  used  to 

create, train and test the neural networks. The training algorithm used is the Levenberg-

Marquardt algorithm because it provides fast convergence. 

The initial weights as well as the initial biases employed random values between 0-1. The 

inputs and targets are normalized so that they have values between –1 and 1. 

 
A power system may be subjected to different kinds of disturbances. It is impossible to use all 

the responses of the teaching system under different disturbances as the training set. The 

contingencies represented in this well-kwon test system are three-phase short circuit at 

beginning of the transmission line L2 and at the end of the same line near to infinite bus. 

All the three-phase faults were applied at 0.1 sec. The faults were released either by self-

clearance or by tripping the faulted line. This is common practice in stability studies. All the 

disturbances were applied to different generation levels [1100, 850, 600, 500, and 300 MW]. 

The training data uses 180 patterns, each containing 80 input-output pairs (in average). Total 

number of input-output pairs is equal to 14400. To test the neural networks 60 unseen patterns 

are used. Generation of the data for training and testing is summarized in Table 4.4. For each 

short-circuit and generation level, 3 out of 9 patterns are with fault duration randomly chosen 

from interval [0.05,CCT-0.01] ms, 3 from interval [CCT-0.01,CCT+0.01] ms, and 3  from  

interval  [CCT+0.01,0.35] ms. 

Table 4.4 Generation of training and testing data. 

 Training Testing 

Self-clearing 
fault 

Tripping the line Self-clearing fault Tripping the line Gen. 
Level 
(MW)  Beg.  

of L2 
End of 

L2 
Beg. 
of L2 

End of 
L2 

Beg. of 
L2 

End of 
L2 

Beg. 
of L2 

End of 
L2 

1100 9 9 9 9 3 3 3 3 

850 9 9 9 9 3 3 3 3 

600 9 9 9 9 3 3 3 3 

500 9 9 9 9 3 3 3 3 

300 9 9 9 9 3 3 3 3 
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Testing patterns consist of one pattern from all three, above mentioned, intervals that are not 

used in training. All real-time environments exhibit some level of noise from instrumentation. 

The effects of noise on the response of the system are assessed by randomly perturbing the 

inputs (additive noise uniformly distributed in the range [-0.02,0.02]) to the neural networks. 

The noise is added to voltage and current magnitude, only. First the ANN1 is trained and 

tested, according to the procedure described above, and then the same training and testing 

patterns are used with the ANN2 

 

To generate the ANNs training and validation data sets, the MATLAB/ SIMULINK 

software tool [Hyd00] is used. Also, using this simulation tool the values of voltage and 

current phasors to compute the rotor angle and speed using the generator classical model, 

were obtained. The sampling interval in the simulations is taken equal to 20 ms (every cycle 

of fundamental frequency, this is reasonable value in view of the fact that modern PMUs are 

capable to provide the measurements every 1-5 cycles [Tay00]).  

 
As a measure of performance, the root mean square error defined as: 

 

∑ −=
p

2
pp ot

p

1
RMSE )(                             (4.2) 

 

is determined for each of two ANNs after 1000 iterations of the training rule. In (4.2), p  

represents the number of input-output training pairs, pt  is the target output for the thp −  

training, po  is the output of the ANN. The RMSEs for training and testing are given in Table 

4.5. For the comparison, the RMSEs obtained using the classical generator model for all three 

presented cases are given in Table 4.6 (in equation (4.2) target output is replaced by exact 

angle and speed values and the output of the ANN with the values obtained using the classical 

generator model). 
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Table 4.5 Root mean square error after 1000 iterations 

 

ANN Training error Testing error 

ANN1 0.0020 (rad.) 0.0092 (rad.) 

ANN2 0.0004 (rad./s) 0.0024 (rad./s) 
 
 

 
 

Table 4.6 Root  Mean Square  Error  for the Classical Generator Model 

 

 Stable  Unstable Critically stable 
Angle (rad) 0.1307 0.1607 0.1803 

Speed (rad/s) 0.6004 0.9576 0.6988 
 
 

Results obtained for three cases (stable, critically stable, and unstable) are presented and 

compared against the computation of the variables based on the classical generator model. All 

three presented cases correspond to the faults at the beginning of the line L2 released by 

opening the faulted line. CCT is equal to 0.292 seconds for this particular fault.  If the fault 

duration is less than the CCT, the system response is stable. The evolution of rotor angles and 

speeds (exact, estimated, and obtained based on classical generator model) are illustrated in 

Fig. 4.5 and 4.6. As the exact values of the rotor angles and speeds are considered those 

extracted directly from the simulation model. 
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Figure 4.5 Rotor angle  (stable case) 
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Figure 4.6 Rotor speed (stable case) 

 
 

An unstable system response (fault duration greater than the CCT) is illustrated in Fig. 4.7 and 

4.8. When the fault duration is equal to the CCT system becomes critically stable. Fig. 4.9 and 

4.10 represent the variables evolution for this case.  
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Figure 4.7 Rotor angle (unstable case) 
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Figure 4.8 Rotor speed (unstable case) 
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Observe from Fig. 4.5, 4.7 and 4.9 that much better tracking of the rotor angle was obtained 

by its estimation using the proposed methodology than if we rely on the classical generator 

model and simple algebraic relations (1.1,1.2) see chapter 1 of this thesis. Presence of the 

noise in measured variables results in slightly harsh aspect of  rotor angle calculated by (1.1). 

Rather harsh aspect in rotor  speed  is observable in all presented system responses if 

analytical formulas (1.1,1.2) derived from the classical generator  model  are used. The harsh 

aspects in rotor angle and speed are much less observable in the estimation using the ANNs.  

If  the  level of  accuracy,  in   transient   stability assessment  and   control,  is high  then  

observed errors in the computation of the variables using (1.1,.1.2) can result in wrong 

prediction  and  control  actions   determination. The results clearly indicate that the ANN-

based approach to estimate rotor angles and speeds from phasor measurements, has potential 

to be useful in tracking transient behavior of a power system following a disturbance. 
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Figure 4.9 Rotor angle (critically stable case) 
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Figure 4.10 Rotor speed (critically stable case) 
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CHAPTER 5 SIMULATIONS AND TRAINING RESULTS ON 
THE MEXICAN INTERCONNECTED SYSTEM 

 

5.1 MODELS 
 
In this section we introduce the models used for the Mexican Interconnected System 
(MIS) that we have used in order to generate our simulation results. All the simulations 
reported in this thesis were carried out using the PSCAD/EMTDC software [Man03, 
Man03a]. 
  

5.1.1 Mexican interconnected system (MIS) 
 
General structure of the MIS  
 
The bulk Mexican interconnected system comprises a huge 400/230 kV transmission 

system stretching from the border with Central America to its interconnection with USA.  

The MIS consists of six areas designated as north (N), north-eastern (NE), western (W), 

central (C), south-eastern (SE), and the peninsular systems. A simplified diagram of 

major system elements is shown in Fig. 5.1.   

 

 
Figure 5.1 Mexican Interconnected System. Adopted from [RRC97] 

 

The test system used in our simulations is a reduced version of the MIS shown on Fig. 

5.1. It is formed by one power plant which has 5 hydro-generators, three transmission 
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lines that connect this power plant with the rest of the system, one load in the 400 kV bus 

bar of the power plant and the rest of the system is represented by two large synchronous 

machines and two large equivalent loads (see Figs. 5.3 and 5.6). A detailed model is used 

to represent these latter two synchronous machines similar to the salient pole rotor one 

used in the power plant. Excitation systems and governors are also modeled for all 

synchronous machines. A standard IEEE exciter type AC1A was used as AVR model for 

these two large synchronous machines.. 

 

Parameters of a part of South-East Mexican Interconnected System in PSCAD. 

 

The synchronous machine represents a hydraulic (salient pole) generator model with one 

damper winding in the q-axis. The set of equations that represent this model are given in 

Appendix A and correspond to equations (A.10-A.17). Table 5.1 shows the parameters 

used for each one of the five machines of the hydro-plant. 

Table 5.1 Parameters of synchronous machine for the MIS test system (Power Plant) 

Synchronous machine parameter for the MIS 
  

T’ do 5.2 sec 
T’’ do 0.029 sec 
T’’ qo 0.034 sec 

H 4.3 
D 1.0 
Xd 0.75 p.u; 
Xq 0.43 p.u. 
X’ d 0.24 p.u. 
X’’ d 0.17 p.u. 
X’’ q 0.17 p.u. 
X l 0.11 p.u. 

 

The exciter is based on an IEEE type SCRX solid-state exciter. The schematic diagram is 

shown in Fig. 5.2 and its parameter in Table 5.2. 
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Figure 5.2 IEEE Excitation system type SCRX [MAN03] 

 

Table 5.2 Parameters of the excitation system SRCX 

TA  1.02 (sec) 
TB  15.0 (sec) 
K  220.0 (p.u.) 
TE  0.03 (sec) 
EMIN   -3.0 (p.u). 
EMAX   4.2 (p.u.) 

 
The hydro-turbine is modeled using the same device shown in A.4. The parameters used 

in our simulations are given in Tables 5.3 and 5.4. 

Table 5.3 Hydro-Turbine Rated Conditions 

Head at rated conditions 1.0 (p.u.) 
Output power at rated conditions 1.0, 0.90, 0.80 and 0.70 
Gate position at rated conditions 1.0 (p.u.) 

Rated No-load Flow 0.5 (p.u). 
Initial Output Power 1.0 (p.u). 

Initial Operating Head 1.0 (p.u.) 

 

Table 5.4 Hydro-Turbine Non-Elastic Water column parameters 

Water Starting Time (TW) 2.26 (sec.) 
Penstock Head Loss Coefficient (fp) 0.02 (p.u.) 

Turbine Damping Constant (D) 0.5 
 

 
The hydro-governor model used is shown in A.5 and its parameters for this specific case 

are shown in Table 5.5. 
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Table 5.5 Hydro-Governor Parameters 

Dead Value Band 0.0 (p.u.) 
Permanent Droop (Rp) 0.25 (p.u.) 

Maximun Gate Position (Gmax) 0.8945 (p.u.) 
Munimun Gate Position (Gmin) 0.50 (p.u.) 

Max Gate Opening Rate (MXGTOR) 0.17 (p.u./s) 
Min Gate closing Rate -0.17 (p.u./s) 

Pilot Valve Servomotor Tiem Constant (Tp) 0.05 (sec) 
Servo gain (Q) 5 (p.u.) 

Main Servo Time Constant 0.2 (sec) 
Temporary Droop (Rt) 0.4 (p.u.) 

Reset or dashpottime constant 5.0 (sec) 
 
 
The step-up transformers have a delta-star configuration. Their model is based on the 

theory of mutual coupling. Table 5.6 gives the parameters of each transformer. 

Table 5.6 Transformer parameters for the MIS test sytem 

Tmva  150.0 (MVA) 
f  60.0 (Hz) 
Xl  0.1 (p.u.) 
V1  13.8 (kV) 
V2  400 (kV) 

 
 
The transmission lines were modeled using a simple couple PI section model, whose 

parameter are shown in Table 5.7. 

Table 5.7 Transmission line parameters for the MIS test system 

Parameter TL # 1 TL # 2 TL # 3 
F 60.0 Hz 60.0 Hz 60.0 Hz 

VLL rated 230.0 kV 230.0 kV 230.0 kV 
MVA 100.0 MVA 100.0 MVA 100.0 MVA 

R 0.0013 p.u. 0.0016 p.u. 0.0041 p.u. 
X 0.0177 p.u. 0.0216 p.u. 0.0599 p.u. 
B 0.5072 p.u. 1.6181p.u. 1.417 p.u. 
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Loads were represented as a function of voltage magnitude and frequency, where the load 

real and reactive power our considered separately using the well known expressions: 

      (5.1) 
 

      (5.2) 
 
 
In order to represent transformation and any distribution transmission that might exist 

between the connection point and the actual load, the above characteristics are 

approximated through representation by a series inductance, selected as 10% of the 

impedance of the real power portion of the load.  The real power is represented as a shunt 

resistance and the reactive power as a shunt inductor in parallel with the shunt resistor, 

both connected to ground. The parameters of the load are illustrated in Table 5.8 

Table 5.8 Load parameters for MIS 

Rated Real Power 47.133 MW 
Rated Reactive Power 6.1333 MVAR 

Rated Load Voltage (rms L-G) 7.967 kV 
Volt index for Power (dP/dV) 2 

Volt index for Q (dQ/dV) 2 
Freq index for Power (dP/dF) 0 

Freq index for Q (dQ/dF) 0 
Fundamental Frequency 60 Hz 
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Figure 5.3 One-line diagram of the subsystem of the MIS used as test system 

 
 

ANG_U1

w

Te

A

B

C

IfEfEf If

Tm0Tm

Tm

W1

E
F1 IF

1
T

M
1

1.0

w Tm

Wref

z

zi
 Hydro  Tur  1

Vabc
IfEf

Vref
Exciter (SCRX)

0.99

ANG_U1
191 MVA
13.8 kV L-L  
7.99 kA

V
t1

C

B

A

BRK

180.1 [MW]
84.93 [MVAR]

w

Wref
z0

z

 Hydro  Gov  3

A

B

C

Tmstdy1

 
Figure 5.4 Synchronous Machine, excitator and governor in PSCAD/EMTDC simulator. 
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Figure 5.5 Transmission lines representation in PSCAD/EMTDC simulator. 
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Figure 5.6 Three-phase representation of the test system in the PSCAD software 
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5.2 DATA BASE GENERATION 
 

5.2.1 Principle 
 

The database generation aims at obtaining a representative sample of simulation scenarios 

from which the data can be extracted that will be used to train the neural network models 

used for rotor angle/speed estimation and prediction. Each simulation scenario is defined 

by first combining a steady state operating condition and a fault scenario (type, location, 

duration, clearing scheme). 

For the MIS test system, the database generation has used different levels of generation to 

define the steady state operating condition as well as changes in the topology of the 

network. Single and three phase faults were modeled as disturbances and different places 

were chosen also to apply the disturbance together with different assumptions about the 

fault clearing mechanism. The data was generated using PSCAD software, and the 

training and testing process were carried out with the PEPITo software [Pep04]. Below 

we describe in details the conditions that were used to generate these simulation results 

used to build up our training and testing database. 

 
a) Active power generation 

We have considered four different levels of active power generation in the studied power 

plant. In addition to full loading of all units, we have considered 90%, 80% and 70% 

loading of the units. The load level was essentially kept unchanged, and thus the change 

in generation of the studied power plant was compensated by increasing the generation of 

the two large equivalent power plants. The detailed information about the active power 

generations and the local load are shown in Table 5.9. 
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Table 5.9 Active Power generation and local load consumption 

Active Power 100 % (MW) 90 % (MW) 80 % (MW) 70 % (MW) 

U1-U5 189.54 170.0 151.4 132.8 

SM1 19391.7 19459.4 19531.4 19603.3 

SM2 7592.05 7618.56 7646.74 7674.93 

Power Plant 947.70 850.63 757.22 664.1 

Local Load 144.2 144.3 144.3 144.4 

 

 

The steady state rotor angle δ of the units U1 to U5 (the rotor angle reference rotates at 

nominal frequency nω ) under these generation levels is summarized in Table 5.10. 

 

Table 5.10 Rotor angle at different generation levels. 

Level 

generation 

Rotor angle δ 

in degrees 

100 % 33.22 

90% 30.33 °°°° 

80 % 27.57 

70 % 24.22 

b) Topology 

 

The changes in the topology of the network were modelled changing the impedance’s 

value of the transmission line 1 and 2. In this case, this value was modified -5 % and +10 

% . 

 

c) Disturbances 

 

The disturbances considered in our simulations are the following: 

• Three phase fault to ground 

• Single-phase fault to ground 
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The disturbance were releases in three different ways: 

• Self-clearing 

• Tripping the faulted line 

• Tripping and reclosing the faulted line 

Figure 5.7 shows the fault locations on the one-line diagram.  
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Figure 5.7 Test system diagram 

5.2.2 Practical procedure for the database generation 
 

For the generation of the database, direct measurements from PSCAD software of 

voltage, current with their respective phase angles in three-phase form, i.e. 

cbacba IIIVVV ,,,,, , etc, were gather for each simulation. In this process, a FFT device is 

used to represent the PMU in order to obtain these measurements (see Appendix B). Also 

the actual values of the rotor angle (δ ) and the rotor speed (ω ) were taken from PSCAD 

via ideal measurements. 
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The next step was selected two points in the network, where three-phase and single-phase 

faults are applied. The near end of the transmission lines #1 and #3 was selected for this 

proposes. Where place # 1 is the beginning of TL #1 and place #2 the beginning of TL 

#3.  

For each steady state condition (combination of power generation level and topology), the 

Critical Clearing Time (CCT) was calculated and with this value we selected different 

fault clearing times in order to obtain stable and unstable cases (loss or not of 

synchronism) of the generators of the power plant. 

For example, for the100 % generation level base case, three-phase fault  placed  # 1 for 

the fault location and release by self-extinction, the CCT is 0.30 sec., and we used  the 

fault clearing times shown in Table 5.11.  

 

Table 5.11 Fault clearing times used for 100 % level generation, case base, 3-phase fault 

0.15 0.17 0.18  0.19 0.20 0.21 0.22 0.24 0.25 0.26  

0.27  0.28  0.29  0.30  0.302  0.31  0.32  0.33  0.34  0.35 

 

These 20 fault clearing times have been combined with single vs three phase fault 

assumptions and three clearing schemes mentioned about, leading to 120 PSCAD time-

domain simulations for the 100% load level case base and location #1 of the fault. 

In the same way, we considered the 24 combinations of 4 generation levels, 3 topology 

assumptions and 2  fault locations, yielding a total number of 2880 simulations. 

 

The duration of the simulation period was fixed to 1.5 sec, the fault was applied at 0.1 sec 

and PSCAD simulations where carried with a fixed time step of 50 µs. 

 

5.2.3 Post-processing of the simulation results 
 

When a simulation with PSCAD is finished, the next step is to arrange the raw output 

information contained in the output files generated by PSCAD into files that MATLAB 

and PEPITo can read. In these files we include all the inputs and outputs to be used in the 
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training of the neural network, and keep only the values at the appropriate times step (one 

sample every cycle, at 60Hz). 

 

The variables used as input are: 

 

• Voltage at the bus 2000. 

• Currents flow the three transmission lines. 

• Current through local load (bus 2003) 

 

We have three phase measurements with their respective phase angles for each variable 

as follow: 

Table 5.12 Input arrangement to the NN using all the attributes 

voltage at bus 2000 Va Vb Vc 

and phase angle θa θb θc 

current T.L. #1 I1a I1b I1c 

and phase angle θ1a θ1b θ1c 

current T.L. # 2 I2a I2b I2c  

and phase angle θ2a θ2b θ2c 

current T.L. # 3 I3a I3b I3c 

and phase angle θ3a θ3b θ3c 

current local load (bus 2003) Iload I load I load 

and phase angle θload θload θload 

 

All in all, including the recording of output values (rotor angles and speeds), this leads to 

a files containing 2912 numbers for each simulated scenario. 

 

Taking into account the fact that in our work we use input values of three successive time 

samples ( ), 1, 2t t t− −  in order to estimate rotor angles and and speeds at time t  and 1t + , 

each input/output pair is represented by ( ) ( ) ( )ttt XXX ,, 12 −− , ( ) ( )1,t tY Y + , where ( )tX  is the 
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value of input attribute vector at time t , ( )2tX −  and ( )1tX −  correspond  to the value of each 

attribute at the two previous time steps, and ( )tY  (respectively ( )1tY + ) correspond to the 

two output quantities at the present time and one time step ahead into the future.  

 

All in all, the resulting database thus contained roughly 24 million values, organized into 

a matrix of  (roughly) 260,000 lines and 94 columns.  

 

5.2.4 Separation of the database into learning and test sets. 
 

The above database was split into a learning and a test set in the following way. For each 

conditions, combining a steady state condition, a fault location, a fault type and a fault 

clearing scenarios, the 20 scenarios corresponding to 20 different fault clearing times 

were separated into a subset of 15 learning scenarios and 5 testing scenarios, chosen so as 

to have both stable and unstable case in both subsets.  

 
This leads to a total number of about 200,000 input output pairs in the learning set and 

60,000 in the test set.  
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5.3 RESULTS 
 

The results are organized into 4 successive sections. The first section provides 

preliminary results about the design of a neural network scheme for the estimation of the 

rotor angle directly. Since these results were not satisfactory, we propose in the second 

section an alternative scheme were the outputs of the neural network target the sinus and 

cosinus of the rotor angle (we call this the rectangular representation of the rotor angle). 

The results obtained with this scheme are much better, and we believe sufficiently 

accurate for practical use. The third section focuses on the estimation of the rotor speed, 

and the two last sections provide some preliminary results concerning the prediction of 

rotor angle and speed some time steps ahead in time.  

5.3.1 Direct estimation of the rotor angle δδδδ. 
 

In the preliminary trials reported in this section, the output value on which the neural 

networks are trained is the rotor angle, relative to a synchronous reference. For all these 

trials we used 50% of the available data, in order to reduce computing times.  

We study first the case were we train the neural network for both unbalanced and 

balanced fault conditions. In that case, we considered a training set of 88200 samples and 

a test set of 28800 samples and 90 input variables.  

Then we study a simpler situation, were only balanced fault conditions are considered, 

which allows to reduce the number of training and testing samples by a factor of 2 and 

the number input variables by a factor of 3 (considering only the quantities of a single 

phase, instead of all three phases).   

We have considered different neural network structures using either one or two hidden 

layers with various numbers of units.  

 

Case MLP configuration 90 – X - δδδδ 

We used as inputs all the 90 variables given in Table 5.12, the output is the rotor angle, 

each variable is estimate in a different Neural Network. The networks are trained on 
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88200 samples drawn from both balanced and unbalanced fault conditions. They tested 

on an independent test set of 28800 drawn from the same balanced and unbalanced 

conditions simulated with different fault clearing times.  

 

With respect to number of hidden units used, 5, 15, 20 and 30 hidden units were 

employed. The results for this kind of configuration are shown in Table 5.13.  

The mean square error  (MSE) is defined as 

21
( )p p

p

MSE t o
p

= −∑     (5.1) 

 

where p  represents the number of input-output training pairs, pt  is the target output for 

the thp −  training, po  is the output of the ANN. In the case of estimation of the rotor 

angle the units are given in degrees and for the case of rotor speed estimation the unit is 

in p.u. the number of training cycles varying from 50 to 100, in our case cycles means the 

number of epochs during the ANN training process. Linear correlation coefficient is a 

statistic representation how closely two variables co-vary. It can vary from -1 (perfect 

negative correlation through 0 (no correlation) to +1 (perfect positive correlation). 

The correlation factor is defined by [Sap90]: 

( )( )
1

1 n

i i
i

x y

x x y y
n

r
s s

=

− −
=
∑

     (5.2) 

where xs  and ys  are the standard deviation of x  and y , 

( )2

1

1 n

x i
i

s x x
n =

= −∑      (5.3) 

( )2

1

1 n

y i
i

s y y
n =

= −∑      (5.4) 

and the numerator is the covariance observed. 
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Table 5.13 MLP configuration 90-X-δ - Errors and correlation factor varying the number of hidden units 

Net 
configuration 

MSE 
(LS) 

MSE 
(TS) 

Correlation 
factor (TS) 

Error 
min 

TS(deg) 

Error 
MaxTS 
(deg) 

cycles 

90 - 5 - δ 0.1014 0.1248 0.9032 -732.44 1.19E3 50 

90 – 15 - δ 0.03567 0.0475 0.9644 -717.16 870.14 50 

90 – 20 -δ 0.01964 0.02767 0.9796 -461.77 568.24 50 

90 – 20 - δ (a) 0.01134 0.01912 0.9857 -682.90 529.00 100 

 

We observe that the MSE error decreases (both on the LS and on the TS) and the 

correlation factor increases when we increase the number of hidden units in the MLP 

under study. However, the maximum and minimum errors (computed on the test sample) 

are very large ( -732.44 ° and 1.19 E3 °). Notice that increasing the number of training 

cycles did not allow us to reduce these errors significantly. 

 
Case MLP configuration 90 – X – X - δδδδ 

In the next trials we have added one hidden layer. Table 5.14 shows the obtained results 

after training the MLP. 

Table 5.14 MLP configuration 90-X-X-δ - Errors and correlation factor varying the number of hidden units 

Net 
configuration 

MSE 
(LS) 

MSE 
(TS) 

Correlation 
factor 

Error 
min(deg) 

Error 
Max(deg) 

cycles 

90 -15-15- δ 0.003288 0.008084 0.994 -455.62 510.069 70 

90 –18–18- δ 0.002406 0.007462 0.9945 -577.77 575.21 100 

 

Figure 5.8 illustrates these results graphically. 
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(a) 

 

(b) 

Figure 5.8 True vs. estimate rotor angle for MLP 90 -18-18-δ. Stable test scenario (a) and unstable test 
scenario(b) 
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We observe that this configuration leads to significant improvement of the average error 

rates with respect to the previous configuration, but the maximum and minimun errors 

remain still very large. 

 

Given the disappointing results obtained above, we made a further set of trials on a 

simplified version of the problem, where we have considered only balanced (i.e. three-

phase) fault conditions. This allowed also to significantly reduce the amount of training 

and testing data (the number of samples is devided by a factor 2, and the amount of input 

variables by a factor 3, by using only the values of phase A). These results are reported in 

the next 3 subsections. 

 

Case MLP configuration 30  – X - δδδδ 

The number of hidden units used for this NN configuration were of 7 and 10. 

Table 5.15 summarizes the results obtains using this kind of configuration. 

 

Table 5.15 Results using 30-X-δ MLP configuration (angles in degrees) 

NN configuration 30-7-δ 30-10-δ 

MSE(LS) 0.01435 0.02140 

MSE(TS) 0.02090 0.03070 

Correlation factor 0.9838 0.9792 

Error min. -539.89 -533.02 

Error max. 717.77 696 

cycles 150 100 

 

Maximum and minimum errors are again unacceptably large.  

 

Case MLP configuration 30  –X - X - δδδδ 

This new configuration tested is basically the same that used above, with the difference 

that we have added one hidden layer. 

The results obtained with this configuration are shown in Table 5.16 
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Table 5.16 Results using 30-X-X -δ MLP configuration (angles in degrees) 

Net 
configuration 

MSE 
(LS) 

MSE 
(TS) 

Correlation 
factor 

Error 
min(deg) 

Error 
Max(deg) 

cycles 

30 - 25 -5 - δ 0.002348 0.00665 0.9949 -190.52 538.70 100 

30 – 25 -25- δ 0.002729 0.00720 0.9945 -487.48 439.01 150 

30 – 20 -5-δ 0.003098 0.00852 0.9935 -271.35 495.16 100 

 

We observe again an improvement in accuracy resulting from the introduction of a 

second hidden layer. Nevertheless, there are still very large errors.  

 

Case MLP configuration 18  –X - X - δδδδ 

Finally, a further set of simulations were obtained by further reducing the input variables 

to the neural nets, by using the magnitude and phase angle of voltage measurements of 

phase A, and only the current magnitudes as inputs to the neural network. Current phase 

angles were thus not used for this configuration, leading to 18 input variables. The best 

results were again obtained with two hidden layers and are displayed in Table 5.17. 

 

Table 5.17 Results using 18 –X –X - δ  configuration (angles in degrees) 

Net 
configuration 

MSE 
(LS) 

MSE 
(TS) 

Correlation 
factor 

Error 
min(deg) 

Error 
Max(deg) 

cycles 

18 - 20 -10 - δ 0.002299 0.005969 0.9954 -191.69 480.69 250 

18 – 20 -20- δ 0.001962 0.005391 0.9959 -154.30 526.39 200 

18 – 30 -10-δ 0.0020 0.00551 0.9958 -282.29 481.23 250 

 

As one can see from these results, this simplification only marginally improved accuracy, 

which still remains below expectations. To further highlight this, Figure 5.9 provides a 

graphical comparison of actual rotor angle and those obtained from neural network 

predictions. These latter show some very large peaks, apparently appearing at random 

places during the transients. 
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(a) 

 

(b) 

Figure 5.9 True vs. estimate rotor angle for MLP 18 -20-20-δ. Stable test scen ario (a) nad unstable test 
scenario(b) 
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5.3.2 Estimation of δδδδ by using a rectangular representation. 
 

On the use of a rectangular representation of the rotor angle. 

The difficulty to obtain accurate results in the direct estimation of rotor angles, as carried 

out in the previous sections, can be explained by the fact that these rotor angles become 

quite large in the context of unstable scenarios (actually unbounded), while the phases 

and amplitudes of the phasor measurements used as inputs to the neural network remain 

bounded (phases within the interval [-180°,180°], amplitude between 0 and some upper 

bound fixed by system parameters). This makes it difficult, if not impossible, to yield an 

estimation scheme using a limited number of past measurements to provide good 

accuracy both for the large excursions (over 1000°) of the rotor angle in unstable cases 

and the smaller variations (typically 10°-80°) in stables ones. We believe that the training 

of the MLPs in such conditions actually leads to overfitting the unstable scenarious at the 

price of a rather bad approximation of the stable ones, as shown in Figs. 5.8 and 5.9. 

In order to circumvent this problem, we propose to use instead of the direct estimation of 

the rotor angle δ, an indirect scheme where two neural networks are trained in parallel, in 

order to respectively provide an approximation of sin(δ) and cos(δ). Indeed, these values 

have the advantage of remaining bounded even in unstable conditions, and at the same 

time they vary smoothly over time. On the other hand, the rotor angle can be 

straightforwarly recovered from these values (up to  a multiple of 360°). 

It is import remake that the estimation of rotor speed (ω) we don’t find this problem, 

because in both cases stable and unstable the value for omega remaining bounded. 

 

Rectangular representation of the rotor angle for three phase faults cases only. 

Table 5.18 shows training and testing results obtained for two such MLPs, both with two 

hidden layers of 8 neurons each, and a linear output neuron. In these simulations we 

considered only the three phase faults as the last configuration mentioned above, with the 

same training and testing scenarios. Notice that in the present case we also decided to 

drop from the 30 input variables the values corresponding to 1t −  cycle, since we found 

that they didn’t bring a significant amount of information (thus the MLPs use only twenty 
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inputs). In order to recover the rotor angle from the approximations of sin(delta) and 

cos(delta), we used the two MLPs obtained after 150 cycles of training, which 

corresponded to convergence of the MSE both on the training and on the testing samples. 

Notice that no overfitting is observed with these structures and input and output variables. 

Table 5.18 Results of training and testing MLPs with rectangular representation of δ 

Net 
configuration 

MSE (ls) MSE (ts) Correlation 
factor(ts) 

Error 
min(ts) 

Error 
max(ts) 

cycles 

20-8-8-sin(δ) 0.004229   0.005422 0.9951 -0.593 0.586 50 

20-8-8-sin(δ) 0.003219   0.004265 0.9962 -0.563 0.495 100 

20-8-8-sin(δ) 0.003118   0.005422 0.9962 -0.546 0.474 150 

20-8-8-cos(δ) 0.001957   0.002743 0.9976 -0.352 0.331 50 

20-8-8-cos(δ) 0.001378   0.002121 0.9982 -0.510 0.323 100 

20-8-8-cos(δ) 0.001205   0.001840 0.9984 -0.547 0.335 150 

 

Compared to the previous results we obtained a significant increase in accuracy when 

using this approach to estimate the rotor angle. Indeed, except for a small number of large 

errors, the approximation provides a standard error (on the test sample) of 3.73 degrees, 

with minimum and maximum errors of respectively -32.4 and 26.5 degrees. The quality 

of this estimation scheme is illustrated on next figures. 

 

Figure 5.10 shows a few test scenarios both the true (i.e. taken from the simulations) rotor 

angle, and the approximation recomputed from the two MLP outputs. Both are trimmed 

to the interval [-180°,180°].  

Figure 5.11, on the other hand, illustrates the fact that sometimes there remain large 

errors, but we see that these are merely due to the fact that the signal discontunuety at 

180° does appear at two different (but successive) time steps for the true signal and its 

estimation. Although such errors appear as large and influence the accuracy statistics in a 

negative way, from a practical point of view they are not problematic.  

Figure 5.12 further highlights the overall performances by a scatter-plot representing the 

true angle and its estimation for all the 14400 test samples. It shows that, except for the 

already discussed large errors, the approximation is of very good quality. 
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In figure 5.13 we illustrate two training scenarios (the two first in our data set), showing 

some small estimation errors at fault application and clearing instants. These small peaks 

of limited amplitude of one or two examples are typical errors incurred by this scheme. 

We deem that this kind of estimation error could also be easily detected and corrected in 

real time, taking advantage of the fact that rotor angles must vary smoothy. 

 

 
Figure 5.10 Rotor angle vs estimation for six test scenarios (2 stable, 2 unstables, 2 stables). 

 20-8-8-sin(δ)and 20-8-8cos(δ) trained for 150 cycles. 

 

 
Figure 5.11 Rotor angle vs estimation for a stable followed by an unstable test scenario. 
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Figure 5.12 Rotor angle vs estimation for all 14400 test sample. 

 
Figure 5.13 Rotor angle vs estimation for all the two first test scenarios 

 

Rectangular representation for both balanced and unbalanced faults. 

Table 5.19 shows training and testing results.  

Table 5.19 Results using 60 -10 -10 –sin(δ) /cos(δ)  MLP configuration (angles in degrees) 

Net 
configuration 

MSE 
(LS) 

MSE 
(TS) 

Correlation 
factor 

Error 
min 

Error 
Max 

cycles 

60-10-10-cos( δ) 8.83E-
4 

0.00144 0.9988 -0.318 0.467 100 

60-10-10-sin(δ) 0.002
580 

0.004116 0.9963 -0.5079 0.5290 100 
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Figure 5.14 shows for two test scenarios the true rotor angle (solid line), and the 

approximation recomputed from the two MLP outputs (dotted line). 
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Figure 5.14 Rotor angle vs estimation for a stable test scenario. 

 

 

 

Figure 5.15 shows two test unstable scenarios, trimmed to the interval [-180°,180°]. 
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Figure 5.15 Rotor angle vs estimation for unstable test scenarios. 

 

Figure 5.16 is devoted for a few test scenarios that represent a single-phase fault. 
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Figure 5.16 Rotor angle vs estimation for single phase fault occurrence. 
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Figure 5.17 shows a single phase faults followed by a stable three phase fault. 
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Figure 5.17 Rotor angle vs estimation for a single phase fault followed by an stable three phase fault  test 

scenario. 
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Figure 5.18 Rotor angle vs estimation for a stable followed by an unstable test scenario. 
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Figure 5.18 illustrates the estimation of rotor angle delta for a single phase fault, showing 

some small estimation errors at fault application and clearing instants. 

 

Discussion 

Our investigations have shown that direct estimation of the rotor angle with neural 

networks led to inappropriate results, essentially because the phasors computed by the 

PMU device are trimmed to the interval [-180°,180°] while the output quantity may 

become very large in the case of unstable scenarios.  

Among the different possible approaches that could have been proposed to circumvent 

this difficulty, we have proposed to use a rectangular representation of the rotor angle 

leading to an estimation scheme were two neural networks are used, one to estimate the 

sinus of the rotor angle and the other one to estimate the cosinus of it. These quantities 

are smooth functions of the rotor angle, which itself varies smoothly over time, and from 

them it is possible to recover the rotor angle up to a multiple of 360 degrees.  

The resulting scheme leads to robust rotor angle estimation both in the case of balanced 

and unbalanced fault conditions.  

5.3.3 Estimation of ωωωω for the MIS 
 

This approach used in this thesis can be extended in a straightforward way to the 

estimation of rotor angles by substituting ( )tω for ( )tδ , in the data preparation step. 

For estimating the value of rotor speed, the MLP configuration used had the form 60 – 

X–X- ω, were X  denotes the number of hidden neurons (in our case we played with 

three different numbers of configurations) The training set and testing set remain the 

same that for the case of rotor angle estimation. 

Table 5.20 shows training and testing results obtained from this kind of MLPs, where 

Mu ( )µ  is the Mean and sigma ( )σ is the standard deviation. 
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Table 5.20 Results using 60 – X – X- ω configuration (ω in p.u.) 

Net 
configuration 

Correlation 
factor 

Error min. Error max. Mu (µ) Sigma (σ) 

60-5-5-ω 0.988 -47.72E-3 103.26E-3 25.88E-6 3.57E-3 

60-8-8-ω 0.995 -82.57e-3 55.47e-3 21.66e-6 2.35e-3 

60-10-10-ω 0.997 -32.74e-3 59.76e-3 14.55e-6 1.69e-3 

 

 

Figure 5.19 further highlights the overall performances by a scatter-plot representing the 

true rotor speed and its estimation for all the test samples. It shows, the approximation if 

of very good quality. 

 

 
Figure 5.19 Rotor speed vs estimation for all test samples.  MLP 60 -10-10-ω configuration 

 
Figure 5.20 shows a test stable scenario the true rotor speed taken from simulation and 

the approximation using two different configuration of MLP, both with two hidden 

layers, and ones used 8 neuron units each and the second using 10 neuron units. The best 

approximation according to the Table 5.20 and seeing this picture, we find that NN with 
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10 neuron units had the best performance. Figure 5.21 illustrates an unstable test scenario 

also doing the comparison between this two kind of configuration. 

 
Figure 5.20 Comparison true vs. estimate rotor speed for different MLP configurations. Stable test scenario 

 

 
Figure 5.21 Comparison true vs. estimate rotor speed for different MLP configurations. Unstable scenario 

 
Figure 5.22 shows a few test scenarios both the true rotor speed (solid line), taken from 

PSCAD simulations, and the approximation from MLP training.(dashed line) under stable 

conditions and Figure 5.23 shows the unstable cases. 
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Figure 5.22 True vs. estimate rotor speed for MLP 60 -10-10-ω 
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Figure 5.23 True vs. estimate rotor speed for MLP 60 -10-10-ω 

 

Figure 5.24 and 5.26 shows for a few test scenarios following a single phase fault 

showing some small estimation errors at fault application and clearing instants. Figure 

5.25 show two test scenarios representing a three-phase fault occurrence. 
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Figure 5.24 True vs. estimate rotor speed for MLP 60 -10-10-ω 

 

 
Figure 5.25 True vs. estimate rotor angle MLP 60 -10-10-ω 

 



 100 

3 3.005 3.01 3.015 3.02

x 10
4

0.997

0.998

0.999

1

1.001

1.002

points

ro
to

r 
s
p
e
e
d
 w

 (
p
.u

.)

MLP configuration 60 - 10 -10 - omega for estimation

omega from PSCAD

omega estimation PEPITo

 
Figure 5.26 True vs. estimate rotor angle for MLP 60 -10-10-ω 

 

Discussion 

The previous result show that rotor angle estimation can be carried out directly from 

phasor measurement quantities in an already satisfactory way. Further investigations 

should be carried out in order to see whether using the estimated rotor angles as 

additional input to the neural network could improve the speed estimation. Also, some 

postprocessing would be needed in order to filter out errors appearing during the fault 

application and clearing.  

5.3.4 Prediction of δδδδ for the MIS 
We extend the approach of section 5.3.2 in a straightforward way to the prediction of 

rotor angles by substituting ( )tδ   for ( )tt ∆+δ  , in the data preparation step. In our trials 

we used a value of t∆  equal to 16.66 ms. 

For this case, the set of scenarios was split into 1052 training scenarios and 355 testing 

scenarios, yielding a training set of 94680 samples and a testing set of 31950 samples. 

Except for a small number of large errors, due to the fact that the signal discontinuity at 

180 ° does appear at two different (but successive) time steps for the true signal and its 

prediction., the prediction of rotor angle delta provides a minimum and maximum errors 
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of -29.90° and 45.78° respectively.  The good quality of this prediction is shown on 

Figures 2.28 to 5.32. 

Table 5.21 shows testing results obtained for two such MLPs, both with two hidden 

layers of 8 neurons each, and a linear output neuron. In these simulations we considerer 

three phase faults and single phase faults. On Figure 5.27 the points in the upper left and 

lower right corner correspond to 94 large instantaneous errors. If we not take in account 

this large errors, the correlation factor is 0.9968. Figure 5.28 we represent the true value 

of rotor angle (solid line) obtained from PSCAD simulations, dotted line represents the 

value computed from the 60 – 8 – 8-sin( δ̂ ) and 60 – 8 – 8-cos(δ̂ ) trained for 100 cycles. 

Table 5.21 Results using 60 – 8 – 8-δ̂  configuration (δ̂  in degrees.) 

Net 
configuration 

Correlation 
factor 

Error 
min(deg 

Error 
Max(deg) 

Mu(µ) Sigma(σ) cycles 

60-8-8-cos(δ̂ ) 0.998 -0.677 0.401 663.01e-6 38.39e-3 100 

60-8-8-sin(δ̂ ) 0.9930 -0.600 0.514 3.68e-3 49.09e-3 100 
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Figure 5.27 Rotor angle vs prediction for all 31950 test samples. 
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Figure 5.28 True vs. predicted rotor angle for MLP 60 -8-8-δ̂  

 

Figure 5.29 shows two test scenarios form an unstable case, as the figures mentioned 

above, the solid line represents the true value of rotor angle, and the prediction 

recomputed from the two MLPs outputs in dotted line, both are trimmed to the interval [-

180°,180°]. Figure 5.30 illustrates a few test scenarios that correspond to a single phase 

fault. 



CHAPTER 5 SIMULATIONS AND TRAINING RESULTS ON THE MEXICAN 
INTERCONNECTED SYSTEM 
 

 103 

280 300 320 340 360 380 400 420 440

-200

-150

-100

-50

0

50

100

150

200

MLP 60 -8 - 8 -δ

points

ro
to

r 
a
n
g
le

 δ  
(d

e
g
)

 

Figure 5.29 True vs. predicted rotor angle for MLP 60 -8-8-δ̂  

 

 

Figures 5.31 and 5.32 suggest that the prediction of rotor angle is of very good quality. 
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Figure 5.30 True vs. predicted rotor angle for MLP 60 -8-8-δ̂  
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Figure 5.31 True vs. predicted rotor angle for MLP 60 -8-8-δ̂  
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Figure 5.32 True vs. predicted rotor angle for MLP 60 -8-8-δ̂  

 

5.3.5 Prediction of ωωωω for the MIS 
 

This approach used in this thesis can be extended in a straightforward way to the 

prediction of rotor angles by substituting ( )tω   for ( )tt ∆+ω , in the data preparation step. 

For this case, the set of scenarios was split into 1052 training scenarios and 355 testing 

scenarios, yielding a training set of 94680 samples and a testing set of 31950 samples, 

each one described by 90 instantaneous input values and one output(ω ). 

Table 5.22 shows testing results obtained for MLPs, with two hidden layers changing the 

number of hidden units, and a linear output neuron. In these simulations we considerer 

three phase faults and single phase faults. On figure 5.33 further highlights the overall 

performances by a scatter-plot representing the true rotor speed and its prediction for all 

the 31950 test samples. Figure 5.34 we represent the true value of rotor speed (solid line) 

obtained from PSCAD simulations, dotted line represents the value computed from the 60 

– 15 – 5- ω trained for 100 cycles. 
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Table 5.22 Results using 60 – X – X- ω̂ configuration (ω in p.u.) 

Net 
configuration 

Correlation 
factor 

Error min. Error max. Mu ( µ ) Sigma 
(σ ) 

60-8-8-ω̂  0.993 -36.09E-3 66.90E-3 277.65E-6 2.65E-3 

60-10-10-ω̂ 0.997 -74.84e-3 53.70e-3 18.79e-6 1.87e-3 

60-15-5-ω̂  0.997 -37.30e-3 26.67e-3 -2.19e-6 1.87e-3 

 

 

Figure 5.33 Rotor speed vs prediction for all 31950  test samples MLP 60 -15-5-ω̂  
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Figure 5.34 True vs. predicted rotor speed for MLP 60 -15-5-ω̂  

 

 

 

Figure 5.35 True vs. predicted rotor speed for MLP 60 -15-5-ω̂ .  Unstable test scenario 
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Figure 5.36 True vs. predicted for MLP 60 -15-5-ω̂ . Single phase fault  test scenario 

 

 

Figure 5.37 True vs. predicted rotor speed for MLP 60 -15-5-ω̂ .Stable test scenario 
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Figure 5.38 True vs. predicted rotor speed for MLP 60 -15-5-ω̂ . Single phase fault case 

5.3.6 Discussion 
 

In this chapter we have provided our investigations using a detailed model of a part of  

the MIS which allowed to simulate the transient behaviour of a power plant subject the a 

large variety of balanced and unbalanced fault conditions, while extracting measurements 

of three-phase phasors by a module which simulates the actual PMU device.  

We found that it is possible to obtain accurate estimation and prediction of rotor angles 

and speeds, provided that an appropriate coding of neural network outputs is used for the 

rotor angles (so-called rectangular representation).  

Although our results would need to be further validated, by using a richer set of testing 

scenarios, and also by taking into account measurement errors and variations in settings 

of the power plant control loops, we believe that these conclusions will remain valid. 

From a methodological point of view, although good results were obtained by using 

MLPs, it would also be interesting to assess the possibility of using other supervised 

learning methods, and possibly other sets of input variables. 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

 

6.1 CONCLUSIONS 
 

This thesis focused on the estimation and prediction of rotor angles and rotor speeds of 

synchronous machines using PMU measurements as inputs to artificial neural networks, 

in order to train them over the data sets and evaluate their performances over independent 

test sets. 

 

We have chosen multi-layer perceptrons over others supervised learning methods because 

this kind of algorithm is known to provide a good generalization provided enough 

training data is available in comparison to the dimensionality of the input space. Ideed, 

MLPs are smooth universal approximators, and we are working in a context where the 

input space is of relatively low dimensionality while the target input-output mapping is 

rather smooth. Another practically very important characteristic that has motivated the 

use of MLPs is that, in spite of a rather slow off-line training algorithm, they can be used 

in a very efficient manner to estimate or predict the quantities of interest in real-time. 

This very high computational efficiency is particularly important in the context of 

transient stability monitoring where it is necessary to reduce as much as possible delays 

due to complex data processing. 

 

In order to familiarize with the problem, we started our investigations by using a simple 

test case, that consisted of an OMIB system. In this context, we used rather small data 

sets of pairs of input-output data using a simplified dynamic model of the simulated 

power system, implemented in MATLAB-SIMULINK. This model used a single phase 

model of the system, assuming balanced conditions, and considered only the 

electromechanical dynamics modeled in transient stability studies. This first set of 

investigations used also the MATLAB neural network module and did not consider the 

prediction of angles and speeds ahead in time. It yielded however promising results, 

specially in comparison with an analytical approach exploiting the classical model to 
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compute rotor quantities from electrical phasors. The results of this preliminary study 

were published in a conference paper [DAGW03].  

 

In a second stage, we have applied the same approach while considering a much more 

detailed and realistic test system.  In particular, to take into account the behavior of a 

multi-machine system, we used a simplified model of the Mexican interconnected 

system. This system consists basically of a power plant with five synchronous generators 

represented in detail, that are interconnected by three lines to the rest of system. The rest 

of the system is represented by two large synchronous machines in order to represent 

with more fidelity the behavior of a real world system. In the simulations carried out on 

this system we have also used a detailed ‘electromagnetic-transient and three-phase’ 

dynamical model and a more exact representation of the PMU device (modeling the FFT 

used to compute phasors from instantaneous measurements). The higher complexity of 

this problem obliged us to use a larger database of simulation scenarios to train the neural 

networks. Hence we used the professional PEPITe [Pep04] data mining software in most 

of the experiments on this system. In this study we found out that it was preferable to use 

rectangular coordinates to represent the rotor angle targeted by the MLP [DAGE+06]. 

Further investigations have been reported in this thesis showing also quite promising 

results concerning the possibility of predicting rotor angles and speed ahead of time. 

These latter results have not yet been published. 

6.2 FUTURE WORK 
 

There are many possible directions for future work.  

The most direct continuation would be to enhance the validation of the proposed 

approach by considering other test power systems (in particular focusing on hydro-

plants), a more accurate representation of the PMU device (including measurement noise, 

distortions to measurement transformers, and time jitter due to the limited accuracy of 

GPS signals) and more extensive simulations on a broader range of system conditions. 

A second direction of future research would consist in applying other supervised learning 

methods to our datasets. In particular, we believe that it is worth comparing more 

systematically the compromise between precision and computational requirements of 
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multilayer perceptrons with other methods recently proposed in the automatic learning 

literature (ensemble methods, kernel-based methods, support-vector machines etc.). 

Also, since the long-term goal of our research is to enable real-time emergency control 

for limiting the risk of loss of synchronism, we believe that it would be of interest to 

investigate more deeply how automatic learning could be used in order to determine 

directly the appropriate control actions. In this context, it would be particularly 

interesting to investigate the possibility of determining these control actions by using 

only locally acquired PMU measurements. 

Finally, the approach investigated in this thesis should certainly be considered as a 

candidate for other power systems instability monitoring questions, such as voltage 

instability and negatively damped oscillations.  
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Appendix A  Modeling Power System Components 

 

Generator model 

 

A salient/round rotor Synchronous Machine fully developed model is available in 

PSCAD/EMTDC. The model is programmed in state variable form, using generalized 

machine theory. 

The generalized machine model transforms the stator windings into equivalent commutador 

windings, using the dq0 transformation as follows: 
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    (A.1) 

 

The three-phase rotor winding may also be transformed into a two-phase equivalent winding, 

with additional windings added to each axis to fully represent that particular machine, as is 

shown in Figure A.1. Support subroutines are included in the machine model library for 

calculating the equivalent circuit parameters of a synchronous machine from commonly 

supplied data. 

The d-axis equivalent circuit for the generalized machine is shown in figure A.2. Figure A.3 

illustrates the flux paths associated with various d-axis inductances. 

 

 

 
Figure A.1 Conceptual diagram of the three phase and dq windings 

 

 

 

where, 
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k = Amortisseur windings 

f = Field windings 

a,b,c = Stator windings 

d = Direct-axis ( d-axis) windings 

q =  Quadrature-axis (q-axis) windings 

 

 

 
 

Figure A.2 D-axis Equivalent Circuit 
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Figure A.3 Flux Paths Associated with Various d-axis Inductances 

 

 

 

A second damper winding on the q-axis is included and it can also be used as a round rotor 

machine to model steam turbine generator. 

 

Referring to Figures A.4 and A.5, the d-axis voltage UD2 and current ID2 are the field voltage 

and current respectively. The damper circuit consist of parameters L3D and R3D with UD3=0. 

The additional inductance L23D accounts for the mutual flux, which link only the damper and 

field windings and not the stator windings. the following equations can be derived: 
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where, 
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( )32111 QQQMQQq iiiLiL ++⋅+⋅=ψ     (A.4) 

 

d
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θ
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       (A.5) 

 

Similar equations hold for the q-axis except the speed voltage term, dψυ ⋅ , is positive, and: 

 

( )32111 DDDMDDd iiiLiL ++⋅+⋅=ψ     (A.6) 

 

Inversion of equation A.2 gives the standard state variable form BUAXX +=�  with state vector 

X consisting of the currents, and the input vector U, applied voltages. That is: 
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In the above form, Equation A.7 and A.8 are particularly easy to integrate. The equations are 

solved using trapezoidal integration to obtain the currents. The torque equation is given as: 

 

11 QdDq iiT ⋅−⋅= ψψ      (A.9) 

 

The dq-axis model includes the transient and sub transient characteristics of the machine and 

the set of differential equations describing the generator dynamics is given by equations A.10 

–A.15: 
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q q a q d dE V R I X I′′ ′′− = −       (A.12) 
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The final two state equations are provide by the rotor swing equations : 
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1
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where, 

Tm – turbine torque 

Te – electrical torque 

M – inertia constant 

D – Damping constant 

ω - Machine speed 

ωs – Synchronous speed 

δ - Rotor angle 

 

Governor 

 

The governor can be represent by IEEE type thermal governor model. In this case the 

approximate mechanical-hydraulic control (GOV1) was used. The schematic diagram for this 

device is given in figure A.4 
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Figure A.4 hydro turbine model representation in PSCAD software. 

 

 
Figure A.5 hydro governor model type IEEE GOV 1 
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Appendix B      Phasor Measurements Units (PMU) 
 
Introduction. 
 
Phasors are basic tools of ac circuit analysis, usually introduced as a means of representing 

steady state sinusoidal waveforms of fundamental power frequency. 

Even when a power system is not quite in a steady state, phasor are often useful in describing 

the behaviour of the power system. When the power system is undergoing electromechanical 

oscillations during power swings, the waveforms of voltages and currents are not in steady 

state, and neither is the frequency of the power system at its nominal value. Under these 

conditions, as the variations of the voltages and currents are relatively slow, phasor may still 

be used to describe the performance of the network, the variations being treated as a series of 

steady state conditions. Recent developments in time synchronized techniques, coupled with 

the computer based measurement technique, have provided a novel opportunity to measure 

the phasors, and phase angle differences in real time.  

Consider the steady state waveform of a nominal power frequency signal as shown in Figure 

B.1. Starting to observe the waveform at the instant, the steady-state waveform may be 

represented by a complex number with a magnitude equal to the RMS value of the signal and 

with a phase angle equal to angleφ . In a digital measurement system, samples of the 

waveform for one (nominal) period are collected according at 0t = , and the fundamental 

frequency component of the Discrete Fourier Transform (DFT) is calculated according to the 

relation: 

 

2 /

1

2 N
j k N

k
k

X X
N

πε −

=

= ∑ ,     (B.1) 

 

where N  is the total number of samples in one period, X  is the phasor, and kx  is the wave 

form samples. This definition of the phasor has the merit that it uses a number of samples 

( )N  of the wave form, and is the correct representation of the fundamental frequency 

component, when other transient component are present [Pha93]. 

Phasors can be measured for each of the three phases (a, b, c), and the positive sequence 

phasor can be computed according to its definition: 

( )2
1

1

3 a b cX X X Xα α= + +      (B.2) 
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where 2 /3j πα ε= . 

 

φ

X

0t =

φ

X

 
Figure B.1 Phasor representation of a sinusoidal waveform. Adapted from [Pha03]. 

 

 

Synchronization signals could be distributed over any of the traditional communication media 

currently in use in power systems. Most communication systems, such as leased lines, 

microwave, or AM radio broadcasts, place a limit on the achievable accuracy of 

synchronization, which is too coarse to be in practical use. Fibre-optic links could be used to 

provide high precision synchronization signals, if a dedicated fibre is available for this 

purpose. If a multiplexed fibre channel is used, synchronization errors of the order of 100 

microseconds are possible, and are not acceptable for power system measurements.  The 

Geostationary Operational Environmental Satellites (GOES) systems have also been used for 

synchronization purposes, but their performance is not sufficiently accurate [Wil92]. 

The technique of choice at present is the Navstar Global Positioning System (GPS) satellite 

transmissions. This systems is designed primarily for navigation purposes, but if furnishes a 

common-access timing pulse, which is accurate to within 1 microsecond at any location at 

earth. The system uses transmissions from a constellation of satellites in non stationary orbits 

at about 10 000 miles above the earth’s surface. For accurate acquisition of the timing pulse, 

only one of the satellites need be visible to the antenna. The experience with the availability 

and dependability of the GPS satellite transmission has been exceptionally good. [Pha93]. 
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FFT Algorithm. 

Fast Fourier Transform (FFT) is a classic filtering method. By performing Fourier transforms 

over a window of N points, the frequency components /ek f N  (where ef  is the sampling 

frequency) can be calculate using the formula below: 
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More generally, ( )X k  can be considered as the output from a filter which inputs ( )v t , with 

exponential coefficients. We thus have: 
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The relationship between FFT and demodulation is thus expressed as follows: 
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The filter for cutting out the high frequency component consists in averaging over N  points, 

which cancels out frequencies which are multiples of ef N . If the sampling frequency is 

right (i.e. if it is multiple of the frequency which contains the data signal) this filter will 

remove the 02 f  frequency together with the various harmonics [DCHH92]. 

 

Basic definitions. 

The follow definition of a real-time or synchronized phasor is provided in the IEEE Standard 

1344-1995 [IEEE95]: 

 

• Anti-aliasing: By the Nyquist Theorem, the maximum reproducible frequency is one-

half the sampling rate. Aliasing is caused when frequencies higher than one-half of the 

sampling rate are present. This results in the higher frequencies being ‘aliased’ down 

to look like lower frequency components. Anti-aliasing is providing low pass filtering 

to block out frequencies higher than those than ca be accurately reproduced by the 

given sampling rate. 
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• Nyquist rate: the minimum rate that an analog signal must be sampled in order to be 

represented in digital form. This rate is twice the frequency of that signal. 

• Phase lock: the sate of synchronization between two ac signals in which they remain 

at the same frequency and with constant phase difference. This term is typically 

applied to a circuit that synchronized a variable oscillator with an independent signal 

• Phasor: a complex equivalent of a simple sine wave quantity such that the complex 

modulus in the sine wave amplitude and the complex angle (in polar form) is the sine 

wave phase angle. 

• Synchronism: the state where connected alternating-current systems, machines, or a 

combination operate at the same frequency and where the phase angle displacement 

between voltages in them are constant, or vary about a steady and stable average 

value. 

• Synchronized phasor: a phasor calculated from data examples using a standard time 

signal as the reference for the sampling process. In this case, the phasors form remote 

sites have a defined common phase relationship. 

 
With real-time waveforms, it is necessary to define a time reference to measure phase angles 

synchronously. The IEEE standard 1344-1995[IEEE95] defines the start of the second as the 

time reference for establishing the phasor phase angle value. 

The synchronized Phasor measurements convention is shown in Figure B.2  

The instantaneous phase angle measurement remains constant at rated frequency when using 

the start of the second phase reference. If the signal is at off-nominal frequency, the 

instantaneous phase varies with time. The IEEE standard 1344-1995 defines a steady-state 

waveform where the magnitude, frequency, and phase angle measurement performance for a 

waveform do not change. This standard has no requirements regarding Phasor measurement 

performance for a wave form in transient state [BSG04]. 
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0φ = °

0V ∠ °

90V∠ − °
90φ = − °

 
Figure B.2 Synchrophasor measurement convention with respect to time. Adopted from [BSG04]. 

 

 

Phasor Measuring Units. 

The PMU was developed at the Virginia Polytechnic Institute, Blacksburg, in the mid-1980s. 

The GPS time-synchronized PMU measures current and voltages in Phasor detail (i.e. 

magnitude and phase). Phasor Measurements provide the capability to investigate power 

system stability in greater detail [HHN05]. 

Phasor measuring units (PMU) using synchronization signals from the GPS satellite system 

have evolved into mature tools and are now being manufactured commercially. Figure B.3 

shows a typical synchronized Phasor measurement system configuration. The GPS 

transmission is received by the receiver section, which delivers a phase-locked sampling clock 

pulse to the analogue-to-digital converter system. The sampled data are converted to a 

complex number which represents the Phasor of the sampled wave. Phasors of the three 

phases are combined to produce the positive sequence measurement [BNKH+05]. 
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The GPS receiver provides the 1 pulse-per-second (pps ) signal, and a time tag, which 

consists of the year, day, hour, minute and second. The time could be the local time, or the 

UTC (Universal Time Coordinate). The 1-pps signal is usually divide by a phase-locked 

oscillator into the required number of pulses per second for sampling of the analog signals. 

These signals are derived from the voltage and current transformer secondary sides, with 

appropriate anti-aliasing and surge filtering. 

 

 
Figure B.3 Phasor measurement unit. Adopte from [BNKH+05] 

 

 

PMU representation in PSCAD [Man03a]. 

PSCAD include as a device the Fast Fourier Transform (FFT), Figure B.4 shows this device 

in the PSCAD environment, which can determine the harmonic magnitude and phase of the 

input signal as a function of time.  The input signals first sampled before they are decomposed 

into harmonic constituents. Options are provided to use one, two or three inputs.  In the case 

of three inputs, the component can provide output in the form of sequence components. In our 

simulations we have selected the three 1-phase FFTs combined in one block. The input is 

processed to provide the magnitudes Mag and phase angle Ph of the fundamental frequency 

and its harmonics (including the DC component dc) 

 
 Figure B.4 FFT representation in PSCAD. Adopted from [Man03].  
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In Fig. B.4 the number 7 means the number of harmonics that FFT block calculates and its 

imply that the number of samples per period of the fundamental frequency is set to be 16. 

 

The task of frequency scanning involves a few data processing stages: 

• Low-Pass Filtering (Anti-Aliasing) 

• Sampling & Fourier Transform 

• Phase and Magnitude Error Correction. 

 

Figure B.5 illustrates graphically this process inside the FFT block. 

 
Figure B.5 On-line frequency scanner in PSCAD/EMTDC. 

 

Computations are performed on-line, at each sampling instance, and are based on a sampled 

data window of the preceding input signal cycle.  In accordance with the Nyquist Criteria, 

data sampling is performed at a frequency greater than double the highest harmonic frequency 

of interest.  Sampling rates may be one of, 16, 32, 64, 127 or 255 samples/cycle of 

fundamental frequency, which are written to a buffer. In our simulations 16 samples/cycles is 

selected. 

Since the number of samples in a window represents a period of fundamental frequency, the 

dynamics of a cycle preceding a sample are captured in the computations.  It should be noted 

that outputs of this subroutine contain valid information only if a complete data window is 

available for computations 

 It is important to be aware of the inherent aliasing effects due to sampling of the input signal. 

 A low pass, anti-aliasing filter is recommended at all times, unless the input signal is 

guaranteed not to have any higher order harmonics. This filter is provided within the 

component. 

  

The harmonic computations are based on a standard Fast Fourier Transformation (FFT) 

technique, used in digital signal processing.  The basis function for computation of phase 
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angle can either be a fundamental frequency cosine waveform or a sine waveform starting at 

time = 0. 

  

The harmonics computed are with respect to a given constant fundamental frequency.  For 

situations where the fundamental frequency is variable, the use of a frequency-tracking device 

is available to the user.  The frequency-tracking unit uses the fundamental component of the 

input signal corresponding to the previous sampling instance (as computed by the FFT 

routine), to monitor small changes in the frequency of the input signal.  This element is meant 

to monitor minor fluctuations of frequency. Frequency tracking may be enabled or disabled at 

users discretion.  

  

Gibbs ringing effect, as a result of rectangular data windows, is usually not a problem with 

harmonics of the fundamental frequency.  However, if the sampling frequency is not 

synchronized to the fundamental frequency of the input signal, the Gibbs effect distortions 

introduced on the measurement of harmonics may be significant.  Therefore, use of the 

frequency-tracking feature may not be needed unless the fundamental component is 

guaranteed to be free of frequency swings. 

 

 

 

 


