

A COMPONENT BASED APPROACH TO POWER SYSTEM

APPLICATIONS DEVELOPMENT

Izudin Džafić
University of Tuzla

Electrical Engineering
Department

Franjevačka 2
 35000 Tuzla, Bosnia
idzafic@yahoo.com

Fernando L. Alvarado
University of Wisconsin-

Madison
Department of Electrical and

Computer Engineering
Wisconsin 53706, USA
alvarado@engr.wisc.edu

Mevludin Glavić
University of Liege
Institute Montefiore

Sart Tilman B28
B-4000 Liege

Belgium
glavic@montefiore.ulg.ac.be

Sejid Tešnjak
University of Zagreb

Electrical Engineering and
Computing Department
Unska 3, 10000 Zagreb

Croatia
sejid.tesnjak@fer.hr

Abstract - This paper addresses issues of reusability of
component models. Once a component model is designed,
implemented and tested, it should be possible to use it as
many times as necessary for a variety of purposes. The
main idea of this paper is to introduce a new way for build-
ing flexible power system applications. In order to obtain
code reusability a "general" non-linear equation handler
and solver is implemented. The general-purpose solver does
not need to know in advance what kind of problem is going
to be solved. Instead, the solver is based on symbolic model
handling and evaluation. In order to use the model, each
specific application of interest has a converter that trans-
forms input data to the realm of the general purpose solver.
Both the application-specific converter and the general
purpose equation handler and solver are designed as com-
ponents. Thus, there is no need to change, or to recode the
solver each time when new specific problem of interest
arises. It is only necessary to create a new "converter."
The result is that the complete development process is less
error prone. In addition to describing code reusability, this
paper also presents a unique way of collecting input data
and model descriptions that make it possible to reuse sym-
bolic models in an effective manner.
Keywords: Software Design and Development, Object-
orientation, Code Reusability, COM, Symbolic Computation

1 INTRODUCTION
Previous approaches to power system modeling and

application development vary from traditional proce-
dural programming to modern object-oriented ap-
proaches. Speeding up the programming process, im-
proving the quality of the source code organization and
the ability to manipulate the code are the main features
of current object-oriented methods. Traditional proce-
dural programming gives very good results in terms of
final application computational speed. Lack of quality of
source code is the main reason in the move toward ob-
ject-oriented programming. Object-oriented modeling of
power systems to date has been based on physical ob-
jects. Physically based objects are a natural way of rep-
resenting the system. Using these approaches the devel-
oper of a power system application are faced with the
problem of understanding the physical principles of
objects. Previous analyses of object-oriented application
development were based on comparisons of computa-

tional speed between applications developed using ob-
ject-oriented and procedural languages [1,2,3,4].

Several symbolic tools have been developed to speed
up the software development cycle [7,11,12,13].
ADIFOR [8] and ADIC [9] are tools for automatic code
differentiation. These tools can be used to achieve faster
programming. However, modifying applications devel-
oped using these tools requires two steps. First, new
differentiation information must be generated. This step
includes entering a new mathematical model directly
into source code and using these tools regenerating
needed derivative information. Second, the regenerated
code has to be recompiled. Furthermore, these tools are
dependent on the use of a specific underlying program-
ming language (Fortran, C).

Another modern approach to software development
can be based on component modeling using
COM/DCOM or CORBA. These frameworks are pro-
gramming language independent. A developed compo-
nent can be used in any programming language as long
as that programming language provides support for
component communication. Additionally, components
are used as binary objects and there is no possibility of
accidentally changing their behavior. In this paper COM
is used as a case-study for component development.

Object-oriented design and component software de-
velopment have several advantages. Maintaining source
code and its reusability are the most important. This
paper presents a new approach to power system software
application development with the following goals:

- Code reusability,
- Speeding up programming,
- Easier maintenance of large power system models,
- Independence from programming languages.

2 FRAMEWORK DESIGN
For a large power system, problems of maintaining

source code and making changes to models can be quite
difficult. In order to solve this problem, the process of
modeling and applications development is divided into
three layers: a model design layer (editor layer), a data-
base layer, and an application layer. The database layer
collects information on the current system state. This

mailto:idzafic@yahoo.com
mailto:alvarado@engr.wisc.edu
mailto:glavic@montefiore.ulg.ac.be
mailto:sejid.tesnjak@fer.hr

includes information about the mathematical model of
the system, its symbolic Jacobian, and initial guesses.
Thus, time needed for parsing and symbolical differen-
tiation is removed from the application layer. Informa-
tion on the current system state is entered using editor
and input format converters. The application layer can
use this data via component models.

2.1 Code reusability
Once designed, implemented and tested application

(component) should be re-used whenever possible. Im-
plementation of applications with code reusability inten-
tions requires that the design process be dominant in the
software development cycle. It is natural for an object-
orientated approach to go from the general (even ab-
stract) toward the specific. The paper uses this approach
to achieve code reusability.

A general-purpose solver that solves non-linear sets
of equations is implemented as the main part of this
approach. Since a general-purpose solver cannot know
in advance what kind of problem is going to be solved,
the solver must be able to perform symbolic evaluations.
The symbolic module is responsible for evaluating func-
tions, gradients, Jacobians, and Hessians of the specific
problem.

The solver component is based on a well-tested and
documented SolverQ implementation [5,6]. Since this
solver makes extensive use of symbolic computation, its
native format is used as input to the solver. For power
systems, on the other hand, there are specific data input
formats (e.g. CDF, PTI) that are frequently used. In
order to reuse these power system file formats, convert-
ers for each format type are implemented. These con-
verters generate the same input format for the solver.
Developers can use these modules as part of the solution
process, or can use them as independent stand-alone
modules. Furthermore, these converters help in seam-
lessly integrating component models and the proposed
framework into existing power system model organiza-
tions.

Since components are used and distributed in binary
formats there is no need for recompilation of applica-
tion. Future applications can be developed with addi-
tional flexible features.

Plug-in

Specific input
format

Input Format
Adaptation

General
purpose
solver

Parameter data
and initial
guesses

Results

Figure 1: Input data adaptation for general purpose solver

To be robust, future applications have to implement a
plug-in loader module. This module collects all avail-
able plug-ins for different problems. Using this ap-
proach, a main application does not need to be recom-
piled or even changed to accommodate additional re-
quirements. From a developer’s point of view there is
only a need for a new plug-in (converter) implementa-
tion. A plug-in contains descriptions that are required by
the user interface. Thus, plug-ins must “expose” all
information necessary for dynamic menu construction
and information on required file format extensions.

2.2 Application robustness and input data reusability
Introducing symbolic evaluation and having applica-

tion based on a general solver results in reduced compu-
tational speed. In order to speed up the solving process,
a prepared Jacobian and parsed input data are used. This
is implemented using formula (module) pool, which
contains unique formula (system) names and informa-
tion needed by the solver. Thus, unnecessary parsing for
repetitive solving of the same problem is skipped. For
on-line adjustment, parameter variables are included.
Figure 2. contains the design of the proposed frame-
work. New components are emphasized in yellow.

 Application
Layer

Database Layer

 Equation
Editor
Layer

Input
converter 1
(Plug-In 1)

Input
converter n
(Plug-In n)

Measurement
Unit Editor

Constants
Editor

Input component (plugin) interface

Equation's Editor
(Entering or modifying generated equations)

Symbolic:
F, J, Grad

Database

COM solver
F(g,x)=0

WWW,
JScript,

VB, Delphi,
C++,...

Results Presentation

Figure 2: Framework for using COM modules

In order to obtain input data model reusability three
layers are introduced. An Equation Editor Layer con-
tains all plug-ins and an editor for manually entering and
changing models. This layer also includes an editor for
constants and an editor for unit conversion.

The database layer is used for storing models for fu-
ture use. The database is organized as a tree.

The application layer contains specific user's code
and results presentation obtained from the COM solver.

The Equation Editor prepares set of equations, parses
them, and stores them in an appropriate format into the
database. This process can require either manual typing
or using available plug-ins for converting data from
other input formats. The Equation Editor produces post-
fix notation for faster formula evaluation. The Meas-
urement Unit Editor stores information needed for unit
conversion. This information is used by the application
layer for unit conversions. The Constants editor enters
values for the most useful constants and stores informa-
tion into the database. The Appendix contains screen-
shots of these parts of framework.

Once every has been organized, the COM solver re-
quires very short overhead time. The COM solver ex-
poses its interface to the Application Layer for setting
parameter variables (g) and for taking solutions (x).

2.3 Generic approach for future development
Three different components are developed: convert-

ers, component for parsing and symbolic derivation, and
a non-linear solver. These three components are taken
directly from SolverQ code. The flexibility of this
framework is illustrated on the following Figure, where
components are used without a database layer.

Specific
converter

Symbolic:
F, J, Grad

Solver
F(g,x)=0

Figure 3: Component piping

Figure 3 shows in a simple and generic way how to
obtain a solution on a specific problem in power system.
However, greater robustness of application can be ob-
tained if database layer is included, as described next.

3 COM SOLVER USAGE

The COM Solver is developed using C++ and ATL.

This leads to small memory requirements for executable
components. Components can be used and controlled by
external clients (e.g. VBScript, JScript, VBA, VB,
VC++, etc.), even on web pages.

There are three different ways of using the COM
solver. These differences are caused by the way in which
parameters and variable values are passed. Parameter
and variable values passing can be done using names or
indices. The Appendix contains a partial listing of the
solver component interface.

3.1 Passing Value by Name

Main Loop

Component
Initialization

(Loading model
from database)

Send
Parameters to

the Component
via Parameter

Names

Solve

Get Results
from the

Component via
Result Names

Use Results

End ?

No

Unmap Variable
Names to
Indices

Set Values
Using Obtained

Indices

Map Variable
Names to
Indices

Get Values
Using Obtained

Indices

Automatic
component 's

memory
cleaning

Yes

Figure 4: Passing values by variable names

The highlighted part of the example shows lines of
code that pass parameter values by names. Named pa-
rameter passing is very flexible from a developers' point
of view. The code is more flexible in case the model is
modified. However, this method incurs some overhead
time needed for mapping names to actual memory loca-
tions. Using this method of passing values into solver
component should be avoided inside of loops.

3.2 Passing Value by Index

This is the fastest approach for passing parameters

inside and outside of COM modules. From a developers'
point of view this method is less clear. There is a need
for using comments for each index. Problems can arise
when models are changed or when the order of variables
is reorganized.

In order to use fast data access of passing values by
index and flexibility of passing values by names, a
combination of these two methods is used.

3.3 Combination of Passing Values by Name and Index

Combination of passing values by name and by index

solves the problem of potential variables reordering with
the same time response. To obtain this, developer should
use GetParamIndex and GetOutputIndex in initializating
part of application code. Thus, an application will obtain
indices at run time and can use them in loops.

Initialization
Part of

Application

Main Loop

(No need for
time costing

variable names
unmaping)

Component
Initialization

(Loading model
from database)

Send
Parameters to

the Component
via Indices

Solve

Get Results
from the

Component via
Result Indices

Use Results

End ?

No

Automatic
component 's

memory
cleaning

Yes

Obtaing Indexes
Using Variable

Names

Figure 5: Combined way of passing values

4 RESULTS

Components are tested on power flow and economic

dispatch problem. Timing results are given for power
flow compared to MatPower [14].

4.1 Power Flow problem

As a demonstration of the modeling process, a 6-bus

system is chosen. Listing 1 shows output from the con-
verter, which uses common data format file (CDF) and
transforms data into form that can be solved using COM
solver. These data are used as an input for the symbolic
COM solver.

{Generated from CF File}
{Problem: Power Flow}
k=1.0;
a1=0.0;
v1=1.05;

0.5* k=v2* (+v6* (-1.559020)* COS(a2-a6)+v6* 4.454343* SIN(a2-a6)
+ v5* (-1)* COS(a2-a5)+v5* 3* SIN(a2-a5)+ v4* (-4)* COS(a2-a4)
+v4* 8* SIN(a2-a4)+v3* (-0.769231)* COS(a2-a3) + v3* 3.846154*
SIN(a2-a3)+ v2* 9.328251+ v1* (-2)* COS(a2-a1)+ v1* 4* SIN(a2-a1));

v2=1.05;

0.6* k=v3* (+v6* (-1.923077)* COS(a3-a6)+v6* 9.615385* SIN(a3-a6)
+v5* (-1.463415)* COS(a3-a5)+v5* 3.170732* SIN(a3-a5)+ v3*
4.155722+v2* (-0.769231)* COS(a3-a2)+v2* 3.846154* SIN(a3-a2));

v3=1.07;
(-0.7)* k=v4* (+v5* (-1)* COS(a4-a5)+v5* 2* SIN(a4-a5) +v2* (-4)*
COS(a4-a2)+v2* 8* SIN(a4-a2)+v4* 6.176471+v1* (-1.176471)*
COS(a4-a1)+v1* 4.705882* SIN(a4-a1));

(-0.7)* k=-v4* (+v5* 2* COS(a4-a5)-v5* (-1)* SIN(a4-a5)+v2* 8*
COS(a4-a2)-v2* (-4)* SIN(a4-a2)+v4* (-14.670882)-v4* 6.176471 *
SIN(a4-a4)+v1* 4.705882* COS(a4-a1)-v1* (-1.176471)* SIN(a4-a1));

(-0.7)* k=v5* (+v6* (-1)* COS(a5-a6)+v6* 3* SIN(a5-a6)+v4* (-1)*
COS(a5-a4)+v4* 2* SIN(a5-a4)+v3* (-1.463415)* COS(a5-a3)+v3*
3.170732* SIN(a5-a3)+v2* (-1)* COS(a5-a2)+v2* 3* SIN(a5-a2)+v5*
5.293290+v1* (-0.829876)* COS(a5-a1)+v1* 3.112033* SIN(a5-a1));

(-0.7)* k=-v5* (+v6* 3* COS(a5-a6)-v6* (-1)* SIN(a5-a6)+v4* 2*
COS(a5-a4)-v4* (-1)* SIN(a5-a4)+v3* 3.170732* COS(a5-a3)-v3*
(-1.463415)* SIN(a5-a3)+v2* 3.000000* COS(a5-a2)-v2* (-1)*
SIN(a5-a2)+v5* (-14.210265)-v5* 5.293290* SIN(a5-a5)+v1*
3.112033* COS(a5-a1)-v1* (-0.829876)* SIN(a5-a1));

(-0.7)* k=v6* (+v5* (-1)* COS(a6-a5)+v5* 3* SIN(a6-a5)+v3*
(-1.923077) * COS(a6-a3)+v3* 9.615385* SIN(a6-a3)+v6* 4.482097+
v2* (-1.559020)* COS(a6-a2)+v2* 4.454343* SIN(a6-a2));

(-0.7)* k=-v6* (+v5* 3* COS(a6-a5)-v5* (-1)* SIN(a6-a5)+v3*
9.615385 * COS(a6-a3)-v3* (-1.923077)* SIN(a6-a3)+v6*
(-17.037228)-v6* 4.482097* SIN(a6-a6)+v2* 4.454343* COS(a6-a2)-
v2* (-1.559020)* SIN(a6-a2));

{Initial values:}
v1≈1.000000; a1≈0.000000; v2≈1.000000; a2≈0.000000;
v3≈1.000000; a3≈0.000000; v4≈1.000000; a4≈0.000000;
v5≈1.000000; a5≈0.000000; v6≈1.000000; a6≈0.000000;

Listing 1. Output from CF converter module (6-bus)

Last output lines contain symbol “≈”, which denotes
initial values. Symbol “;” is used as separator between
equations. Symbols “{“ and “}“ denote start and end of
a comment section, respectively.

Prepared data are sent to the symbolical differenti-
ator, which constructs symbolical Jacobian. Both, sym-
bolical Jacobian and function equations are transformed
into postfix evaluators, which will be used by Newton-
Raphson solver.

Listing 2. contains solution obtained after solving 6
bus problem. Solution is obtained in 2 iterations and
tolerance = 1e-3.

v1=1.050000 a1=0.000000 v2=1.050000 a2=-0.065010
v3=1.070000 a3=-0.075642 v4=0.986423 a4=-0.072934
v5=0.979665 a5=-0.091175 v6=1.014433 a6=-0.104205

Listing 2. Solution of 6-bus power system

In presented example, components are “piped” form-
ing the following chain: problem formulation (CDF file)
→ power flow converter → symbolical differentiator →
Newton-Raphson solver. Data transferred through com-
ponents, are available for examination. Listing 1. con-
tains data transferred from converter component into
symbolical differentiator. In case when data are accessed
from database, complete solver construction process is
much faster since database contains prepared postfix
evaluators, which are loaded directly into the solver.

Authors cannot show data passed from symbolical
evaluator into the solver, due to paper’s space restric-
tion. However, an example of output from a symbolical
differentiator is shown on the following example.

4.2 Economic Dispatch problem

For clarity reasons, Wood-Wollenberg’s economic dis-
patch example will be examined. In order to solve this
problem, augmented Lagrangian converter will be put in
front of symbolical differentiator and solver components
chain. Economic dispatch problem solution is obtained
via four “piped” components. Original problem formula-
tion is passed through the following component chain:
problem formulation → Lagrangian converter → sym-
bolical differentiator → (Hessian) symbolical differenti-
ator → Newton-Raphson solver.
 Problem formulation is shown on the following listing.

{Minimize:}
1.1* (510+7.2* p1+0.00142* p1^2)+0.00194* p2^2+7.85* p2+0.00482*
p3^2+7.97* p3+388;

{Subject to:}
p1 + p2 + p3 = 850 + ploss; {and}
ploss = 0.00003 * p1^2 + 0.00009 * p2^2 + 0.00012 * p3^2;

{Inequality constraints:}
p1 < 400; p2 < 300; p3 < 300

Listing 3. Economic dispatch problem formulation

Lagrangian converter converts inequality constraints
into equality constrains and constructs augmented La-
grangian. Listing 4. contains output from Lagrangian
converter for economic dispatch problem.

{Augmented Lagrangian:}
{L=}µ6* (SQUARE(δ6)+p3-300)+µ5* (SQUARE(δ5)+p2-
300)+µ4* (SQUARE(δ4)+p1-400)+µ3* (ploss-(0.00003* p1^2+
0.00009* p2^2+0.00012* p3^2))+µ2* (p1+p2+p3-(850+ploss))+
1.1* (510+7.2* p1+0.00142* p1^2)+0.00194* p2^2+7.85* p2+0.00482*
p3^2+7.97* p3+388;

Listing 4. Output from Lagrangian converter

Output from Lagrangian converter is sent to the sym-
bolical differentiator, which finds derivatives with re-
spect to each variable.

{d(L)/d(p3)=} µ6+µ3* (-0.00012* p3* 2)+µ2+0.00482* p3* 2+7.97;
{d(L)/d(p2)=} µ5+µ3* (-0.00009* p2* 2)+µ2+0.00194* p2* 2+7.85;
{d(L)/d(p1)=} µ4+µ3* (-0.00003* p1* 2) + µ2+

 1.1* (7.2+0.00142* p1* 2);
{d(L)/d(ploss)=} µ3+(-µ2);
{d(L)/d(µ2)=} p1+p2+p3-(850+ploss);
{d(L)/d(µ3)=} ploss-(0.00003* p1^2+0.00009* p2^2+0.00012* p3^2);
{d(L)/d(δ4)=} µ4* δ4* 2;
{d(L)/d(µ4)=} SQUARE(δ4)+p1-400;
{d(L)/d(δ5)=} µ5* δ5* 2;
{d(L)/d(µ5)=} SQUARE(δ5)+p2-300;
{d(L)/d(δ6)=} µ6* δ6* 2;
{d(L)/d(µ6)=} SQUARE(δ6)+p3-300;

Listing 5. Output from symbolical differentiator

From this point on, situation is the same as previously
described power flow problem. Symbolical data, shown

on Listing 5, are sent to the Hessian differentiator. Hes-
sian differentiator evaluates symbolical Hessian of given
problem. During solving, Hessian will play role of Jaco-
bian in Newton-Raphson solver. The following listing
contains solution of stated problem. Solution is obtained
in 5 iterations, and tolerance = 1e-3.

p1=334.2882655 p2=234.8271323 p3=300.0000000
ploss=19.1153997 µ2=-9.1477966 µ3=-9.1477966
µ4=-1.19*10-9 µ5=0.0000002 µ6=-2.3728448
δ4=8.1062776 δ5=8.0729727 δ6=6.44*10-9

Listing 6. Economic dispatch solution

4.3 Timing results

Table 1 shows results of the COM power flow solver
module computation as compared to MatPower [14]
execution times.

COM solver MatPower Input
model

Toler-
ance No. Iter. Time No.Iter. Time

IEEE118 10-6 3 0.210 3 0.05
IEEE300 10-6 4 1.580 5 0.16

Table 1. Testing platform: Win2000, Pentium III, 750 MHz

The execution time is bigger for COM due to the use
of a general nonlinear solver for the set of equations.
Furthermore, symbolic evaluation requires extensive
stack usage and parsing time. However, despite the fact
that symbolical evaluation is used inside of components,
computational speed is still quite tolerable, about 10
times slower than the “hard coded” approach. In other
larger examples this same ratio seems to hold

5 CONCLUSIONS AND FUTURE WORK

A new approach for component based application de-

velopment in power system has been explored. A ge-
neric framework for power system models organization
and software development has been proposed. Using
code reusability as one of its main guidelines, compo-
nents for future software development has been devel-
oped and tested.

Fast technological development was taken into con-
sideration, so that computational speed of future appli-
cations was not the main goal. Instead of speed of exe-
cution, speed of development is the paramount. Exam-
ples shown in this paper emphasize simplicity and effi-
ciency of development. Developers are not bounded by
a programming language. Proposed COM modules en-
able future software development using different pro-
gramming languages. Even developers with limited
power system knowledge can use these components very
efficiently.

Since COM modules are created using C/C++ and
ATL (and thus, they are very "light" in terms of memory
consumption) they can be used on web pages, and em-
bedded within script languages that support COM.

The problem of model redesign and the need for
complete application recompilation has been removed
using a centralized database for model collection. Ap-
plications developed within this framework only need to
be restarted to re-initialize needed COM modules. Col-
lecting updates on model changes is much easier using
this framework.

There is a sacrifice in speed for this flexibility. A
slowdown of a factor of 10 is seen in those applications
illustrated as well as a few others. Computing power,
however, is making such considerations less relevant.

Future work will try to add more robust optimization
composers, such as Interior-Point solver.

REFERENCES

[1] A. F. Neyer, F. F. Wu, K. Imhof, "Object-oriented
Programming for Flexible Software: Example of
Load Flow", IEEE Transactions on Power Systems,
Vol. 5, No 3. August 1990, pp. 689-696

[2] Mike Foley, Anjan Bose, "Object-oriented On-line
Network Analysis", IEEE Transactions on Power
Systems, Vol. 10, No. 1, February 1995, pp. 125-132

[3] E. Z. Zhou, "Object-oriented Programming, C++ and
Power System Simulation", IEEE Trans. on Power
Systems, Vol. 11, No. 1, February 1996. pp. 206-215

[4] E. Handschin, M. Heine, D. König, T. Nikodem, T.
Seibt, R. Palma, "Object-oriented Software Engi-
neering for Transmission Planning in Open Access
Schemes", IEEE Transactions on Power Systems,
Vol. 13, No. 1, February 1998, pp. 94-100

[5] F. Alvarado, "Solver-Q, Equation Handler, Version
1.90", User's Manual, University of Wisconsin, ECE
Department, November 1993

[6] F. Alvarado, I. Džafić, M. Glavić, "SolverQ, Equa-
tion Handling Software, Version 2.5 for Windows
Operating Systems", September 2001, (limited ver-
sion 2.0 is available from:
http://www.untz.ba/idzafic/solverq.htm

[7] Rainer Bacher, "Symbolically Assisted Numeric
Computations for Power System Software Develop-
ment", 13th PSCC Proceedings, pp. 5-16, June 1999

[8] Christian Bischof, Alan Carle, Peyvand Khademi,
Andrew Murer, "The ADIFOR 2.0 System for the
Automatic Differentiation of Fortran 77 Programs",
CRPC Technical Report CRPC-TR94491, 1994

[9] Christian Bischof, Lucas Roh, Andrew Mauer-Oats,
"ADIC: An Extensible Automatic Differentiation
Tool for ANSI-C", Argonne National Laboratory,
ANL/MCS-P626-1196, May 1997.

[10]Kundur P.: Power System Stability and Control, Mc
Graw-Hill Inc., 1994.

[11]F. L. Alvarado, D. J. Ray: Symbolically Assisted
Numeric Computation in Education, International
Journal of Applied Engineering Education, Vol. 4,
No. 6, 1988, pp. 519-536.

[12]F. L. Alvarado, Y. Liu: General Purpose Symbolic
Simulation Tools for Electric Networks, IEEE Trans.
on Power Systems, Vol. 3, No. 2, 1988, pp. 689-697.

[13]F. L. Alvarado, R. H. Lasseter, Y.Liu: An Integrated
Engineering Simulation Environment, IEEE Trans.
on Power Systems, Vol.3, No. 1, 1988, pp. 245-253.

[14]Ray D. Zimmerman, David Gan: “MATPOWER,
MATLAB™ Power System Simulation Package”,
Version 2.0, http://www.pserc.cornell.edu/matpower/

APPENDIX

Appendix contains component solver interface,
screenshot of Equation Editor Module – SolverQ, and
screenshots of additional tools previously mentioned in
the paper.

5.1 COM Solver Module Interface

COM Newton-Raphson solver module is done using

dual interface automation server. All COM-aware pro-
gramming languages like VB, VBA, VC++, etc. can use
the automation server.

HRESULT InitByStr([in] BSTR
strEquationName)

HRESULT InitByID([in] long nID)

HRESULT GetOutputName([in] long
nIndex,[out, retval]BSTR *strVarName)

HRESULT GetOutputIndex([in] BSTR
strVarName,[out, retval]long *nIndex)

HRESULT GetAllOutputNames([out, retval]
SafeArray(BSTR) *strVarNames)

HRESULT GetOutputValueByName([in]BSTR
strVarName, [out, retval] double
*dblVarValue)

HRESULT GetOutputValueByIndex([in]long
nIndex, [out, retval] double *dblVarValue)

HRESULT GetAllOutputValues([out, retval]
SafeArray(double) *dblVarValues)

HRESULT GetParamName([in] long nIndex,
[out, retval] BSTR *strParamName)

HRESULT GetParamIndex([in] BSTR
strParamName, [out, retval] long *nIndex)

HRESULT GetAllParamNames([out, retval]
SafeArray(BSTR) *strParamNames)

http://www.untz.ba/idzafic/solverq.htm
http://www.pserc.cornell.edu/matpower/

HRESULT SetParamValueByName([in] BSTR
strParamName, [in] double dblParamValue)

HRESULT SetParamValueByIndex([in] long
nIndex, [in] double dblParamValue)

HRESULT SetAllParamValues([in]
SafeArray(double) *dblParamValues)

HRESULT SetOutputUnit([in] long
nIndex,[in] BSTR strUnitName)

HRESULT Solve()

Listing 7. A part of COM solver interface (MS IDL)

5.2 Equation Editor Module

Using Equation Editor module, models can be edited

and stored into database. This module is small modifi-
cation of SolverQ. The module implements container for
plug-ins and enable model designer to test the model.
After testing, model can be saved into database. Saved
model contains symbolical information needed in solv-
ing process.

Figure 6: Equation Editor Module

5.3 Measurement Unit Module

This module is used for data measurement unit con-

version. In fact this is a very simple dialog with possibil-
ity to enter conversion equation. Information about units

together with their belonging conversions are stored in
database.

Figure 7: Measurement Unit Module

This information can be used with method SetOutpu-
tUnit. COM based solver will automatically convert
measurement unit into desired one.

5.4 Model Browser Module

The following picture contains screenshot of Model

Browser module.

Figure 8: Model Browser module

This module is a helping tool for finding appropriate
module inside database. The tool should help developers
while making new power system applications using
stored power system models.

	INTRODUCTION
	FRAMEWORK DESIGN
	Code reusability
	Application robustness and input data reusability
	Generic approach for future development

	COM SOLVER USAGE
	Passing Value by Name
	Passing Value by Index
	Combination of Passing Values by Name and Index

	RESULTS
	Power Flow problem
	Economic Dispatch problem
	Timing results

	CONCLUSIONS AND FUTURE WORK
	COM Solver Module Interface
	Equation Editor Module
	Measurement Unit Module
	Model Browser Module

	AFooter0: 14th PSCC, Sevilla, 24-28 June 2002
	BFooter0: Session 33, Paper 1, Page 1
	AFooter1: 14th PSCC, Sevilla, 24-28 June 2002
	BFooter1: Session 33, Paper 1, Page 2
	AFooter2: 14th PSCC, Sevilla, 24-28 June 2002
	BFooter2: Session 33, Paper 1, Page 3
	AFooter3: 14th PSCC, Sevilla, 24-28 June 2002
	BFooter3: Session 33, Paper 1, Page 4
	AFooter4: 14th PSCC, Sevilla, 24-28 June 2002
	BFooter4: Session 33, Paper 1, Page 5
	AFooter5: 14th PSCC, Sevilla, 24-28 June 2002
	BFooter5: Session 33, Paper 1, Page 6
	AFooter6: 14th PSCC, Sevilla, 24-28 June 2002
	BFooter6: Session 33, Paper 1, Page 7

