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Abstract - This paper addresses issues of reusability of 
component models. Once a component model is designed, 
implemented and tested, it should be possible to use it as 
many times as necessary for a variety of purposes. The 
main idea of this paper is to introduce a new way for build-
ing flexible power system applications. In order to obtain 
code reusability a "general" non-linear equation handler 
and solver is implemented. The general-purpose solver does 
not need to know in advance what kind of problem is going 
to be solved.  Instead, the solver is based on symbolic model 
handling and evaluation. In order to use the model, each 
specific application of interest has a converter that trans-
forms input data to the realm of the general purpose solver. 
Both the application-specific converter and the general 
purpose equation handler and solver are designed as com-
ponents. Thus, there is no need to change, or to recode the 
solver each time when new specific problem of interest 
arises. It is only necessary to create a new "converter." 
The result is that the complete development process is less 
error prone. In addition to describing code reusability, this 
paper also presents a unique way of collecting input data 
and model descriptions that make it possible to reuse sym-
bolic models in an effective manner. 
Keywords: Software Design and Development, Object-
orientation, Code Reusability, COM, Symbolic Computation  

1 INTRODUCTION 
Previous approaches to power system modeling and 

application development vary from traditional proce-
dural programming to modern object-oriented ap-
proaches. Speeding up the programming process, im-
proving the quality of the source code organization and 
the ability to manipulate the code are the main features 
of current object-oriented methods. Traditional proce-
dural programming gives very good results in terms of 
final application computational speed. Lack of quality of 
source code is the main reason in the move toward ob-
ject-oriented programming. Object-oriented modeling of 
power systems to date has been based on physical ob-
jects. Physically based objects are a natural way of rep-
resenting the system. Using these approaches the devel-
oper of a power system application are faced with the 
problem of understanding the physical principles of 
objects. Previous analyses of object-oriented application 
development were based on comparisons of computa-

tional speed between applications developed using ob-
ject-oriented and procedural languages [1,2,3,4]. 

Several symbolic tools have been developed to speed 
up the software development cycle [7,11,12,13]. 
ADIFOR [8] and ADIC [9] are tools for automatic code 
differentiation. These tools can be used to achieve faster 
programming. However, modifying applications devel-
oped using these tools requires two steps. First, new 
differentiation information must be generated. This step 
includes entering a new mathematical model directly 
into source code and using these tools regenerating 
needed derivative information. Second, the regenerated 
code has to be recompiled. Furthermore, these tools are 
dependent on the use of a specific underlying program-
ming language (Fortran, C).  

Another modern approach to software development 
can be based on component modeling using 
COM/DCOM or CORBA. These frameworks are pro-
gramming language independent. A developed compo-
nent can be used in any programming language as long 
as that programming language provides support for 
component communication. Additionally, components 
are used as binary objects and there is no possibility of 
accidentally changing their behavior. In this paper COM 
is used as a case-study for component development. 

Object-oriented design and component software de-
velopment have several advantages. Maintaining source 
code and its reusability are the most important. This 
paper presents a new approach to power system software 
application development with the following goals: 

- Code reusability, 
- Speeding up programming, 
- Easier maintenance of large power system models, 
- Independence from programming languages. 

2 FRAMEWORK DESIGN 
For a large power system, problems of maintaining 

source code and making changes to models can be quite 
difficult. In order to solve this problem, the process of 
modeling and applications development is divided into 
three layers: a model design layer (editor layer), a data-
base layer, and an application layer.  The database layer 
collects information on the current system state. This 
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includes information about the mathematical model of 
the system, its symbolic Jacobian, and initial guesses. 
Thus, time needed for parsing and symbolical differen-
tiation is removed from the application layer. Informa-
tion on the current system state is entered using editor 
and input format converters. The application layer can 
use this data via component models. 

2.1 Code reusability 
Once designed, implemented and tested application 

(component) should be re-used whenever possible. Im-
plementation of applications with code reusability inten-
tions requires that the design process be dominant in the 
software development cycle. It is natural for an object-
orientated approach to go from the general (even ab-
stract) toward the specific. The paper uses this approach 
to achieve code reusability.  

A general-purpose solver that solves non-linear sets 
of equations is implemented as the main part of this 
approach. Since a general-purpose solver cannot know 
in advance what kind of problem is going to be solved, 
the solver must be able to perform symbolic evaluations. 
The symbolic module is responsible for evaluating func-
tions, gradients, Jacobians, and Hessians of the specific 
problem.  

The solver component is based on a well-tested and 
documented SolverQ implementation [5,6]. Since this 
solver makes extensive use of symbolic computation, its 
native format is used as input to the solver. For power 
systems, on the other hand, there are specific data input 
formats (e.g. CDF, PTI) that are frequently used. In 
order to reuse these power system file formats, convert-
ers for each format type are implemented. These con-
verters generate the same input format for the solver. 
Developers can use these modules as part of the solution 
process, or can use them as independent stand-alone 
modules.  Furthermore, these converters help in seam-
lessly integrating component models and the proposed 
framework into existing power system model organiza-
tions.  

Since components are used and distributed in binary 
formats there is no need for recompilation of applica-
tion. Future applications can be developed with addi-
tional flexible features.  

Plug-in

Specific input
format

Input Format
Adaptation

General
purpose
solver

Parameter data
and initial
guesses

Results

 
Figure 1:  Input data adaptation for general purpose solver 

To be robust, future applications have to implement a 
plug-in loader module. This module collects all avail-
able plug-ins for different problems. Using this ap-
proach, a main application does not need to be recom-
piled or even changed to accommodate additional re-
quirements. From a developer’s point of view there is 
only a need for a new plug-in (converter) implementa-
tion. A plug-in contains descriptions that are required by 
the user interface. Thus, plug-ins must “expose” all 
information necessary for dynamic menu construction 
and information on required file format extensions.  

2.2 Application robustness and input data reusability 
Introducing symbolic evaluation and having applica-

tion based on a general solver results in reduced compu-
tational speed. In order to speed up the solving process, 
a prepared Jacobian and parsed input data are used. This 
is implemented using formula (module) pool, which 
contains unique formula (system) names and informa-
tion needed by the solver. Thus, unnecessary parsing for 
repetitive solving of the same problem is skipped. For 
on-line adjustment, parameter variables are included. 
Figure 2. contains the design of the proposed frame-
work. New components are emphasized in yellow. 
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Figure 2:  Framework for using COM modules 



 

In order to obtain input data model reusability three 
layers are introduced. An Equation Editor Layer con-
tains all plug-ins and an editor for manually entering and 
changing models. This layer also includes an editor for 
constants and an editor for unit conversion.  

The database layer is used for storing models for fu-
ture use. The database is organized as a tree.  

The application layer contains specific user's code 
and results presentation obtained from the COM solver.   

The Equation Editor prepares set of equations, parses 
them, and stores them in an appropriate format into the 
database. This process can require either manual typing 
or using available plug-ins for converting data from 
other input formats. The Equation Editor produces post-
fix notation for faster formula evaluation. The Meas-
urement Unit Editor stores information needed for unit 
conversion. This information is used by the application 
layer for unit conversions. The Constants editor enters 
values for the most useful constants and stores informa-
tion into the database.  The Appendix contains screen-
shots of these parts of framework. 

Once every has been organized, the COM solver re-
quires very short overhead time. The COM solver ex-
poses its interface to the Application Layer for setting 
parameter variables (g) and for taking solutions (x). 

2.3 Generic approach for future development 
Three different components are developed: convert-

ers, component for parsing and symbolic derivation, and 
a non-linear solver. These three components are taken 
directly from SolverQ code. The flexibility of this 
framework is illustrated on the following Figure, where 
components are used without a database layer. 
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Figure 3:  Component piping 

Figure 3 shows in a simple and generic way how to 
obtain a solution on a specific problem in power system. 
However, greater robustness of application can be ob-
tained if database layer is included, as described next. 

3 COM SOLVER USAGE  
 
The COM Solver is developed using C++ and ATL. 

This leads to small memory requirements for executable 
components. Components can be used and controlled by 
external clients (e.g. VBScript, JScript, VBA, VB, 
VC++, etc.), even on web pages. 

There are three different ways of using the COM 
solver. These differences are caused by the way in which 
parameters and variable values are passed. Parameter 
and variable values passing can be done using names or 
indices. The Appendix contains a partial listing of the 
solver component interface. 

3.1 Passing Value by Name 

Main Loop

Component
Initialization

(Loading model
from database)

Send
Parameters to

the Component
via Parameter

Names

Solve

Get Results
from the

Component via
Result Names

Use Results

End ?

No

Unmap Variable
Names to
Indices

Set Values
Using Obtained

Indices

Map Variable
Names to
Indices

Get  Values
Using Obtained

Indices

Automatic
component 's

memory
cleaning

Yes

Figure 4:  Passing values by variable names 

The highlighted part of the example shows lines of 
code that pass parameter values by names. Named pa-
rameter passing is very flexible from a developers' point 
of view. The code is more flexible in case the model is 
modified. However, this method incurs some overhead 
time needed for mapping names to actual memory loca-
tions. Using this method of passing values into solver 
component should be avoided inside of loops. 

3.2 Passing Value by Index 
 
This is the fastest approach for passing parameters 

inside and outside of COM modules. From a developers' 
point of view this method is less clear. There is a need 
for using comments for each index. Problems can arise 
when models are changed or when the order of variables 
is reorganized.  

In order to use fast data access of passing values by 
index and flexibility of passing values by names, a 
combination of these two methods is used. 

3.3 Combination of Passing Values by Name and Index 
 
Combination of passing values by name and by index 

solves the problem of potential variables reordering with 
the same time response. To obtain this, developer should 
use GetParamIndex and GetOutputIndex in initializating 
part of application code. Thus, an application will obtain 
indices at run time and can use them in loops. 
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Figure 5:  Combined way of passing values 

4 RESULTS 
 
Components are tested on power flow and economic 

dispatch problem. Timing results are given for power 
flow compared to MatPower [14]. 

4.1 Power Flow problem 
 
As a demonstration of the modeling process, a 6-bus 

system is chosen. Listing 1 shows output from the con-
verter, which uses common data format file (CDF) and 
transforms data into form that can be solved using COM 
solver. These data are used as an input for the symbolic 
COM solver.  
 
{Generated from CF File} 
{Problem: Power Flow} 
k=1.0; 
a1=0.0; 
v1=1.05; 
 
0.5* k=v2* (+v6* (-1.559020)* COS(a2-a6)+v6* 4.454343*  SIN(a2-a6) 
+ v5* (-1)* COS(a2-a5)+v5* 3* SIN(a2-a5)+  v4* (-4)*  COS(a2-a4) 
+v4* 8* SIN(a2-a4)+v3* (-0.769231)* COS(a2-a3) + v3* 3.846154*  
SIN(a2-a3)+ v2* 9.328251+ v1* (-2)* COS(a2-a1)+ v1* 4* SIN(a2-a1)); 
 
v2=1.05; 
 

0.6* k=v3* (+v6* (-1.923077)* COS(a3-a6)+v6* 9.615385* SIN(a3-a6) 
+v5* (-1.463415)* COS(a3-a5)+v5* 3.170732* SIN(a3-a5)+ v3*  
4.155722+v2* (-0.769231)* COS(a3-a2)+v2* 3.846154* SIN(a3-a2)); 
 
v3=1.07; 
(-0.7)* k=v4* (+v5* (-1)* COS(a4-a5)+v5* 2* SIN(a4-a5) +v2* (-4)*  
COS(a4-a2)+v2* 8* SIN(a4-a2)+v4* 6.176471+v1* (-1.176471)*  
COS(a4-a1)+v1* 4.705882* SIN(a4-a1)); 
 
(-0.7)* k=-v4* (+v5* 2* COS(a4-a5)-v5* (-1)* SIN(a4-a5)+v2* 8*  
COS(a4-a2)-v2* (-4)* SIN(a4-a2)+v4* (-14.670882)-v4* 6.176471 *  
SIN(a4-a4)+v1* 4.705882* COS(a4-a1)-v1* (-1.176471)* SIN(a4-a1)); 
 
(-0.7)* k=v5* (+v6* (-1)* COS(a5-a6)+v6* 3* SIN(a5-a6)+v4* (-1)*  
COS(a5-a4)+v4* 2* SIN(a5-a4)+v3* (-1.463415)* COS(a5-a3)+v3*  
3.170732* SIN(a5-a3)+v2* (-1)* COS(a5-a2)+v2* 3* SIN(a5-a2)+v5*  
5.293290+v1* (-0.829876)* COS(a5-a1)+v1* 3.112033* SIN(a5-a1)); 
 
(-0.7)* k=-v5* (+v6* 3* COS(a5-a6)-v6* (-1)* SIN(a5-a6)+v4* 2*  
COS(a5-a4)-v4* (-1)* SIN(a5-a4)+v3* 3.170732* COS(a5-a3)-v3*  
(-1.463415)* SIN(a5-a3)+v2* 3.000000* COS(a5-a2)-v2* (-1)*  
SIN(a5-a2)+v5* (-14.210265)-v5* 5.293290* SIN(a5-a5)+v1*  
3.112033* COS(a5-a1)-v1* (-0.829876)* SIN(a5-a1)); 
 
(-0.7)* k=v6* (+v5* (-1)* COS(a6-a5)+v5* 3* SIN(a6-a5)+v3*  
(-1.923077) *  COS(a6-a3)+v3* 9.615385* SIN(a6-a3)+v6* 4.482097+ 
v2* (-1.559020)* COS(a6-a2)+v2* 4.454343* SIN(a6-a2)); 
 
(-0.7)* k=-v6* (+v5* 3* COS(a6-a5)-v5* (-1)* SIN(a6-a5)+v3*  
9.615385 *  COS(a6-a3)-v3* (-1.923077)* SIN(a6-a3)+v6*  
(-17.037228)-v6* 4.482097* SIN(a6-a6)+v2* 4.454343* COS(a6-a2)-
v2* (-1.559020)* SIN(a6-a2)); 
 
{Initial values:} 
v1≈1.000000; a1≈0.000000; v2≈1.000000; a2≈0.000000; 
v3≈1.000000;  a3≈0.000000; v4≈1.000000; a4≈0.000000; 
v5≈1.000000; a5≈0.000000;  v6≈1.000000; a6≈0.000000; 

Listing 1.  Output from CF converter module (6-bus) 

Last output lines contain symbol “≈”, which denotes 
initial values. Symbol “;” is used as separator between 
equations. Symbols “{“ and “}“ denote start and end of 
a comment section, respectively.  

Prepared data are sent to the symbolical differenti-
ator, which constructs symbolical Jacobian. Both, sym-
bolical Jacobian and function equations are transformed 
into postfix evaluators, which will be used by Newton-
Raphson solver.  

Listing 2. contains solution obtained after solving 6 
bus problem. Solution is obtained in 2 iterations and 
tolerance = 1e-3. 

 
v1=1.050000 a1=0.000000   v2=1.050000 a2=-0.065010 
v3=1.070000 a3=-0.075642  v4=0.986423 a4=-0.072934 
v5=0.979665 a5=-0.091175 v6=1.014433 a6=-0.104205 

Listing 2. Solution of 6-bus power system  

In presented example, components are “piped” form-
ing the following chain: problem formulation (CDF file) 
→ power flow converter → symbolical differentiator → 
Newton-Raphson solver. Data transferred through com-
ponents, are available for examination. Listing 1. con-
tains data transferred from converter component into 
symbolical differentiator. In case when data are accessed 
from database, complete solver construction process is 
much faster since database contains prepared postfix 
evaluators, which are loaded directly into the solver.  



 

Authors cannot show data passed from symbolical 
evaluator into the solver, due to paper’s space restric-
tion. However, an example of output from a symbolical 
differentiator is shown on the following example. 

4.2 Economic Dispatch problem  
 
For clarity reasons, Wood-Wollenberg’s economic dis-
patch example will be examined. In order to solve this 
problem, augmented Lagrangian converter will be put in 
front of symbolical differentiator and solver components 
chain. Economic dispatch problem solution is obtained 
via four “piped” components. Original problem formula-
tion is passed through the following component chain: 
problem formulation → Lagrangian converter → sym-
bolical differentiator → (Hessian) symbolical differenti-
ator → Newton-Raphson solver.  
 Problem formulation is shown on the following listing. 
 
{Minimize:}  
1.1* (510+7.2* p1+0.00142* p1^2)+0.00194* p2^2+7.85* p2+0.00482*
p3^2+7.97* p3+388; 
 
{Subject to:}  
p1 + p2 + p3 = 850 + ploss; {and} 
ploss = 0.00003 *  p1^2 + 0.00009 *  p2^2 + 0.00012 *  p3^2; 
 
{Inequality constraints:} 
p1 < 400;   p2 < 300;   p3 < 300 

Listing 3.  Economic dispatch problem formulation 

Lagrangian converter converts inequality constraints 
into equality constrains and constructs augmented La-
grangian. Listing 4. contains output from Lagrangian 
converter for economic dispatch problem.   
 
{Augmented Lagrangian:} 
{L=}µ6* (SQUARE(δ6)+p3-300)+µ5* (SQUARE(δ5)+p2-
300)+µ4* (SQUARE(δ4)+p1-400)+µ3* (ploss-(0.00003* p1^2+ 
0.00009* p2^2+0.00012* p3^2))+µ2* (p1+p2+p3-(850+ploss))+ 
1.1* (510+7.2* p1+0.00142* p1^2)+0.00194* p2^2+7.85* p2+0.00482*
p3^2+7.97* p3+388;  

Listing 4. Output from Lagrangian converter 

Output from Lagrangian converter is sent to the sym-
bolical differentiator, which finds derivatives with re-
spect to each variable.  
 
{d(L)/d(p3)=} µ6+µ3* (-0.00012* p3* 2)+µ2+0.00482* p3* 2+7.97; 
{d(L)/d(p2)=} µ5+µ3* (-0.00009* p2* 2)+µ2+0.00194* p2* 2+7.85; 
{d(L)/d(p1)=} µ4+µ3* (-0.00003* p1* 2) + µ2+ 

   1.1*  (7.2+0.00142* p1* 2); 
{d(L)/d(ploss)=} µ3+(-µ2); 
{d(L)/d(µ2)=} p1+p2+p3-(850+ploss); 
{d(L)/d(µ3)=} ploss-(0.00003* p1^2+0.00009* p2^2+0.00012* p3^2); 
{d(L)/d(δ4)=} µ4* δ4* 2; 
{d(L)/d(µ4)=} SQUARE(δ4)+p1-400; 
{d(L)/d(δ5)=} µ5* δ5* 2; 
{d(L)/d(µ5)=} SQUARE(δ5)+p2-300; 
{d(L)/d(δ6)=} µ6* δ6* 2; 
{d(L)/d(µ6)=} SQUARE(δ6)+p3-300; 

Listing 5. Output from symbolical differentiator 

From this point on, situation is the same as previously 
described power flow problem. Symbolical data, shown 

on Listing 5, are sent to the Hessian differentiator. Hes-
sian differentiator evaluates symbolical Hessian of given 
problem. During solving, Hessian will play role of Jaco-
bian in Newton-Raphson solver. The following listing 
contains solution of stated problem. Solution is obtained 
in 5 iterations, and tolerance = 1e-3.  

 
p1=334.2882655  p2=234.8271323  p3=300.0000000  
ploss=19.1153997  µ2=-9.1477966   µ3=-9.1477966 
µ4=-1.19*10-9   µ5=0.0000002   µ6=-2.3728448   
δ4=8.1062776   δ5=8.0729727   δ6=6.44*10-9 

Listing 6. Economic dispatch solution  

4.3 Timing results 
 
Table 1 shows results of the COM power flow solver 
module computation as compared to MatPower [14] 
execution times.  
 

COM solver MatPower Input 
model 

Toler-
ance No. Iter. Time No.Iter. Time 

IEEE118 10-6 3 0.210 3 0.05 
IEEE300 10-6 4 1.580 5 0.16 

 
Table 1. Testing platform: Win2000, Pentium III, 750 MHz 
 

The execution time is bigger for COM due to the use 
of a general nonlinear solver for the set of equations. 
Furthermore, symbolic evaluation requires extensive 
stack usage and parsing time. However, despite the fact 
that symbolical evaluation is used inside of components, 
computational speed is still quite tolerable, about 10 
times slower than the “hard coded” approach.  In other 
larger examples this same ratio seems to hold   

5 CONCLUSIONS AND FUTURE WORK 
 
A new approach for component based application de-

velopment in power system has been explored. A ge-
neric framework for power system models organization 
and software development has been proposed. Using 
code reusability as one of its main guidelines, compo-
nents for future software development has been devel-
oped and tested.  

Fast technological development was taken into con-
sideration, so that computational speed of future appli-
cations was not the main goal. Instead of speed of exe-
cution, speed of development is the paramount. Exam-
ples shown in this paper emphasize simplicity and effi-
ciency of development. Developers are not bounded by 
a programming language. Proposed COM modules en-
able future software development using different pro-
gramming languages. Even developers with limited 
power system knowledge can use these components very 
efficiently.  

Since COM modules are created using C/C++ and 
ATL (and thus, they are very "light" in terms of memory 
consumption) they can be used on web pages, and em-
bedded within script languages that support COM.  



 

The problem of model redesign and the need for 
complete application recompilation has been removed 
using a centralized database for model collection.  Ap-
plications developed within this framework only need to 
be restarted to re-initialize needed COM modules.  Col-
lecting updates on model changes is much easier using 
this framework.  

There is a sacrifice in speed for this flexibility.  A 
slowdown of a factor of 10 is seen in those applications 
illustrated as well as a few others.  Computing power, 
however, is making such considerations less relevant. 

Future work will try to add more robust optimization 
composers, such as Interior-Point solver.  
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APPENDIX 
 

Appendix contains component solver interface, 
screenshot of Equation Editor Module – SolverQ, and 
screenshots of additional tools previously mentioned in 
the paper. 

5.1 COM Solver Module Interface 
 
COM Newton-Raphson solver module is done using 

dual interface automation server.  All COM-aware pro-
gramming languages like VB, VBA, VC++, etc. can use 
the automation server. 

 
HRESULT InitByStr([in] BSTR
strEquationName)

HRESULT InitByID([in] long nID)

HRESULT GetOutputName([in] long
nIndex,[out, retval]BSTR *strVarName)

HRESULT GetOutputIndex([in] BSTR
strVarName,[out, retval]long *nIndex)

HRESULT GetAllOutputNames([out, retval]
SafeArray(BSTR) *strVarNames)

HRESULT GetOutputValueByName([in]BSTR
strVarName, [out, retval] double
*dblVarValue)

HRESULT GetOutputValueByIndex([in]long
nIndex, [out, retval] double *dblVarValue)

HRESULT GetAllOutputValues([out, retval]
SafeArray(double) *dblVarValues)

HRESULT GetParamName([in] long nIndex,
[out, retval] BSTR *strParamName)

HRESULT GetParamIndex([in] BSTR
strParamName, [out, retval] long *nIndex)

HRESULT GetAllParamNames([out, retval]
SafeArray(BSTR) *strParamNames)

 

 

http://www.untz.ba/idzafic/solverq.htm
http://www.pserc.cornell.edu/matpower/


 

HRESULT SetParamValueByName([in] BSTR
strParamName, [in] double dblParamValue)

HRESULT SetParamValueByIndex([in] long
nIndex, [in] double dblParamValue)

HRESULT SetAllParamValues([in]
SafeArray(double) *dblParamValues)

HRESULT SetOutputUnit([in] long
nIndex,[in] BSTR strUnitName)

HRESULT Solve()

Listing 7. A part of COM solver interface (MS IDL) 

5.2 Equation Editor Module 
 
Using Equation Editor module, models can be edited 

and stored into database.  This module is small modifi-
cation of SolverQ. The module implements container for 
plug-ins and enable model designer to test the model. 
After testing, model can be saved into database. Saved 
model contains symbolical information needed in solv-
ing process.  

 
Figure 6:  Equation Editor Module 

5.3 Measurement Unit Module 
 
This module is used for data measurement unit con-

version. In fact this is a very simple dialog with possibil-
ity to enter conversion equation. Information about units 

together with their belonging conversions are stored in 
database. 

 
Figure 7:  Measurement Unit Module 

This information can be used with method SetOutpu-
tUnit. COM based solver will automatically convert 
measurement unit into desired one.   

 

5.4 Model Browser Module 
 
The following picture contains screenshot of Model 

Browser module. 

 
Figure 8:  Model Browser module 

This module is a helping tool for finding appropriate 
module inside database. The tool should help developers 
while making new power system applications using 
stored power system models.
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