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Learning objectives

Become familiar with two important properties
of Laplace equation:

Athe maximum principle
A the rotational invariance.
Be able to solve the equation in series form

In rectangles, circles (incl. Poisson formula),
and related shapes.

Become aware of key properties of the solutions,
. such as thanean valugoroperty.
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|l ntroducti on to Lapl a
Maximum and minimunprinciple

Invariance and fundamentablutions
Rectangles and cubes

Pol sson’s for mul a

Circles (exterior of), wedges and annuli
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1-IntroductiontoL apl ace’ s eq

Il n this section, we Introduce La
relevance (Section 6.1 in Strauss, 2008).



For a stationary process, bothe diffusion and
the wave equations reducw® the Laplacesquation

If a diffusion or wave process is stationary
(independent of time), themi, [ Oandu, [ O.

Therefore both the diffusion and the wave
equations reduceo the Laplace equation
Ain 1D: U = 0
Ain2D. V- Vu =(Au)= uy + uy, =
Ain3D:V - Vu :@_uu—ku“—l—u =0

A solution of the Laplace equation is called a
P harmonicfunction
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Two particular cases

In 1D,
Awe have simply,, = O;

A therefore, the only harmonic functions in 1D
areu(x) =A+ B x;

Athisis so simple that it hardlgives aclue
to what happens in higher dimensians

Theinhomogeneouvy er si on of Lacg
Au = f

with f a given function, is calleéd 2 A a @gdajion a
% :



Lapl aca@é’ Bol s s o areuwiquaoyisl a
In Physics and Engineering applications

Example 1steady fluid flow

A Assume that the flow isteadyand
irrotational (no eddies)so thatrotv = 0,
wherev = v(X, Y, 2) Is the flow velocity.

AHencey= 1 fg with da scalar function
(calledvelocitypotential)

A Assume that the flow ismicompressible
without sources nor sinkd.hendiv v = Q.

AAgain, the potenti al
LB equation:Df =1 divv =0.
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Lapl ace’s and Pol sson’
In Physics and Engineering applications

Example 2electrcstatics

AWe haverotE = 0anddivE=4pr,

Also, in wherer is the charge density.

classical

;ﬁiﬁfé o ArotE = 0implies thatE can be written as:
Poisson’sE= T /g, witdn da scalar function
lates the (calledelectric potentig).

mass density

with the A Therefore,

gravitational . .

potential. AQ’) - le(gfﬂd (;')) — —divE = —47Tp

e which is Poi ssfon#gar).e



Basianathematicalproblem of interest here

SolveLapl ace”s or Pol sson
domainD with acondition on boundarydy D:
Du=f N D E.Q.

A flux
with u=h or U, = h — A reaction force

A temperature, or u, +au=h on bdy D.
A

displacement

4 bdy D

A Y
>
>
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2 —Maximum and minimum principle

In this section, we introduce the maximum and minimum principle
and, as a conseguence, demonstrate the unicity of the solution of the
Dirichletproblem (Section 6.1 in Strauss, 2008).



Maximum principle: darmonic function Is
Its biggestandits smallesbn the boundary

For Lapl ace 'maximamgpungipldio n

Open set ALetD be a connected bounded open set
- asetw/o (in 2D or 3D).

its boundary
=domain

_ region A Leteither u(x, y) or u(x, y, z) be aharmonic

function inD

ALetu(x, y) or u(x, y, 2 be continuous
onD_ (bdyD).

A Then the maximunand the minimum values
of u are attainedon bdy D andnowhere
:l: iInside(unlessu [ constant).
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Maximum principle: darmonic function Is
Its biggestandits smallesbn the boundary

We use the following notations:
Ax=(x,y)in2D orx = (x, Y, 2) in 3D.
A IX| = (X2 + y2)1/2 or |x| = (X2 + y2 + 22)1/2_

The maximum principle asserts that thexme points
Xy andx., on bdy D such

Xm
thatu(x,) u@) u@y) C\V\//D\D
for allx WD. oY
There could be several such points on bmindary.

In contrastthere are no points insidB® with this
& property (unlessu [ constant).

12



Main ideaunderpinning themaximum principle

<V

&

Theoverall iIdea behind the demonstration thfe
maximum principle ighe following (in 2D).

A At a maximum point insid®, we would have
u, O addu, OO SO0U,, + Uy, O.0

A At most maximum points,, < 0andu,, <0,
whi ch woul d c¢ oeguatioa d |

However
A sinceit is possiblehat u,, = u,, = 0
at a maximunpoint ...
Awe have to work a little harder tget a proof!

13



3-step demonstration of the maximum principle

Let
A > 0.
Av(x) = u(x) +° [x[2.
Then (in 2D)
Dv=Du+" D(X*+y?)=0+4" >0 in D.
If v has annterior maximum pointthis would hold:
DV = Vi, + Vi, OO.

Since this result is in contradiction with the previol
:!" Inequality,v(x) has no interior maximum iD.

14



3-step demonstration of the maximum principle

¢ Functionv(x) beingcontinuous, it must hava
maximumsomewheran the closureD =D _ bdyD.

Let us assume thdhe maximum The closurésthe

union of the domain

of v(x) Is attainedat x, Wbdy D. and its boundary

Then for allx N D,
u(x) V) V(®o) =Uu(Xg) + [Xol°

and
+° 2 C +° ]2
u(xy) + Xl O%%u |4,
45', with | the greatest distance fronbdy D to the origin.



3-step demonstration of the maximum principle

£ Since
X))+ X PP O m@axk 12
ux) u@p) + [xgl Ob dme ,
Istrue for any’ > 0, we have

The absencef a u(x) bnd@g(u for allx WD.
y

maximum insidéd
will be provedater

Thismaximum is attained at some poirt, Whbdy D.

Consequentlyu(x) u@,) for allx WD,
whichis the desireconclusion!

45" A similar demonstration applies for a minimumy, .
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Intuitive visualization of the maximuminimum
principle

‘v

Consider thecase of a membrane (or a soap film)
extended over a rigid closed frame.

If we givethe Initially plane
framea small transverse
deformation,we do not
expectthe membrane to
bulgeeither upwards odownwardsbeyond the
frame, unlesexternal forces are applied.

Similarly, in theealm ofthermal steadystate, the
temperatureattains itsmaximum and minimum
values at the boundaries of the region.

17



Uniqueness of th®irichletproblem

Note that
unigueness
does not
hold for all

types of BC|

E.gQ.

a solution
of the
Neumann
problem is
determined
uniquely
with an
additive
constant

¥

%

To prove the uniguenesspnsider two solutions

uandyv, so that
Au=f nD Av=f inD
u=~hnh onbdy D v=~h onbdy D

Let ussubtract the equationandletw=uT V.
Bythe maximumprinciple, sincew = Oon bdyD,
0=w(x,) <wkXx) <wxy) =0 forallxe D

Therefore, both the maximum and minimumwfx)
are zero. This meantbatw /[ a@dul v.

18
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3 —Invariance and fundamental solutions

Il n this section, we I ntroduce 1ITr
equation in 2D and 3D and derive particular solutions which have the
same invariance properties (Section 6.1 in Strauss, 2008).



Invariancan 2D:Laplacesquation Is invariant
underall rigidmotions (translations, rotations)

‘v

Atranslationin the plane is a transformation
X'=X+a y'=y+Db
Invariance under translations means simply that

Uy + Uy = Uy + Uy

Arotation by an anglea is given by
X'=Xxcosa+ysina

Yy =sSin & + yxcosa.

L et Uus use the chai n r

20



Invariancan 2D:Laplacesquation Is invariant
underall rigidmotions (translations, rotations)

Arotation by an anglea is given by
X'=Xxcosa+ysina

Yy =sSin & + yxcosa.

Applying the chain rule ta(x', y'), we calculate

M}: — M_r’ COSx — u}" SiﬂO{
Uy = Uy SINA + Uy COS
Uy = (U COSA — Uy SINC), COSO — (U COS O — Uy SINQ)y SIN &

By adding, we get:

> _
:l' Uyy + Uy = Uge + Uy

21



Invariancan 2D:Laplacesquation Is invariant
underall rigidmotions (translations, rotations)

Interpretation: in engineering thdaplacianDis a
model forisotropicphysical situations, in which
there Is nopreferred direction

The rotational invariance suggests that e
laplacian 52 42
A

a2 9y?
shouldtake a particularly simple form in polar
coordinates

Let us use théransformation
& X=r cosd y=rsind

22



Invariancan 2D:Laplacesquation Is invariant
underall rigidmotions (translations, rotations)

Applying the chain rule with

X =r cosd y=rsind

weget 5 0 sind 3§
ox o Uar 5 08

0 _ 0 cosf o

— = sin 6 I .

0y or r 00

=

and we end up with:

- 23



Invariancan 2D:Laplacesquation Is invariant
underall rigidmotions (translations, rotations)

‘v

We Investigate the existence of harmofumctions
that themselves areotationallyinvariant:u(r, g.).

In 2D, thismeans that we use polar coordinatés g)
and look for solutionsi(r) :
N2 : 2 |
Ay — ) | id | N4 = O0=u, +—u,
T 9r?  ror  r#06° r

ThisODE i®asy to solve
(ru). =0, ru=c, uU=cinr+c,.

ThisfunctionIn r will play a central role later.

24



The 3D laplaciars also invariant under rigid motior

A similar demonstration as in the 2D case can be
elaborated using vectamatrix notation:

X' =BX
whereB is an orthogonal matrixB'B = BB" = 1).

Forthe 3D laplacian,

9° 9° 9°
— | |

Jx? 072

A?: | =
Jy?

45; It isalso naturalto use spherfcal coordinatés, d, /).



The 3D laplaciars also invariant under rigid motior

) Y

The laplacian in sphericabordinateswrites:
ik 2 d 1 d 0 | 97

Ay= — 42— §in 0 —

S o T rar T s 00 a0 | 428 0%
Az N

(x, ¥, 2)

r
|

Polar angle, 4 |
colatitude 2

— | >
o sT~ay
Longitude,  (x, 4, 0)
azimuthal angle
X

Let uslook forharmonicfunctions in3D
which do notchange underotation X

26



The 3D laplaciars also invariant under rigid motior

Harmonicfunctionswhich do notchange under
rotation, 1.e. whichdepend only omr satisfythe ODE

p)
0= A3u=u, +—u,
-

So(r4u,), = 0. It has the solutiong?u, = c,.
Thatis,u=T1 ¢;I' 1+ c,.

This importantharmonicfunction

1
- ="+ y +2)
r

& is the analog of th&D functionin(x? + y2)1/2,

—1/2

27
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4 — Rectanglesnd cubes

In this section, we solve Laplace equation in a rectangle by separating
variables and we provide an overview of the solution of Ehechlet
problem in a cubé€Section 6.2 in Strauss, 2008).



Laplace equation can be solved in particular
geometries byseparating thevariables

) Y

The general proceduns the same as ihecture 6.

1. Look forseparatedsolutions of the PDE.

2. Putin the homogeneoudoundary conditions
to get theeigenvaluesThisis the stepwhich Is
dependent on the considered geometry

3. Sumthe series

4. Putin theinhomogeneouqginitial or) boundary
conditions.

29



Laplace equation can be solved in particular
geometries byseparating thevariables

Let us consider

Du=u,+u,=0 InD

whereD is the rectangld0 < x<a, 0 <y<Dh}.

Oneachside of the rectangle, one tihe standard
boundary conditions is prescribed:

A Dirichlet Y
A Neumann by 5
’ A or Robin.

QD
X

30



Example 1

Let us consider the following BCs:

Y,
[ U=9(X

u=J(y)

D u, =k(y)

u+u=hx) X

If we call thesolutionu with data(g, h, J, k),

thenu=u; + u, + u; + u, where
Au, has data(g, 0, 0, 0)
- Au,has data0,h,0,0)and s o

&

o

n

31



Examplel
Step I Look for separated solutions of the PDE

For simplicitkgs0]F@Kk=0s

Y,
[ U=9(X

u=0{ D |u=0
u+u=0 X

i We separate the variables(x, y) = X(X) Y(y).

We get:
XH + YH B 0
X Y

¥ .



Examplel

Step 2 Use thehomogeneous BCseigenvalues

SinceX"(X) / X=Y"(y) /Y(y),

each side of this

equation must be a constant (say/):

D a

AX"(X)+/ X=0 for 0 xC

with X(0) =0 andX'(a) =0

AY'(X)T /Y=0for 0 yC

b ¢

with Y'(0) +Y(0) = 0 andY(b) =¢ - |

Y, Y,
bl | Y

= g(X)

D u==0

Q
X
C
+
-
[
o
X

33



Example 1
Step 2 Use the homogeneous BC®igenvalues

The solution foX(x) verifyingX"(x) +/ X=0
for 0 x@a, with X(0) = 0 and X'(a) = 0, writes:

(n + )X

e

X, (x) = sIn

2 3

] = 2
and k”:(n—l—z) T =012 3...)

,..}
a.—

Y, Y,
b- | U= g(X)

34



Example 1

Step 2 Use the homogeneous BC®igenvalues

The solugon foY(y) verifyingY"(ly) /1¥Y=0

for O (G

Db writes (with b, =/ 1)

Y(y) = Acosh B,y + B sinh 8,y

The BC'(0) +Y(0) =0 impliesB 6,+ A=0.
Since the modes may be multiplied by any arbitra

constant, we may choode= 1 sothatA=5,.
Yy Yy
ol | U=9()
| D u=0{ D ju=0
a X u+u=0 X .



Example 1
Step3: Sum the series

f Therefore the sum
u(x,y) = ZAH sin B,x (B, cosh B, V= Sil’lhﬂ”}-’)
n=>0

ISa harmonic function 1 that satisfies all three
homogeneous BCs

In the rectangle, thidunctionis also bounded.

Y, Y,
b- | U= g(X)

D u=20 D u=2~0

Q
X
C
+
-
[
o
X

36



Example 1
Step4: Put in the iInhomogeneous BCs

g The remaining BA(x, b) = g(x) requires that
gx) = ZAH()BH cosh B,b — sinh ,b) - sin B,x
n=0

forO <x<a.

Thisis simply &ourier seriesn the eigenfunctions
sin b x.

From Fourier series theory, tlewefficientsA,
aregiven by thdormula:

2 ol
-y A, = —(pB, cosh B,b — sinh ﬂ”h)_lf 2(x)sm fB,x dx.
0

b a

37
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Example: Dirichletpr obl em 1 n a 3
{0<x<al0<y<h,0<z<d
Consider the particular case of a cube:
Az =ty +tyy +1;; =0 1nD
D={0<x<nm,0<y<n,0<z<m}

H(:"T- ys :) — g(.}"e :)

uO, v, z)=ux,0,z) =u(x,m,z) =u(x,y,0) =u(x,y,7) =0

To solve,
i A separate variables:u = X (x)Y (y)Z(z)
¢ A use the five homogeneous BCs

:l: X0)=Y(0)=Z0)=Y ()= Z(x) = 0.

38
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Example: Dirichletpr obl em 1 n a 3
{0<x<al0<y<h,0<z<d

£ Evaluating theeigenfunctionsand eigenvalues gives

o0 0
u(x, y,z) = Z ZA,,,” sinh(v/m?2 + n2 X)sinmy sin nz

n=1 m=1

g Plugging the inhomogeneous BCkat * leads to a
double Fourier sine serias the variabley and z

4 T T
mn = > 2 / [ 2(y,z)sinmysinnzdy dz
72 sinh(vm? +n2m) Jo Jo

Hence thesolution Is expresseds
- a doubly Iinfinite series!

A

‘r

39
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5—-Pol sson’s for mul a

In this section, weonsiderthe Dirichletproblem in adiskand we find
a closed form of the solution, namely tlR®isson formulaWe show
that this result has several important consequences, including the
mean valugroperty of harmonic functiongSection 6.3 in Strauss,
2008).



Dirichletproblem for adiskof radiusa

Let usconsiderthe Dirichletproblem

2 2 2
Uy + Uy, =0 forx~ 4y < a”

u=ho) for x* + y* = a°

We solve again by separating
the variablesn polar coordinates

u(r, g) = R(r) Q(q):
] ]

O=uy+uyy =ty +—ut, + —upg
8 r r-

N{\B
X

X s

) Y

I I
= R'®O+-RO+ —RO".
fz- fz--__

‘-

41



Dirichletproblem for a dislof radiusa

Dividing byR Q and multiplying byr?, we find that
O +10 =0

rR"+rR' — AR =0
ForQ(q), periodic BCs are required:
Qg+ p2=Q(g) for T BHgd® + b

Thus (with/ = n?):
(@) = A cosnb + B sinnb n=1,2,...)

. or /=0 with Q(g)=A.
% 2



Dirichletproblem for a dislof radiusa

The equation foR (Euler typé:
PR'+rRT /R=0
has solution®f the form R(r) =rY.
Sincea= n?, it reduces to
UUT 1)rY+ U YirnzrV=0

HenceU=Nn. ThusR(r) =Crh+ Dl "
andwe have the separatesolutions:

D
U = (Cr” 4+ )(A cos nt + B sinnb)
}-"r‘l’

45; forn=1,2, 3¢&

43



Dirichletproblem for a dislof radiusa

In casen = 0, wealso have &econd linearly
Independentsolution (besidesk = constant

R(r) =Inr (obtained from simple calculus)
Sowe also have theolutionss:u=C+DInr.

Similarly to prescribing a BCrat O, we require that
the considered harmonic functions are bounded.

By rejecting the obtained harmonic functions whic
areinfinite at the origin(r”‘ andInr), we get:

& — EA{} + Z r'"(A, cosnb + B, sinnf)



Dirichletproblem for a dislof radiusa

Finally, weprescribe thanhomogeneou$3Catr = a:

h(f) = %AU + ZQH(AH cos nf + B, sin nf)
n=I
Thisis precisely the full Fourier series fu(d),
so that thefull solution of ourmproblem is

U = %AU — Zf‘”(A” cosnt + B, sin nb)
n=I1

with A, = | f- h(¢) cos ng de
0

:,Ta”

) Y

2
e B, = : f h(e) sin ne do.
0

Ta” 45



Dirichletproblem for a dislof radiusa

Amazingly, this series can be summed explicitly!

Indeed, using geometric series of complex numbe
It IS possible to show that the solution

U = %A{} + Z;"”(A,, cosnt + B, sin nf)

n=|

writesintheformoft 2 A aaz2y Qa T 2 Nk

] )] ZJT [ {
u(r,0) = (a” — r‘)[ S 1(9) S 19
o a*—2arcos(@ —¢)+r?2m

| It expresses any harmonic function inside a circle
& in termsof its boundary values.

46



Mathematicals t at e me nt O f F

Leth(7) = u(x') be any continuous function on the

circleC =bdyD.
Thenthe Poisson formula
PN h(g) d¢
u(r, 0) = (a” =+ )j.:; a* —2arcos(0 — @)+ r?2m
providesthe onlyharmonic functionn D for which
lim u(x) = h(xp) forall xg € C
X— X\

Henceu(x) is a continuous functionoB =D" C.
b It IS alsadifferentiable toall orders inside D.

‘» 47



Poissorformula has severdey consequence:

MEAN VALUBROPERTY

Letu be a harmonic function in a digk
continuousin its closure (circumference).

Then thevalue ofu at the center oD equals the
average ofion its circumference

Proof:
A Consider theorigin 0 at the center of thecircle.
APutr=0i n Poisson’s formul s

1(0) = a“ f u(x’) 74
I

21a Jixj=a a°

45; Thisisthe average otion the circumferencgx’| = a.

48



Poissorformula has severdey consequence:

MAXIMUMPRINCIPLE

Poisson formula enables deriving@amplete proof
of the strong form of the maximum principle (i.e.
the maximum is1ot in the domain; bubnly on the
boundary, unless the harmonic function Is
constant).

DIFFERENTIABILITY

Letu be a harmonic function in any opeaetD of
the plane.Thenu(x) = u(x, y) possesseall partial
& derivatives of all orders iD.

49
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Takehome messages



Takehome messages

A solution of the Laplace equation is called a
harmonicfunction.

The 1T nhomogeneousequaon S
iscalledt 2 A aa2yQa Sldzr A2y

Lapl ace’s and Poisson’
Interest in physics and in engineering.

Themaximum and the minimungalues of a
harmonic functionu are attained onthe boundary
" of the considered domairuflessul c on.st &

52



Takehome messages

We have shown thenigueneswf the solution of
the Dirichletproblem (ot for Neumann problem).

Laplacesquationisinvariantunder all rigid motions
(translations, rotations).

In engineering théaplacianis a model used for
Isotropicphysical situations (no preferred direction

We have found theseotationnallyinvariant
harmonic functions

45; |r](x2 + y2)1/2 (2D) and 1 _ (_xz 4 2 n Zz)—l/Q
r ) 53



Takehome messages

By separating variables, we get the solution of
Laplace problems in various geometries, in the fol

A of Fourier series in a rectangle (2D)
A of double Fourieseriesin a box (3D)

The solution of théirichletproblem in acircle
takes aclosedform, called Poissoformula.

Poisson formula haseveral important
consequences on the properties of harmonic
" functi ons, | n ovaluen acme rtt




