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Map of the course

Transport 
equation

Wave 
equation

Diffusion 
equation

Laplace 
equation

General introduction Class 1

Modelling from physics Class 1

Well-posed problems Class 2

Classification Class 2

Main properties
Class 1 Class 3

Class 4
Class 8

Analytical solution Class 6

Von Neumann Class 5

Numerical approximation Class 5 Class 4

Boundary problems Class 7 Class 8

Non-linear Class 9



3

Learning objectives

Find out that the diffusion equation has a number 
of invariance properties

Derive an explicit formula for the solution of the 
diffusion problem in an infinite domain

Become familiar with the concept of source 
function, or Green’s function, or fundamental 
solution of the diffusion problem

Highlight the contrasting properties of the wave 
equation and the diffusion equation
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1. Hands on activity: Matlab computation

2.

application in practice

3.

4. Crank-Nicolson scheme

Outline

1. Reminder

2. Solution of the diffusion equation, and IVP, 
in an infinite domain (incl. invariance properties)

3. Concept and properties of Green’s function, 
or fundamental solution of the diffusion equation

4. Comparison between the solutions 
of the wave and the diffusion equations
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Maximum 
principle

UniquenessStability

Reminder

We study the 1D diffusion equation:

Maximum 
principle

UniquenessStability
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Maximum principle

If u(x, t) satisfies the diffusion equation in a 
rectangle (say, 0 ≤ x ≤ l, 0 ≤ t ≤ T ) in space-time, 
then the maximum value of u(x, t) is found 

• either initially (t = 0) 
• or on the lateral sides ( x = 0 or x = l ).
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The maximum principle has a natural interpretation 
e.g. in terms of heat flow or diffusion of constituent

If you have a rod with no internal heat source, the 
hottest spot and the coldest spot can occur only 
initially or at one of the two ends of the rod. 

• Thus a hot spot at time 
zero will cool off.

• You can burn one of its 
ends but the maximum 
temperature will always be at the hot end. 

Similarly, if you have a substance diffusing along a 
tube, its highest concentration can occur only 
initially or at one of the ends of the tube.
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The diffusion equation tends to smooth the solution 
out, which contrasts with the wave equation

Also the minimum value can be attained only on 
the bottom or the lateral sides.
To prove the “minimum” principle, just apply the maximum 
principle to − u(x, t).

Consequence: 
• the maximum drops down ↘
• while the minimum comes up. ↗



9

Uniqueness of the solution for the Dirichlet problem 
for the diffusion equation

There is at most one solution of

for four given functions f, f, g, and h. 

Uniqueness means that any solution is 
determined completely based on proper ICs and BCs.
Proof: from energy, or based on the maximum and minimum 
principles for w = u1 – u2, with u1(x, t), u2(x, t) two solutions.
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Stability of the solution can be proven by the 
maximum principle, or from energy considerations

Consider two solutions u1(x, t) and u2(x, t) of the 
diffusion problem in a rectangle, for which

• w ≡ u1 − u2 = 0 on the lateral sides of the rectangle 
• w = f1 − f2 on the bottom.

The maximum principle asserts that throughout 
the rectangle 

The “minimum” principle says that
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Stability of the solution can be proven by the 
maximum principle, or from energy considerations

Therefore,

valid for all t > 0. In this inequality,
• the right side is a quantity that measures the 

nearness of the initial data for two solutions, 
• and on the left we measure the nearness of 

the solutions at any later time. 

Thus, “if we start nearby (at t = 0), we stay nearby”.

This is exactly the meaning of stability!



1 – Diffusion on the whole line
In this section, we derive the mathematical solution of the diffusion 
problem on an infinite domain (Section 2.4 in Strauss, 2008). 
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Diffusion problem on an infinite domain

Our purpose in this section is to solve the problem

Similarly as with the wave equation, the problem 
on the infinite line is 

• easier to solve than the finite-interval problem
• and it is of practical relevance in some instances.

The effect of boundaries will be discussed later.
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The derivation of the solution will be based on a 
method very different from those used so far

Our method is 
• to solve it for a particular initial condition f (x)

The particular solution we will look for is 
denoted Q(x, t), which satisfies the special IC:

• and then build the general solution 
from this particular one. 

x

Q(x, 0)






Implications of 

this discontinuity 
will be discussed 

later.
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We will use five basic invariance properties 
of the diffusion equation

The translate u(x − y, t) of any solution u(x, t)
is another solution for any fixed y.

• Consider v(x, t) = u(x − y, t)

• By the chain rule: vt = ut and vxx = uxx; hence vt = k vxx

Any derivative (ux or ut or uxx, etc.) of a solution is 
again a solution.

• For instance, derive the diffusion equation 
with respect to x (or t): uxt = k uxxx (or utt = k utxx);

• Rename v = ux (or v = ut)
• You end up with: vt = k vxx
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Invariant ❷ uses the equality of mixed partials

If k is any positive integer, a function is said to be 
of class Ck if each of its partial derivatives 
of order ≤ k exists and is continuous.

If a function f (x, y) is of class C2, then

fxy = fyx. 

The same is true for derivatives of any order. 
Although pathological examples can be exhibited 
for which the mixed derivatives are not equal, 
this lies out of the scope of this course.
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We will use five basic invariance properties 
of the diffusion equation

A linear combination of solutions is again a solution.
• This is just a consequence of linearity.

An integral of solutions is again a solution. 
• If S(x, t) is a solution, then so is S(x − y, t)

• And so is

for any function g(y), as long as the integral converges.
• This is just a limiting form of .
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We will use five basic invariance properties 
of the diffusion equation

If u(x, t) is a solution, so is the dilated function 

u(a1/2 x, a t), for any a > 0. 
• Prove this by the chain rule.

• Let v(x, t) = u(a1/2 x, a t). 

• Then vt = [∂(a t)/∂t] ut = a ut

and vx =[∂(a1/2 x)/∂x] ux = a1/2 ux,

• Hence, vxx = a1/2 a1/2 uxx = a uxx.

Note that the particular initial condition Q(x, 0)
does not change under dilation.
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We will find Q(x, t) in three steps
then, the 4th step will provide us with u(x, t)

We look for Q(x, t) of a particular form, inspired from 
the invariance properties of the diffusion equation.

Based on this particular form for Q(x, t), 
we convert the diffusion equation into an ODE,
which we easily solve.

We set the value of integration constants by carefully 
applying the particular initial condition Q(x, 0),
ending up with a fully explicit formula for Q(x, t).

After, we will find u(x, t) for a general IC.
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We look for Q(x, t) of a particular form

We look for Q(x, t) of the form

and g is an unknown  function of only one variable. 

If u(x, t) is a solution, so is the dilated function 

u(a1/2 x, a t), for any a > 0. 

The factor 4 k is included only to facilitate later 
simplifications.
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We expect Q to have this special form because 
it is supposed to remain unchanged under dilation

Both the diffusion equation and the considered IC 
do not change under the dilation 

x → a1/2 x and       t → a t .

Therefore, Q(x, t) must also remain unchanged 
under this dilation. 

How could that happen? 

In only one way: if Q depends on x and t
solely through the combination x / t1/2, since 
the dilation takes x / t1/2 into a1/2x/(at)1/2 = x / t1/2. 

Thus let p = x / (4kt)1/2 and look for Q = g(p) …
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We convert the diffusion equation into an ODE

Applying the chain rule with

leads to
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We convert the diffusion equation into an ODE

Substituting

and

into the diffusion equation leads to

Consequently:
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The obtained ODE is easily solved

Setting  f = g', the ODE

becomes f ' + 2 p f = 0, hence:

and

which is valid only for t > 0 !!!

Therefore, care must be taken 
when applying the IC …
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To find a completely explicit formula for Q (x, t),
the particular initial condition is applied using limits

If x > 0,

If x < 0,


see Gaussian integrals



26

Gaussian integral

Our goal is to evaluate this number:

It turns out to be easier to evaluate the square of I:

Change variables and use polar coordinates:
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To find a completely explicit formula for Q (x, t),
the particular initial condition is applied using limits

If x > 0,

If x < 0,

This determines the coefficients c1 and c2 and leads 
to the following expression for Q, valid for t > 0:



You may check that 
Q(x, t) satisfies the 
diffusion equation!

see Gaussian integrals
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The solution of diffusion problems is sometimes 
expressed in terms of the error function of statistics

Expression

may be expressed as 

where the error function has been introduced:
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From Q(x, t), let us build the general solution u(x, t)
valid for an arbitrary initial condition f (x)

We claim that the general (and unique) solution 
of the diffusion problem writes, for t > 0:

with S = ∂Q / ∂x.

Now, we need to prove that:

• u(x, t) is indeed a solution of the diffusion equ.

• u(x, t) satisfies the general initial condition f (x)
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u(x, t) is indeed a solution of the diffusion equation

We claim that the general (and unique) solution 
of the diffusion problem writes, for t > 0:

with S = ∂Q / ∂x.

• From invariance property ,  S = ∂Q / ∂x 
is also a solution of the diffusion equation

• From invariance property ,  u(x, t) 
is also a solution of the diffusion equation
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u(x, t) satisfies the general initial condition f (x)

Demonstrating that u(x, t) satisfies the general 
initial condition f (x) requires some calculation.

The limits vanish if we assume that f (y) equals 
zero for |y| large.

This integration by parts 
enables overcoming the 
discontinuity in Q(x,0)!
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u(x, t) satisfies the general initial condition f (x)

Therefore,

because of

• the initial condition for Q

• and the assumption that f (−∞) = 0
x

Q(x, 0)

+ +



33

As a conclusion, we have now an explicit formula 
for the solution of the diffusion problem

The solution writes

with, for t > 0,

Hence, 



2 – Green’s function
In this section, we highlight the concept and properties of Green’s 
function, which is found to be the fundamental solution of the 
diffusion equation
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Concept of source function, or Green’s function, 
or fundamental solution of the diffusion problem

In the solution

S (x, t) is known as
• the source function, 
• Green’s function, 
• fundamental solution,
• Gaussian, 
• or propagator of the diffusion equation, 
• or the diffusion kernel.

  2 41
,
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x ktS x t e
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The solution formula for the diffusion equation 
is an example of a convolution

The solution

is the convolution of f with S (at a fixed t).

Indeed, if f (x) and g(x) are two functions of a real 
variable, their convolution (noted f g) is defined as:

Convolution plays a central role in probability theory
and it shows interesting properties in relationship 
with Fourier transform. See a next lecture.

  2 41
,
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Properties of the source function

The source function

• is defined for all real x and for all  t > 0

• is even in x, i.e. S (− x, t) = S (x, t)

…
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Properties of the source function

• The integral of the source function is 1:

• For a very small t, the function S(x, t) takes 
very small values everywhere 
except for a tall spike:

for

  2

2

41
,

2

1
1

x kt

p

S x t dx e dx
kt

e dp





 


 








 

 



 max , 0
x

S x t


 0t 



39

Physical interpretation

Notice that the value of the solution u(x, t) 

is a kind of weighted average of the initial values 
around the point x. Indeed, we can write

• For very small t, the source function is a spike so that 
the formula “overweights” the values of f near x. 

• For any t > 0 the solution is a spread-out version of 
the initial values at t = 0.

     , ,u x t S x y t y dyf




 

     ,, j j j
j

u x t y yS x y t f 
weights
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Physical interpretation:      ,, j j j
j

u x t y yS x y t f 
weights

S(x − yj, t) represents the result 
of diffusion of a unit mass (say, 
1 gram) of substance located 
initially at the position yj.

For any initial 
distribution of 
concentration, the 
amount of substance 
initially at locations yj

spreads out in time and 
contributes 
approximately the term 
S(x − yj , t) f(yj) yj . All 
these contributions are 
added up to get the 
whole distribution of 
matter.

S(x − yj, t) may also represent the result of a “hot spot” at yj at time 0. 
The hot spot is cooling off and spreading its heat along the rod.



3 – Comparison of waves and diffusions
In this section, we emphasize the contrasting basic properties of the 
wave equation and the diffusion equation (Section 2.5 in Strauss, 
2008). 
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The basic properties of waves and diffusions 
differ substantially

Wave equation
Information gets 
transported in both 
directions at a finite 
speed. 

Diffusion equation
The initial disturbance 
gets spread out in a 
smooth fashion and 
gradually disappears. 
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In contrast with waves, 
the speed of propagation is infinite in diffusions

In diffusions, the value of u(x, t) depends on the 
values of the IC f(y) for all y, where − ∞ < y < ∞:

Conversely, the value of f at a point x0 has an
immediate effect everywhere (for t > 0), even 
though most of its effect is only near x0. 

This contrasts with the solution of wave problems: 
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Take-home messages

The diffusion equation describes physical processes such as 
heat flow, Brownian motion, … that are irreversible.


