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The Diffusion Equation

In this lecture we begin the study of the diffusion 
equation

Diffusions are very different from waves, and this is 
reflected in the mathematical properties of the 
PDEs.

Since solving the diffusion equation is harder than 
solving the wave equation, we start with a study of 
general properties of diffusions.
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attenuation and β(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.
(a) Plug the special form into the PDE to get an ODE for f .
(b) Set the coefficients of f ′′, f ′, and f equal to zero.
(c) Solve the ODEs to see that n = 1 or n = 3 (unless u ≡ 0).
(d) If n = 1, show that α(r) is a constant (so that “there is no attenuation”).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69–71, 1985)

2.3 THE DIFFUSION EQUATION

In this section we begin a study of the one-dimensional diffusion equation

ut = kuxx . (1)

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
properties of diffusions. We begin with the maximum principle, from which
we’ll deduce the uniqueness of an initial-boundary problem. We postpone un-
til the next section the derivation of the solution formula for (1) on the whole
real line.

Maximum Principle. If u(x, t) satisfies the diffusion equation in a rectangle
(say, 0 ≤ x ≤ l, 0 ≤ t ≤ T ) in space-time, then the maximum value of u(x, t)
is assumed either initially (t = 0) or on the lateral sides (x = 0 or x = l) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [−u(x, t)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the

Figure 1
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Learning objectives of this lecture

Learn general properties of the diffusion equation

Understand and prove the “maximum principle”

Prove the uniqueness and the stability of a 
diffusion problem

Outline Maximum principle

Uniqueness for the Dirichlet problem for the 
diffusion equation

Stability of the Dirichlet problem
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1 – Maximum Principle
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Maximum Principle

If u(x, t) satisfies the diffusion equation ut = k uxx 
in a rectangle R (0 ≤ x ≤ l, 0 ≤ t ≤ T ) in space-time, 
then the maximum value of u(x, t) is assumed 

• either initially (t = 0) 

• or on the lateral sides (x = 0 or x = l)
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Maximum Principle: interpretation

If you have a rod with no internal heat source, the 
hottest spot and the coldest spot can occur only 
initially or at one of the two ends of the rod

• Thus a hot spot at time zero will cool off (unless 
heat is fed into the rod at an end)

• You can burn one of its ends but the maximum 
temperature will always be at the hot end

Similarly, if you have a substance diffusing along a 
tube, its highest concentration can occur only 
initially or at one of the ends of the tube
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Maximum Principle: interpretation

If we draw a “movie” of the solution, the maximum 
drops down while the minimum comes up.

So the diffusion equation tends to smooth the 
solution out. 

This is very different from the behavior of the wave 
equation!
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Maximum Principle: idea for a proof

If the maximum is at an interior point, we know that at 
this point we have               and

First idea:

• If we could assume that                  at the maximum, 
then we would have                   , which would 
contradict the diffusion equation; which would 
mean that the maximum must be on the boundary

• Unfortunately we can have uxx = 0 at the 
maximum… So we need a slightly more elaborate 
strategy to prove the maximum principle
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coldest spot can occur only initially or at one of the two ends of the rod. Thus
a hot spot at time zero will cool off (unless heat is fed into the rod at an end).
You can burn one of its ends but the maximum temperature will always be
at the hot end, so that it will be cooler away from that end. Similarly, if you
have a substance diffusing along a tube, its highest concentration can occur
only initially or at one of the ends of the tube.

If we draw a “movie” of the solution, the maximum drops down while the
minimum comes up. So the differential equation tends to smooth the solution
out. (This is very different from the behavior of the wave equation!)

Proof of the Maximum Principle. We’ll prove only the weaker version.
(Surprisingly, its strong form is much more difficult to prove.) For the strong
version, see [PW]. The idea of the proof is to use the fact, from calculus, that
at an interior maximum the first derivatives vanish and the second derivatives
satisfy inequalities such as uxx ≤ 0. If we knew that uxx ̸= 0 at the maximum
(which we do not), then we’d have uxx < 0 as well as ut = 0, so that ut ̸= kuxx .
This contradiction would show that the maximum could only be somewhere
on the boundary of the rectangle. However, because uxx could in fact be
equal to zero, we need to play a mathematical game to make the argument
work.

So let M denote the maximum value of u(x, t) on the three sides t = 0,
x = 0, and x = l. (Recall that any continuous function on any bounded closed
set is bounded and assumes its maximum on that set.) We must show that
u(x, t) ≤ M throughout the rectangle R.

Let ϵ be a positive constant and let v(x, t) = u(x, t) + ϵx2. Our goal
is to show that v(x, t) ≤ M + ϵl2 throughout R. Once this is accomplished,
we’ll have u(x, t) ≤ M + ϵ(l2 − x2). This conclusion is true for any ϵ > 0.
Therefore, u(x, t) ≤ M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, t) ≤ M + ϵl2 on t = 0,
on x = 0, and on x = l. This function v satisfies

vt − kvxx = ut − k(u + ϵx2)xx = ut − kuxx − 2ϵk = −2ϵk < 0, (2)

which is the “diffusion inequality.” Now suppose that v(x, t) attains its maxi-
mum at an interior point (x0, t0). That is, 0 < x0 < l, 0 < t0 < T . By ordinary
calculus, we know that vt = 0 and vxx ≤ 0 at (x0, t0). This contradicts the
diffusion inequality (2). So there can’t be an interior maximum. Suppose now
that v(x, t) has a maximum (in the closed rectangle) at a point on the top edge
{t0 = T and 0 < x < l}. Then vx (x0, t0) = 0 and vxx(x0, t0) ≤ 0, as before.
Furthermore, because v(x0, t0) is bigger than v(x0, t0 − δ), we have

vt (x0, t0) = lim
v(x0, t0) − v(x0, t0 − δ)

δ
≥ 0

as δ → 0 through positive values. (This is not an equality because the maxi-
mum is only “one-sided” in the variable t.) We again reach a contradiction to
the diffusion inequality.

ut 6= kuxx
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Maximum Principle: proof

Let M denote the maximum value of u(x, t) on the 
three sides t = 0, x = 0, and x = l. 
We must show that                     throughout the 
rectangle R. 

Let     be a positive constant (           ) and let  

Our goal is to show that                                    
throughout R.
(Indeed, then                                              for any 
positive    , which proves                     throughout R)
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attenuation and β(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.
(a) Plug the special form into the PDE to get an ODE for f .
(b) Set the coefficients of f ′′, f ′, and f equal to zero.
(c) Solve the ODEs to see that n = 1 or n = 3 (unless u ≡ 0).
(d) If n = 1, show that α(r) is a constant (so that “there is no attenuation”).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69–71, 1985)
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ut = kuxx . (1)

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
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real line.
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is assumed either initially (t = 0) or on the lateral sides (x = 0 or x = l) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [−u(x, t)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the
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coldest spot can occur only initially or at one of the two ends of the rod. Thus
a hot spot at time zero will cool off (unless heat is fed into the rod at an end).
You can burn one of its ends but the maximum temperature will always be
at the hot end, so that it will be cooler away from that end. Similarly, if you
have a substance diffusing along a tube, its highest concentration can occur
only initially or at one of the ends of the tube.

If we draw a “movie” of the solution, the maximum drops down while the
minimum comes up. So the differential equation tends to smooth the solution
out. (This is very different from the behavior of the wave equation!)

Proof of the Maximum Principle. We’ll prove only the weaker version.
(Surprisingly, its strong form is much more difficult to prove.) For the strong
version, see [PW]. The idea of the proof is to use the fact, from calculus, that
at an interior maximum the first derivatives vanish and the second derivatives
satisfy inequalities such as uxx ≤ 0. If we knew that uxx ̸= 0 at the maximum
(which we do not), then we’d have uxx < 0 as well as ut = 0, so that ut ̸= kuxx .
This contradiction would show that the maximum could only be somewhere
on the boundary of the rectangle. However, because uxx could in fact be
equal to zero, we need to play a mathematical game to make the argument
work.

So let M denote the maximum value of u(x, t) on the three sides t = 0,
x = 0, and x = l. (Recall that any continuous function on any bounded closed
set is bounded and assumes its maximum on that set.) We must show that
u(x, t) ≤ M throughout the rectangle R.

Let ϵ be a positive constant and let v(x, t) = u(x, t) + ϵx2. Our goal
is to show that v(x, t) ≤ M + ϵl2 throughout R. Once this is accomplished,
we’ll have u(x, t) ≤ M + ϵ(l2 − x2). This conclusion is true for any ϵ > 0.
Therefore, u(x, t) ≤ M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, t) ≤ M + ϵl2 on t = 0,
on x = 0, and on x = l. This function v satisfies

vt − kvxx = ut − k(u + ϵx2)xx = ut − kuxx − 2ϵk = −2ϵk < 0, (2)

which is the “diffusion inequality.” Now suppose that v(x, t) attains its maxi-
mum at an interior point (x0, t0). That is, 0 < x0 < l, 0 < t0 < T . By ordinary
calculus, we know that vt = 0 and vxx ≤ 0 at (x0, t0). This contradicts the
diffusion inequality (2). So there can’t be an interior maximum. Suppose now
that v(x, t) has a maximum (in the closed rectangle) at a point on the top edge
{t0 = T and 0 < x < l}. Then vx (x0, t0) = 0 and vxx(x0, t0) ≤ 0, as before.
Furthermore, because v(x0, t0) is bigger than v(x0, t0 − δ), we have

vt (x0, t0) = lim
v(x0, t0) − v(x0, t0 − δ)

δ
≥ 0

as δ → 0 through positive values. (This is not an equality because the maxi-
mum is only “one-sided” in the variable t.) We again reach a contradiction to
the diffusion inequality.
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satisfy inequalities such as uxx ≤ 0. If we knew that uxx ̸= 0 at the maximum
(which we do not), then we’d have uxx < 0 as well as ut = 0, so that ut ̸= kuxx .
This contradiction would show that the maximum could only be somewhere
on the boundary of the rectangle. However, because uxx could in fact be
equal to zero, we need to play a mathematical game to make the argument
work.

So let M denote the maximum value of u(x, t) on the three sides t = 0,
x = 0, and x = l. (Recall that any continuous function on any bounded closed
set is bounded and assumes its maximum on that set.) We must show that
u(x, t) ≤ M throughout the rectangle R.

Let ϵ be a positive constant and let v(x, t) = u(x, t) + ϵx2. Our goal
is to show that v(x, t) ≤ M + ϵl2 throughout R. Once this is accomplished,
we’ll have u(x, t) ≤ M + ϵ(l2 − x2). This conclusion is true for any ϵ > 0.
Therefore, u(x, t) ≤ M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, t) ≤ M + ϵl2 on t = 0,
on x = 0, and on x = l. This function v satisfies

vt − kvxx = ut − k(u + ϵx2)xx = ut − kuxx − 2ϵk = −2ϵk < 0, (2)

which is the “diffusion inequality.” Now suppose that v(x, t) attains its maxi-
mum at an interior point (x0, t0). That is, 0 < x0 < l, 0 < t0 < T . By ordinary
calculus, we know that vt = 0 and vxx ≤ 0 at (x0, t0). This contradicts the
diffusion inequality (2). So there can’t be an interior maximum. Suppose now
that v(x, t) has a maximum (in the closed rectangle) at a point on the top edge
{t0 = T and 0 < x < l}. Then vx (x0, t0) = 0 and vxx(x0, t0) ≤ 0, as before.
Furthermore, because v(x0, t0) is bigger than v(x0, t0 − δ), we have

vt (x0, t0) = lim
v(x0, t0) − v(x0, t0 − δ)

δ
≥ 0

as δ → 0 through positive values. (This is not an equality because the maxi-
mum is only “one-sided” in the variable t.) We again reach a contradiction to
the diffusion inequality.
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Maximum Principle: proof

It is clear that                                 on t = 0, x = 0 and 
x = l .
What about in the interior and on the top side?

The function satisfies the 
“diffusion inequality”

42 CHAPTER 2 WAVES AND DIFFUSIONS

attenuation and β(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.
(a) Plug the special form into the PDE to get an ODE for f .
(b) Set the coefficients of f ′′, f ′, and f equal to zero.
(c) Solve the ODEs to see that n = 1 or n = 3 (unless u ≡ 0).
(d) If n = 1, show that α(r) is a constant (so that “there is no attenuation”).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69–71, 1985)

2.3 THE DIFFUSION EQUATION

In this section we begin a study of the one-dimensional diffusion equation

ut = kuxx . (1)

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
properties of diffusions. We begin with the maximum principle, from which
we’ll deduce the uniqueness of an initial-boundary problem. We postpone un-
til the next section the derivation of the solution formula for (1) on the whole
real line.

Maximum Principle. If u(x, t) satisfies the diffusion equation in a rectangle
(say, 0 ≤ x ≤ l, 0 ≤ t ≤ T ) in space-time, then the maximum value of u(x, t)
is assumed either initially (t = 0) or on the lateral sides (x = 0 or x = l) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [−u(x, t)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the

Figure 1
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coldest spot can occur only initially or at one of the two ends of the rod. Thus
a hot spot at time zero will cool off (unless heat is fed into the rod at an end).
You can burn one of its ends but the maximum temperature will always be
at the hot end, so that it will be cooler away from that end. Similarly, if you
have a substance diffusing along a tube, its highest concentration can occur
only initially or at one of the ends of the tube.

If we draw a “movie” of the solution, the maximum drops down while the
minimum comes up. So the differential equation tends to smooth the solution
out. (This is very different from the behavior of the wave equation!)

Proof of the Maximum Principle. We’ll prove only the weaker version.
(Surprisingly, its strong form is much more difficult to prove.) For the strong
version, see [PW]. The idea of the proof is to use the fact, from calculus, that
at an interior maximum the first derivatives vanish and the second derivatives
satisfy inequalities such as uxx ≤ 0. If we knew that uxx ̸= 0 at the maximum
(which we do not), then we’d have uxx < 0 as well as ut = 0, so that ut ̸= kuxx .
This contradiction would show that the maximum could only be somewhere
on the boundary of the rectangle. However, because uxx could in fact be
equal to zero, we need to play a mathematical game to make the argument
work.

So let M denote the maximum value of u(x, t) on the three sides t = 0,
x = 0, and x = l. (Recall that any continuous function on any bounded closed
set is bounded and assumes its maximum on that set.) We must show that
u(x, t) ≤ M throughout the rectangle R.

Let ϵ be a positive constant and let v(x, t) = u(x, t) + ϵx2. Our goal
is to show that v(x, t) ≤ M + ϵl2 throughout R. Once this is accomplished,
we’ll have u(x, t) ≤ M + ϵ(l2 − x2). This conclusion is true for any ϵ > 0.
Therefore, u(x, t) ≤ M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, t) ≤ M + ϵl2 on t = 0,
on x = 0, and on x = l. This function v satisfies

vt − kvxx = ut − k(u + ϵx2)xx = ut − kuxx − 2ϵk = −2ϵk < 0, (2)

which is the “diffusion inequality.” Now suppose that v(x, t) attains its maxi-
mum at an interior point (x0, t0). That is, 0 < x0 < l, 0 < t0 < T . By ordinary
calculus, we know that vt = 0 and vxx ≤ 0 at (x0, t0). This contradicts the
diffusion inequality (2). So there can’t be an interior maximum. Suppose now
that v(x, t) has a maximum (in the closed rectangle) at a point on the top edge
{t0 = T and 0 < x < l}. Then vx (x0, t0) = 0 and vxx(x0, t0) ≤ 0, as before.
Furthermore, because v(x0, t0) is bigger than v(x0, t0 − δ), we have

vt (x0, t0) = lim
v(x0, t0) − v(x0, t0 − δ)

δ
≥ 0

as δ → 0 through positive values. (This is not an equality because the maxi-
mum is only “one-sided” in the variable t.) We again reach a contradiction to
the diffusion inequality.
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Maximum Principle: proof

Let’s suppose that             attains a maximum at an 
interior point             . Then              and               at 
the point : this violates the diffusion 
inequality.
Let’s suppose that             attains a maximum on the 
top edge. Then

and              : this again violates the diffusion 
inequality.
Hence the maximum has to be on the bottom or 
the sides.

42 CHAPTER 2 WAVES AND DIFFUSIONS

attenuation and β(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.
(a) Plug the special form into the PDE to get an ODE for f .
(b) Set the coefficients of f ′′, f ′, and f equal to zero.
(c) Solve the ODEs to see that n = 1 or n = 3 (unless u ≡ 0).
(d) If n = 1, show that α(r) is a constant (so that “there is no attenuation”).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69–71, 1985)

2.3 THE DIFFUSION EQUATION

In this section we begin a study of the one-dimensional diffusion equation

ut = kuxx . (1)

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
properties of diffusions. We begin with the maximum principle, from which
we’ll deduce the uniqueness of an initial-boundary problem. We postpone un-
til the next section the derivation of the solution formula for (1) on the whole
real line.

Maximum Principle. If u(x, t) satisfies the diffusion equation in a rectangle
(say, 0 ≤ x ≤ l, 0 ≤ t ≤ T ) in space-time, then the maximum value of u(x, t)
is assumed either initially (t = 0) or on the lateral sides (x = 0 or x = l) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [−u(x, t)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the

Figure 1
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If we draw a “movie” of the solution, the maximum drops down while the
minimum comes up. So the differential equation tends to smooth the solution
out. (This is very different from the behavior of the wave equation!)

Proof of the Maximum Principle. We’ll prove only the weaker version.
(Surprisingly, its strong form is much more difficult to prove.) For the strong
version, see [PW]. The idea of the proof is to use the fact, from calculus, that
at an interior maximum the first derivatives vanish and the second derivatives
satisfy inequalities such as uxx ≤ 0. If we knew that uxx ̸= 0 at the maximum
(which we do not), then we’d have uxx < 0 as well as ut = 0, so that ut ̸= kuxx .
This contradiction would show that the maximum could only be somewhere
on the boundary of the rectangle. However, because uxx could in fact be
equal to zero, we need to play a mathematical game to make the argument
work.

So let M denote the maximum value of u(x, t) on the three sides t = 0,
x = 0, and x = l. (Recall that any continuous function on any bounded closed
set is bounded and assumes its maximum on that set.) We must show that
u(x, t) ≤ M throughout the rectangle R.

Let ϵ be a positive constant and let v(x, t) = u(x, t) + ϵx2. Our goal
is to show that v(x, t) ≤ M + ϵl2 throughout R. Once this is accomplished,
we’ll have u(x, t) ≤ M + ϵ(l2 − x2). This conclusion is true for any ϵ > 0.
Therefore, u(x, t) ≤ M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, t) ≤ M + ϵl2 on t = 0,
on x = 0, and on x = l. This function v satisfies

vt − kvxx = ut − k(u + ϵx2)xx = ut − kuxx − 2ϵk = −2ϵk < 0, (2)

which is the “diffusion inequality.” Now suppose that v(x, t) attains its maxi-
mum at an interior point (x0, t0). That is, 0 < x0 < l, 0 < t0 < T . By ordinary
calculus, we know that vt = 0 and vxx ≤ 0 at (x0, t0). This contradicts the
diffusion inequality (2). So there can’t be an interior maximum. Suppose now
that v(x, t) has a maximum (in the closed rectangle) at a point on the top edge
{t0 = T and 0 < x < l}. Then vx (x0, t0) = 0 and vxx(x0, t0) ≤ 0, as before.
Furthermore, because v(x0, t0) is bigger than v(x0, t0 − δ), we have

vt (x0, t0) = lim
v(x0, t0) − v(x0, t0 − δ)

δ
≥ 0

as δ → 0 through positive values. (This is not an equality because the maxi-
mum is only “one-sided” in the variable t.) We again reach a contradiction to
the diffusion inequality.
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Minimum Principle

The minimum value has the same property: it too 
can be attained only on the bottom or the lateral 
sides.

To prove the minimum principle, just apply the 
maximum principle to –u(x, t) !
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2 – Uniqueness
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Uniqueness

The maximum principle can be used to give a proof 
of uniqueness for the Dirichlet problem for the 
diffusion equation.

That is, there is at most one solution of 

for the given functions   ,    ,     and   
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But v(x, t) does have a maximum somewhere in the closed rectangle
0 ≤ x ≤ l, 0 ≤ t ≤ T . This maximum must be on the bottom or sides. There-
fore v(x, t) ≤ M + ϵl2 throughout R. This proves the maximum principle (in
its weaker version).

UNIQUENESS

The maximum principle can be used to give a proof of uniqueness for the
Dirichlet problem for the diffusion equation. That is, there is at most one
solution of

ut − kuxx = f (x, t) for 0 < x < l and t > 0
u(x, 0) = φ(x)
u(0, t) = g(t) u(l, t) = h(t)

(3)

for four given functions f , φ, g, and h. Uniqueness means that any solution
is determined completely by its initial and boundary conditions. Indeed, let
u1(x, t) and u2(x, t) be two solutions of (3). Let w = u1 − u2 be their differ-
ence. Then wt − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0. Let T >
0. By the maximum principle, w(x, t) has its maximum for the rectangle on its
bottom or sides—exactly where it vanishes. So w(x, t) ≤ 0. The same type
of argument for the minimum shows that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0,
so that u1(x, t) ≡ u2(x, t) for all t ≥ 0.

Here is a second proof of uniqueness for problem (3), by a very different
technique, the energy method. Multiplying the equation for w = u1 − u2 by
w itself, we can write

0 = 0 · w = (wt − kwxx)(w) =
( 1

2 w2
)

t + (−kwx w)x + kw2
x .

(Verify this by carrying out the derivatives on the right side.) Upon integrating
over the interval 0 < x < l, we get

0 =
∫ l

0

( 1
2 w2

)
t dx − kwx w

∣∣∣∣
x=l

x=0
+ k

∫ l

0
w2

x dx .

Because of the boundary conditions (w = 0 at x = 0, l),

d
dt

∫ l

0

1
2

[w(x, t)]2 dx = −k
∫ l

0
[wx (x, t)]2 dx ≤ 0,

where the time derivative has been pulled out of the x integral (see Section
A.3). Therefore,

∫
w2 dx is decreasing, so
∫ l

0
[w(x, t)]2 dx ≤

∫ l

0
[w(x, 0)]2 dx (4)

for t ≥ 0. The right side of (4) vanishes because the initial conditions of u
and v are the same, so that

∫
[w(x, t)]2 dx = 0 for all t > 0. So w ≡ 0 and

u1 ≡ u2 for all t ≥ 0.
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Uniqueness: proof

let u1(x, t) and u2(x, t) be two solutions of the 
Dirichlet problem. 

Let w = u1 − u2 be their difference.

Then wt − kwxx = 0, w(x, 0) = w(0, t) = w(l, t) = 0.

By the maximum principle, w(x, t) has its maximum 
for the rectangle on its bottom or sides—exactly 
where it vanishes. So w(x, t) ≤ 0.

The same type of argument for the minimum 
shows that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0, so 
that u1(x, t) ≡ u2(x, t) for all t ≥ 0. 
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attenuation and β(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.
(a) Plug the special form into the PDE to get an ODE for f .
(b) Set the coefficients of f ′′, f ′, and f equal to zero.
(c) Solve the ODEs to see that n = 1 or n = 3 (unless u ≡ 0).
(d) If n = 1, show that α(r) is a constant (so that “there is no attenuation”).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69–71, 1985)

2.3 THE DIFFUSION EQUATION

In this section we begin a study of the one-dimensional diffusion equation

ut = kuxx . (1)

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
properties of diffusions. We begin with the maximum principle, from which
we’ll deduce the uniqueness of an initial-boundary problem. We postpone un-
til the next section the derivation of the solution formula for (1) on the whole
real line.

Maximum Principle. If u(x, t) satisfies the diffusion equation in a rectangle
(say, 0 ≤ x ≤ l, 0 ≤ t ≤ T ) in space-time, then the maximum value of u(x, t)
is assumed either initially (t = 0) or on the lateral sides (x = 0 or x = l) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [−u(x, t)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the

Figure 1
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Uniqueness: alternative proof (“energy method”)

Multiplying the equation for w = u1 − u2 by w itself, 
we can write:

Integrating over 0 < x < l, we get 

Since w = 0 at x = 0 and at x = l, we get
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But v(x, t) does have a maximum somewhere in the closed rectangle
0 ≤ x ≤ l, 0 ≤ t ≤ T . This maximum must be on the bottom or sides. There-
fore v(x, t) ≤ M + ϵl2 throughout R. This proves the maximum principle (in
its weaker version).

UNIQUENESS

The maximum principle can be used to give a proof of uniqueness for the
Dirichlet problem for the diffusion equation. That is, there is at most one
solution of

ut − kuxx = f (x, t) for 0 < x < l and t > 0
u(x, 0) = φ(x)
u(0, t) = g(t) u(l, t) = h(t)

(3)

for four given functions f , φ, g, and h. Uniqueness means that any solution
is determined completely by its initial and boundary conditions. Indeed, let
u1(x, t) and u2(x, t) be two solutions of (3). Let w = u1 − u2 be their differ-
ence. Then wt − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0. Let T >
0. By the maximum principle, w(x, t) has its maximum for the rectangle on its
bottom or sides—exactly where it vanishes. So w(x, t) ≤ 0. The same type
of argument for the minimum shows that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0,
so that u1(x, t) ≡ u2(x, t) for all t ≥ 0.

Here is a second proof of uniqueness for problem (3), by a very different
technique, the energy method. Multiplying the equation for w = u1 − u2 by
w itself, we can write

0 = 0 · w = (wt − kwxx)(w) =
( 1

2 w2
)

t + (−kwx w)x + kw2
x .

(Verify this by carrying out the derivatives on the right side.) Upon integrating
over the interval 0 < x < l, we get

0 =
∫ l

0

( 1
2 w2

)
t dx − kwx w

∣∣∣∣
x=l

x=0
+ k

∫ l

0
w2

x dx .

Because of the boundary conditions (w = 0 at x = 0, l),

d
dt

∫ l

0

1
2

[w(x, t)]2 dx = −k
∫ l

0
[wx (x, t)]2 dx ≤ 0,

where the time derivative has been pulled out of the x integral (see Section
A.3). Therefore,

∫
w2 dx is decreasing, so
∫ l

0
[w(x, t)]2 dx ≤

∫ l

0
[w(x, 0)]2 dx (4)

for t ≥ 0. The right side of (4) vanishes because the initial conditions of u
and v are the same, so that

∫
[w(x, t)]2 dx = 0 for all t > 0. So w ≡ 0 and

u1 ≡ u2 for all t ≥ 0.

44 CHAPTER 2 WAVES AND DIFFUSIONS

But v(x, t) does have a maximum somewhere in the closed rectangle
0 ≤ x ≤ l, 0 ≤ t ≤ T . This maximum must be on the bottom or sides. There-
fore v(x, t) ≤ M + ϵl2 throughout R. This proves the maximum principle (in
its weaker version).

UNIQUENESS

The maximum principle can be used to give a proof of uniqueness for the
Dirichlet problem for the diffusion equation. That is, there is at most one
solution of

ut − kuxx = f (x, t) for 0 < x < l and t > 0
u(x, 0) = φ(x)
u(0, t) = g(t) u(l, t) = h(t)

(3)

for four given functions f , φ, g, and h. Uniqueness means that any solution
is determined completely by its initial and boundary conditions. Indeed, let
u1(x, t) and u2(x, t) be two solutions of (3). Let w = u1 − u2 be their differ-
ence. Then wt − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0. Let T >
0. By the maximum principle, w(x, t) has its maximum for the rectangle on its
bottom or sides—exactly where it vanishes. So w(x, t) ≤ 0. The same type
of argument for the minimum shows that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0,
so that u1(x, t) ≡ u2(x, t) for all t ≥ 0.

Here is a second proof of uniqueness for problem (3), by a very different
technique, the energy method. Multiplying the equation for w = u1 − u2 by
w itself, we can write

0 = 0 · w = (wt − kwxx)(w) =
( 1

2 w2
)

t + (−kwx w)x + kw2
x .

(Verify this by carrying out the derivatives on the right side.) Upon integrating
over the interval 0 < x < l, we get

0 =
∫ l

0

( 1
2 w2

)
t dx − kwx w

∣∣∣∣
x=l

x=0
+ k

∫ l

0
w2

x dx .

Because of the boundary conditions (w = 0 at x = 0, l),

d
dt

∫ l

0

1
2

[w(x, t)]2 dx = −k
∫ l

0
[wx (x, t)]2 dx ≤ 0,

where the time derivative has been pulled out of the x integral (see Section
A.3). Therefore,

∫
w2 dx is decreasing, so
∫ l

0
[w(x, t)]2 dx ≤

∫ l

0
[w(x, 0)]2 dx (4)

for t ≥ 0. The right side of (4) vanishes because the initial conditions of u
and v are the same, so that

∫
[w(x, t)]2 dx = 0 for all t > 0. So w ≡ 0 and

u1 ≡ u2 for all t ≥ 0.

44 CHAPTER 2 WAVES AND DIFFUSIONS

But v(x, t) does have a maximum somewhere in the closed rectangle
0 ≤ x ≤ l, 0 ≤ t ≤ T . This maximum must be on the bottom or sides. There-
fore v(x, t) ≤ M + ϵl2 throughout R. This proves the maximum principle (in
its weaker version).

UNIQUENESS

The maximum principle can be used to give a proof of uniqueness for the
Dirichlet problem for the diffusion equation. That is, there is at most one
solution of

ut − kuxx = f (x, t) for 0 < x < l and t > 0
u(x, 0) = φ(x)
u(0, t) = g(t) u(l, t) = h(t)

(3)

for four given functions f , φ, g, and h. Uniqueness means that any solution
is determined completely by its initial and boundary conditions. Indeed, let
u1(x, t) and u2(x, t) be two solutions of (3). Let w = u1 − u2 be their differ-
ence. Then wt − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0. Let T >
0. By the maximum principle, w(x, t) has its maximum for the rectangle on its
bottom or sides—exactly where it vanishes. So w(x, t) ≤ 0. The same type
of argument for the minimum shows that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0,
so that u1(x, t) ≡ u2(x, t) for all t ≥ 0.

Here is a second proof of uniqueness for problem (3), by a very different
technique, the energy method. Multiplying the equation for w = u1 − u2 by
w itself, we can write

0 = 0 · w = (wt − kwxx)(w) =
( 1

2 w2
)

t + (−kwx w)x + kw2
x .

(Verify this by carrying out the derivatives on the right side.) Upon integrating
over the interval 0 < x < l, we get

0 =
∫ l

0

( 1
2 w2

)
t dx − kwx w

∣∣∣∣
x=l

x=0
+ k

∫ l

0
w2

x dx .

Because of the boundary conditions (w = 0 at x = 0, l),

d
dt

∫ l

0

1
2

[w(x, t)]2 dx = −k
∫ l

0
[wx (x, t)]2 dx ≤ 0,

where the time derivative has been pulled out of the x integral (see Section
A.3). Therefore,

∫
w2 dx is decreasing, so
∫ l

0
[w(x, t)]2 dx ≤

∫ l

0
[w(x, 0)]2 dx (4)

for t ≥ 0. The right side of (4) vanishes because the initial conditions of u
and v are the same, so that

∫
[w(x, t)]2 dx = 0 for all t > 0. So w ≡ 0 and

u1 ≡ u2 for all t ≥ 0.



17

Uniqueness: alternative proof (“energy method”)

This means that                is decreasing time, and 
thus:
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u(x, 0) – v(x, 0) = 0.
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w(x, t) ≡ 0, so that u1(x, t) ≡ u2(x, t) for all t ≥ 0. 
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Stability: using the maximum principle

Consider two solutions u1 and u2 of the Dirichlet 
diffusion problem with initial data      and       .

We have w ≡ u1 − u2 = 0 on the lateral sides of the 
rectangle R and                       on the bottom.

The maximum principle asserts that throughout 
the rectangle 

The “minimum” principle says that

2.3 THE DIFFUSION EQUATION 45

STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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Stability: using the maximum principle

Therefore:

valid for all t > 0.

On the right side is a quantity that measures the 
nearness of the initial data for two solutions, and 
on the left we measure the nearness of the 
solutions at any later time. Thus, if we start nearby 
(at t = 0), we stay nearby.

This is a measure of stability; called stability in the 
“uniform” sense.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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Stability: using the energy method

Consider again two solutions u1 and u2 of the 
Dirichlet problem with initial data      and       , 
and with f = g = h = 0. 

Then w ≡ u1 − u2 is the solution with initial data        
-       and the inequality from slide 17

becomes
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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But v(x, t) does have a maximum somewhere in the closed rectangle
0 ≤ x ≤ l, 0 ≤ t ≤ T . This maximum must be on the bottom or sides. There-
fore v(x, t) ≤ M + ϵl2 throughout R. This proves the maximum principle (in
its weaker version).

UNIQUENESS

The maximum principle can be used to give a proof of uniqueness for the
Dirichlet problem for the diffusion equation. That is, there is at most one
solution of

ut − kuxx = f (x, t) for 0 < x < l and t > 0
u(x, 0) = φ(x)
u(0, t) = g(t) u(l, t) = h(t)

(3)

for four given functions f , φ, g, and h. Uniqueness means that any solution
is determined completely by its initial and boundary conditions. Indeed, let
u1(x, t) and u2(x, t) be two solutions of (3). Let w = u1 − u2 be their differ-
ence. Then wt − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0. Let T >
0. By the maximum principle, w(x, t) has its maximum for the rectangle on its
bottom or sides—exactly where it vanishes. So w(x, t) ≤ 0. The same type
of argument for the minimum shows that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0,
so that u1(x, t) ≡ u2(x, t) for all t ≥ 0.

Here is a second proof of uniqueness for problem (3), by a very different
technique, the energy method. Multiplying the equation for w = u1 − u2 by
w itself, we can write

0 = 0 · w = (wt − kwxx)(w) =
( 1

2 w2
)

t + (−kwx w)x + kw2
x .

(Verify this by carrying out the derivatives on the right side.) Upon integrating
over the interval 0 < x < l, we get

0 =
∫ l

0

( 1
2 w2

)
t dx − kwx w

∣∣∣∣
x=l

x=0
+ k

∫ l

0
w2

x dx .

Because of the boundary conditions (w = 0 at x = 0, l),

d
dt

∫ l

0

1
2

[w(x, t)]2 dx = −k
∫ l

0
[wx (x, t)]2 dx ≤ 0,

where the time derivative has been pulled out of the x integral (see Section
A.3). Therefore,

∫
w2 dx is decreasing, so
∫ l

0
[w(x, t)]2 dx ≤

∫ l

0
[w(x, 0)]2 dx (4)

for t ≥ 0. The right side of (4) vanishes because the initial conditions of u
and v are the same, so that

∫
[w(x, t)]2 dx = 0 for all t > 0. So w ≡ 0 and

u1 ≡ u2 for all t ≥ 0.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have

∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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Stability: using the energy method

This again measures on the right the nearness of 
the initial data for two solutions, and on the left 
the nearness of the solutions at any later time. 

This is another measure of stability; called stability 
in the “square integral” (or energy) sense.
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Take-home messages

The maximum (and minimum) principle provide 
deep insights into the qualitative behavior of the 
solution of the diffusion equation

Diffusion tends to smooth the solution out

We can prove uniqueness and stability 
using this maximum principle

We can also prove uniqueness and stability using 
an “energy” method
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What’s next?

We still haven’t solved the diffusion equation. We 
will do it in a future lecture, by deriving a formula 
for the solution on the whole line – which will 
introduce the concept of fundamental solutions (or 
Green’s functions).

Before doing so, we will investigate approximate 
solutions using numerical methods.


