
INFO 0939 Project 2023
Last updated: 23/09/2023

Goals of the Project

• Solve a physical problem modelled by partial differential equations using a finite difference
scheme coded in C.

• Experiment with the stability of explicit time integration schemes.

• Parallelize the code on distributed memory systems using MPI, and on shared memory systems
using OpenMP.

• Combine MPI and OpenMP to make the most of a supercomputing cluster.

• Explore the acceleration potential of modern GPUs using OpenMP.

• Learn to profile the code and run weak and strong scalability analyses.

Project statement

The propagation of sound waves is governed by the following system of first order partial differential
equations:

∂P
∂ t

=−ρc2 divv, (1)

∂v
∂ t

=− 1
ρ

gradP, (2)

where, in three dimensions and assuming a Cartesian coordinate system and MKS units, P=P(x,y,z, t)
is the scalar pressure field (in Pa) and v = v(x,y,z, t) is the vector velocity (in m/s). Both the pressure
and the velocity are function of the position (x,y,z) and of time t. The material parameters are the
speed of sound c = c(x,y,z) (in m/s) and the density ρ = ρ(x,y,z) (in kg/m3), which vary in space but
are independent of time.

Expanded in terms of the three components vx, vy, vz of the velocity v, system (1)–(2) can be rewritten
as

∂P
∂ t

=−ρc2
(

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂ z

)
, (3)

∂vx

∂ t
=− 1

ρ

∂P
∂x

, (4)

∂vy

∂ t
=− 1

ρ

∂P
∂y

, (5)

∂vz

∂ t
=− 1

ρ

∂P
∂ z

. (6)

In this project you will compute an approximate solution of this system of partial differential equations
using the Finite Difference Time Domain (FDTD) method (see e.g. [1]). The FDTD method is based

1



x

y

z

P[m,n, p] vx[m,n, p]

vy[m,n, p]

vz[m,n, p] ∆x

Figure 1: Spatial discretization in three dimensions: arrangement of velocity nodes relative to the
pressure node with the same spatial indices [m,n, p] (the time index q is omitted for clarity).

on a discretization of the pressure and the components of the velocity in both space and time, on
regularly spaced grid nodes. A pressure node is surrounded by velocity components such that the
components are oriented along the line joining the component and the pressure node. The distance
(offset) between pressure nodes along the x, y and z directions is supposed to be constant, and equal
respectively to ∆x, ∆y and ∆z. In addition to these spatial offsets, the pressure nodes are assumed to
be offset by half of a temporal step ∆t from the velocity nodes. Given four integer indices m, n, p and
q, we introduce the following notations for the representation of the discretized pressure and velocity
components (see Figure 1):

Pq[m,n, p] := P(m∆x,n∆y, p∆z,q∆t), (7)

vq+1/2
x [m,n, p] := vx((m+1/2)∆x,n∆y, p∆z,(q+1/2)∆t), (8)

vq+1/2
y [m,n, p] := vy(m∆x,(n+1/2)∆y, p∆z,(q+1/2)∆t), (9)

vq+1/2
z [m,n, p] := vz(m∆x,n∆y,(p+1/2)∆z,(q+1/2)∆t). (10)

For this project it will be assumed that the spatial grid offsets are equal in all directions, i.e. ∆x = ∆y =
∆z = δ . Replacing the derivatives in (3) with finite differences and using the discretization (7)–(10)
yields the following update equation for the pressure:

Pq[m,n, p] = Pq−1[m,n, p]−ρc2 ∆t

δ

(
vq−1/2

x [m,n, p]− vq−1/2
x [m−1,n, p]+

vq−1/2
y [m,n, p]− vq−1/2

y [m,n−1, p]+

vq−1/2
z [m,n, p]− vq−1/2

z [m,n, p−1]
)
. (11)

The update equation for the x component of the velocity is obtained from the discretized version of

2



(4), which yields

vq+1/2
x [m,n, p] = vq−1/2

x [m,n, p]− 1
ρ

∆t

δ

(
Pq[m+1,n, p]−Pq[m,n, p]

)
. (12)

The update equations for the other two components are derived in a similar way:

vq+1/2
y [m,n, p] = vq−1/2

y [m,n, p]− 1
ρ

∆t

δ

(
Pq[m,n+1, p]−Pq[m,n, p]

)
(13)

vq+1/2
z [m,n, p] = vq−1/2

z [m,n, p]− 1
ρ

∆t

δ

(
Pq[m,n, p+1]−Pq[m,n, p]

)
. (14)

In all your simulations, you can assume a homogeneous initial condition for both the pressure and the
velocity, i.e.

P0[m,n, p] = v1/2
x [m,n, p] = v1/2

y [m,n, p] = v1/2
z [m,n, p] = 0, ∀m,n, p, (15)

and impose a Dirichlet condition on selected pressure nodes to impose a sound source:

Pq[m,n, p] = Pq
source[m,n, p], m,n, p ∈ S, (16)

where S denotes the subset of nodes where the sound source Pq
source[m,n, p] is imposed. For example,

if there are Nx, Ny and Nz nodes respectively along x, y and z, a point-wise sinusoidal sound source at
frequency f can be imposed in the middle of the domain by choosing

Pq
source[⌊Nx/2⌋,⌊Ny/2⌋,⌊Nz/2⌋] = sin(2π f q∆t). (17)

On the boundary of the domain, one assumes homogeneous Neumann boundary conditions for the
pressure (where any node “outside” the domain by one offset is given the same value as the one
associated to the closest node on the boundary, e.g. Pq[−1,n, p] := Pq[0,n, p] or Pq[m,Ny, p] :=
Pq[m,Ny −1, p]) and zero normal velocity.

Instructions

A serial C code that solves the discretized equations in three dimensions over a rectangular cuboid is
available on the NIC5 cluster: see https://people.montefiore.uliege.be/geuzaine/
INFO0939/project.html#start.

You are asked to:

1. Improve the evaluation of the local speed of sound and density. In the serial code the evaluation
is done using a nearest-neighbor search (cf. the interpolate_inputmaps function). You
should improve this by using trilinear interpolation.

2. Experimentally study the stability of the scheme depending on the ratio c∆t/δ , for a homoge-
neous medium with a constant speed of sound.

3. Perform a rough analysis of the arithmetic intensity of the FDTD and determine the main lim-
iting factor for the speed of your algorithm: is the code memory bound or CPU bound? What
do you expect if you run the code on a machine capable of 200 GB/s of memory bandwidth and
2.8 TFLOPS/s of processing power?

3

https://people.montefiore.uliege.be/geuzaine/INFO0939/project.html#start
https://people.montefiore.uliege.be/geuzaine/INFO0939/project.html#start


4. Evaluate potential bottlenecks in the serial code, based on the lecture on CPU cache hierarchies.

5. Parallelize the serial code using MPI, by subdividing the domain into Px ×Py ×Pz partitions,
where the positive integers Px, Py andPz designate the number of partitions along x, y and z,
respectively, and are chosen to minimize the amount of MPI communications.

6. Parallelize the serial code using OpenMP. Could you advantageously make use of the
collapse clause?

7. Integrate the OpenMP parallelization strategy into the MPI code to produce a hybrid
MPI+OpenMP code that can efficiently target the cluster architecture of the NIC5 supercom-
puter.

8. Perform a scalability analysis of the MPI, OpenMP and MPI+OpenMP codes, by evaluating
both the strong and the weak scaling on one or more well-chosen example(s). Using the tools
presented during the lectures (Score-P, Scalasca, Cube, likwid), explain the results of the scala-
bility study.

9. Accelerate the serial code using OpenMP on a single GPU of the Lucia supercomputer. Com-
pare and analyze the performance of the OpenMP CPU and GPU codes.

10. Imagine a few combinations of input parameters, speed and density maps and sources to
study the propagation of sound in interesting configurations. It is possible to propagate au-
dio sources and evaluate the sound at different locations (e.g. across a room, or behind
a wall): see https://people.montefiore.uliege.be/geuzaine/INFO0939/
project.html#audio.

Here are some optional enhancements that you can work on if you would like to go further:

Perform a theoretical study of the stability of the FDTD scheme.

Implement more sophisticated boundary conditions on the boundary of the domain to simu-
late a transparent boundary, allowing waves to exit the simulation domain without (too many)
reflections.

Combine MPI and OpenMP for multi-GPU parallelization.

ASCII parameter file format

The input parameter file is an ASCII text file that contains the simulation parameters, structured as
follows:

delta
delta_t
max_t
sampling_rate
input_speed_filename
input_density_filename
source_specification

4

https://people.montefiore.uliege.be/geuzaine/INFO0939/project.html#audio
https://people.montefiore.uliege.be/geuzaine/INFO0939/project.html#audio


output_specification_1
output_specification_2
...

with

• delta (double): spatial grid offset δ ;

• delta_t (double): time step ∆t ;

• max_t (double): maximum simulation time; the maximum number of time steps is ⌊max_t/∆t⌋;

• sampling_rate (int): sampling rate at which output files should be created (0: never save,
1: save all steps, 2: save 1 step out of 2, etc.);

• input_speed_filename (string): name of the input file containing the sound speed profile
(the file format is described in “Binary data file format” below);

• input_density_filename (string): same as input_speed_filename but for the
density profile;

• source_specification: specification of the source. The source can be a sine wave or
an audio file. A sine wave specification format is sine freq posx posy posz. For
example, for a sine source of 3400 Hz placed at x, y, z = 0.5, the source specification will
be sine 3400 0.5 0.5 0.5. For an audio source, the specification format is audio
filename.dat posx posy posz. For example, if the name of the file for the audio
source is in_audio.dat and that the source is located at x = 0.1, y = 0.2 and z = 0.3 the
source specification will be audio in_audio.dat 0.1 0.2 0.3.

• output_specification: one or more output specifications. The general format is type
output_source filename coords. Where

– type: a keyword specifying the type of output to produce. type keyword can be
all to write all the data or cut_x to write data extracted from cut along the x axis
or cut_y/cut_z for a cut along the y or z axes. If you want to extract a single point,
you can use the point keyword.

– output_source: a keyword specifying the data to use to produce the out-
put. output_source can be pressure, velocity_x, velocity_y or
velocity_z.

– filename: the name of the file to which the output should be written

– coords: one or three space separated doubles that specify from where the cut or the
point extraction should be performed. For a point three values are needed while a cut only
requires one value. If type is all, no coordinates are needed.

Example output specifications:

– all pressure out_p.dat: write the full pressure data to a file with name
out_p.dat.

– cut_z velocity_x out_vx_cutz_0_20.dat 0.20: write a cut of vx at z =
0.20 to a file with name out_vx_cutz_0_20.dat.

5



– cut_x velocity_y out_vy_cutx_0_40.dat 0.40: write a cut of vy at x =
0.40 to a file with name out_vy_cutx_0_40.dat.

– cut_y velocity_z out_vz_cuty_0_60.dat 0.60: write a cut of vz at y =
0.60 to a file with name out_vz_cuty_0_60.dat.

– point pressure out_p_point_0_40.dat 0.40 0.40 0.40: extract a
point at x, y , z = 0.40 out of the pressure data and write it to a file with name
out_p_point_0_40.dat.

Sample parameter files will be provided in class.

Binary data file format

The input and output binary files are structured as follows:

nx ny nz xmin xmax ymin ymax zmin zmax timesteps...

with

• nx (int): number of nodes along x;

• ny (int): number of nodes along y;

• nz (int): number of nodes along z;

• xmin (double): minimum x coordinate of the domain;

• xmax (double): maximum x coordinate of the domain;

• ymin (double): minimum y coordinate of the domain;

• ymax (double): maximum y coordinate of the domain;

• zmin (double): minimum z coordinate of the domain;

• zmax (double): maximum z coordinate of the domain;

• one or multiple time step data. One time step is written as one int (step index), followed by one
double (step time), followed by nx × ny × nz doubles. The values are assumed to be given
“by row”, i.e.

for(int p = 0; p < nz; p++)
for(int n = 0; n < ny; n++)

for(int m = 0; m < nx; m++)
printf("value[%d][%d][%d] = %g\n", m, n, p,

value[ny * nx * p + nx * n + m]);
}

}
}

6



General remarks on C coding style

Your coding style will be evaluated. As such, some quality in the submitted code is expected, and you
should strive to have a clean and neat coding style. In general, think about who will read your code
and ask yourself if it is clear and understandable. Please beware of some common mistakes that will
lead to penalties on your final grade:

• Do all your computations in double. There is no reason to use single precision in this project.

• If you malloc() something, remember to free() it.

• Check return values for failure, especially from malloc(), fopen() or similar calls. Don’t
assume that those calls will always succeed.

• Don’t use Variable Length Arrays, i.e.

int function(int N) {
int array[N];

}

The value of N must be known at compile time. If it is not the case, use malloc().

• Don’t abuse comments. If something is obvious, don’t comment it. If you feel the need to
comment some code, ask yourself if perhaps you can write the code in a clearer way instead of
putting that comment.

• Try to use relevant and appropriate variable and function names. Be coherent in naming things,
in order to make it easy to track down where data goes.

• Avoid global variables. There are very few valid use cases for global variables and they are one
of the factors that make your code not thread safe.

• Finally, a function should fit on your screen. If it doesn’t, perhaps you should split it in smaller
pieces. Also, if you have a function that takes more than 10 parameters, perhaps you need to
think if you really need all of them, or it might be time to create a struct?

References

[1] John B. Schneider, Understanding the Finite-Difference Time-Domain Method, 2010. Available
online at: http://www.eecs.wsu.edu/~schneidj/ufdtd/ .

7

http://www.eecs.wsu.edu/~schneidj/ufdtd/ 

