DC machines

Transforms mechanical energy into electric energy with DC voltage and current (DC ball bearing generator or dynamo), or conversely (DC brush motor) ball bearing brush holder stator (inductor) collector rotor (armature)

DC generators

No-load characteristic

No-load characteristic

Variation of the voltage E_v as a function of the excitation current I_e , at constant speed and with no delivered current

Armature reaction

Armature reaction (magnetic)

Magnetic phenomena due to the currents in the armature

1. Neutral line shifted (rotated) in the rotation direction

 \Rightarrow decrease of the e.m.f.

2. Local magnetic field reduction (entry part) and increase (exit part) not compensated due to nonlinearity

$$E = E_{v} - \psi(I_{a})$$

1. and 2.

e.m.f. with load

armature reaction

$$\psi(I_a) = k_E \dot{\theta} \Delta \Phi(I_a)$$

Armature reaction

Total armature reaction

$$\Psi(I_a) = \psi(I_a) + R_a I_a$$

Compensating winding

Reduction of the armature reaction

Shift of the brushes w.r.t. neutral axis

disadvantages:

- for a single value of I_a
- shift direction depends on rotation direction
- shift direction depends on operating mode (generator or motor)

Exterior characteristics

Exterior characteristic of a generator

Variation of delivered voltage U in terms of the delivered current I, at constant speed and excitation circuit

$$U = f(I)$$
 with
$$\begin{cases} speed \dot{\theta} = constant \\ fixed excitation circuit \end{cases}$$

Excitation type...

Independent excitation generator

Series excitation generator

$$I = I_a = I_e$$

$$U = E_v(I) - \psi(I) - (R_a + R_s)I$$

 $R_s \ll \text{since } I_e = I \text{ is high }$ coherent: section >, $n_s \ll I_e = I$

$$\Psi(I) = \psi(I) + (R_a + R_s)I$$

Speed modification

Inductor shunting

Shunt excitation generator

$$I = I_a - I_e$$

$$U = E_v(I_e) - \psi(I_a) - R_a I_a$$

$$U = R_d I_e$$

$$R_d >>$$
 to reduce Joule losses $I_e < \implies n_s >$

$\Psi(I_a) = \psi(I_a) + R_a I$

Picou construction

 $E_v(I_e) \& \Psi(I_a)$ known $R_d I_e = U(I_e)$

For I_{a1} (point by point procedure) $\rightarrow \Psi(I_a) \rightarrow \Psi(I_a) + R_d I_e \equiv E_{v1} \& E_{v2}$ $\rightarrow I_{e1} \& I_{e2} \rightarrow U_1 \& U_2$

$$I = I_a - I_e = I_a - \frac{U}{R_d}$$

Shunt excitation generator

Exterior characteristic

Delivered voltage almost independent of the delivered current → Voltage source

... the voltage varies however more than for the generator with independent excitation

10

Shunt excitation generator

Speed modification

If the speed is too low of if R_d is too large \rightarrow no operating point

$U = R_d I_c \qquad U = R_{d\Omega} I_c \qquad R_{d\Omega} I_c \qquad R_d I_c \qquad I_c \qquad I_c \qquad I_d \qquad I_d$

Excitation circuit modification

Effect of hysteresis

2 branches:

 I_e increasing and decreasing

Compound excitation generator

Mixed excitation: shunt inductor and series inductor wound on the same poles

$$U = E_v(I_f) - \Psi(I_a)$$

$$U = R_d I_e = R_d \left(I_f \mp \frac{n_s}{n_d} I_a \right)$$

- (4) hypercompound $(n_s >>)$
- (3) concordant compound (same direction m.m.f.)
- (2) shunt dynamo
- (1) antagonist compound (opposite m.m.f.)

$$E_{v}(I_{f}) = \Psi(I_{a}) + R_{d} \left(I_{f} \mp \frac{n_{s}}{n_{d}}I_{a}\right)$$

Self-starting generator

Self-starting is possible thanks to the remanent magnetization of the inductor

Example: shunt generator

DC network connection

Conditions:

 $E \approx U$

E and U in opposition

After connexion (1):

$$I_{a} = \frac{E(I_{e}, I_{a}) - U}{R_{a}}$$

If $E <<, I_a >> !$

Then, increase $E(2) \Rightarrow$ the generator produces energy

If E decreases

⇒ the generator receives energy (motor for shunt and compound machines!)

DC motors

Main principle

Excitation current I_e and armature current I_a

The armature conductors are subjected to the magnetic flux density created by the inductor

... hence to the Laplace force

$$f = j \times b$$

... hence to a torque that tends to make the armature rotate

Electromotive force (e.m.f.)

... in the armature conductors as soon as they rotate, opposed to the current

Total e.m.f. (E) on brushes is equal to the integral of the electromotive field along the armature conductors

 $U = E + R_a I_a$

Armature reaction

armature reaction

e.m.f. with load

 $\psi(I_a) = k_E \dot{\theta} \Delta \Phi(I_a)$

DC motor

$$\Psi(I_a) = \psi(I_a) - R_a I_a$$

 $U = E - R_a I_a$

DC generator

$$\Psi(I_a) = \psi(I_a) + R_a I_a$$

Total armature reaction

Motor torque

$$U = E + R_a I_a = E_v - \psi(I_a) + R_a I_a$$

$$U I_a = E I_a + R_a I_a^2 = (E_v - \psi(I_a)) I_a + R_a I_a^2$$

Electric power provided to the armature

Electromagnetic power

Joule losses in the armature

17

Electromagnetic torque

$$C = \frac{P_{elm}}{\dot{\theta}} = \frac{E I_a}{\dot{\theta}}$$

$$C = \frac{P_{elm}}{\dot{\theta}} = \frac{E I_a}{\dot{\theta}}$$

$$C = k_E \Phi(I_e, I_a) I_a = k_E \left[\Phi_v(I_e) - \Delta\Phi(I_a)\right] I_a$$

Mechanical characteristics

Machanical characteristic of a motor

Motor speed in terms of the electromagnetic torque, with fixed voltage and excitation circuit

$$\dot{\theta} = f(C)$$
 with
$$\begin{cases} U = constant \\ fixed excitation circuit \end{cases}$$

Excitation type...

independent or shunt

18

Shunt excitation motor

$$C = k_E \left[\Phi_v(I_e) - \Delta \Phi(I_a) \right] I_a$$
$$= C_0 f(I_e, I_a)$$

with

(I_e constant)

$$f(I_e, I_a) = \frac{\Phi_v(I_e) - \Delta\Phi(I_a)}{\Phi_v(I_e)} \le 1$$

 C_0 = torque produced by the motor if there was no armature reaction

Shunt excitation motor

Stable and unstable zones

Small perturbation: e.g. speed increase

From P:

motor torque P" < resisting torque P' \Rightarrow speed decreases, back to P \Rightarrow stable

From Q:

motor torque Q" > resisting torque Q' ⇒ speed increases! ⇒ unstable

Limited speed range (saturation)

Shunt excitation motor

Poor efficiency!

+ power electronics...

High dynamic torque control (since $\lambda_a \ll$)

Series excitation motor

DC machines

22

Series excitation motor

Influence of the voltage source U

+ power electronics...

Typical use

Electric traction and lifts (large startup torque)

Shunting the inductor

$$I_{e} = \frac{R_{s}^{'}}{R_{s} + R_{s}^{'}} I_{a} \leq I_{a}$$

$$\lambda'_{M} = \frac{R_{s}^{'}}{R_{s} + R_{s}^{'}} \lambda_{M} \leq \lambda_{M}$$

$$\Phi(I_{e}) \approx \lambda_{M} I_{e} = \lambda'_{M} I_{a} \leq \lambda_{M} I_{a} = \Phi(I_{a})$$

Series excitation motor

Braking

$$C = k_E \Phi(I_a) I_a$$

Change the sign of the torque to work as a brake

Electric power changes sign (recovers energy)

Different modes

Compound excitation motor

m.m.f. = $n_d I_e \pm n_s I_a$ = $n_d \left(I_e \pm \frac{n_s}{n_d} I_a \right)$ = $n_d I_f$ Mixed excitation: shunt and series inductor wound on the same poles

DC motor startup

Zero speed at startup \Rightarrow zero e.m.f. E

Induced current I_a limited only by the armature resistance R_a

$$I_a = \frac{U}{R_a} >>$$

(One allows $I_{as} = 1.5 I_{an}$)

Startup rheostat in series with the armature (to limit I_a)

Startup rheostat

down to short-circuit)

Shunt motor

Series motor

Inverting the rotation direction

Shunt motor

11

le ba la

Series motor

$$C = k_E \Phi(I_e) I_a$$

Modify the direction of the current in the excitation circuit w.r.t. the rotor

Torque changes sign

Losses in DC machines

Mechanical losses

- friction losses in bearings $(\div v)$ (v = speed)
- − windage losses (÷ v²)
- friction losses from brushes on the collector (÷ v)

Magnetic losses

- eddy current losses in armature (\div v², \div b_{max} ²)
- hysteresis losses in armature (\div v, \div b_{max}^{1.5 \rightarrow 2)}

Electric losses

Joule losses in armature, inductor and brushes (÷ I², function of temperature)

Supplementary losses

- due to skin effect in the rotor and sparks at brushes/collector contact
- increased magnetic losses due to the magnetic reaction