Synchronous generator (alternator): transforms mechanical energy into electric energy; designed to generate sinusoidal voltages and currents; used in most power plants, for car alternators, etc.

Synchronous motor: transforms electric energy into mechanical energy; used for high-power applications (ships, original TGV...)

Rotor (inductor): 2p poles with excitation windings carrying DC current; non-laminated magnetic material

\[\theta = \omega / p \]

Stator: polyphase (e.g. 3-phase) winding in slots; laminated magnetic material

Turbo-alternator

Salient poles
Evolution of the voltage E_v in a stator phase vs. intensity of the excitation current I_e, for a given rotation speed and with no generated stator current

- The rotor winding, carrying the DC current I_e and rotating at speed ω/p, produces in the airgap a sliding m.m.f. F_e (as seen from the stator).
- F_e generates a magnetic flux density B_r (with the same phase) in the airgap, which induces sinusoidal e.m.f.s E_v in the stator windings, with a phase lag of $\pi/2$.

$$E_v = f(I_e) \quad \text{with} \quad \begin{cases} \text{speed } \dot{\vartheta} = \text{constant} \\ I = 0 \end{cases}$$

Non linearity with hysteresis

Magnetic flux produced by the inductor and seen by the stator winding

Synchronous machines
Vector diagram with load

Diagram of magnetomotive forces and magnetic flux densities

1. The rotor winding, carrying the DC current I_e and rotating at speed ω/p, produces in the airgap a sliding m.m.f. F_e (as seen from the stator).

2. The polyphase current I in the stator winding produces a sliding m.m.f. F_I (in phase with I).

3. The resulting m.m.f. is $F_r = F_e + F_I$.

4. F_r generates a magnetic flux density B_r (with the same phase) in the airgap, which induces sinusoidal e.m.f.s in the stator windings, with a phase lag of $\pi/2$.

\[
F_e = \gamma I_e \quad \text{and} \quad F_I = \delta I
\]
Vector diagram with load

Stator leakage flux
(see by the stator but not coming from the rotor)

Slot leakage flux

End-winding leakage flux

Diagrams

\[U = E_r - jX_f I - R I \]

Resistance of stator winding

\[\bar{E}_t = E_r - jX_f I \]

Stator leakage reactance

total e.m.f.

\[F_e = \gamma I_e \]

and

\[F_l = \delta I \]

\[\bar{F}_r = \gamma I_e + \delta I \]

Equivalent excitation current

\[\bar{I}_r = \frac{F_r}{\gamma} = \bar{I}_e + \frac{\delta}{\gamma} I \]

Synchronous machines

e.m.f. induced by leakage flux

\[e_\lambda(t) = -\lambda \partial_t i_1 - \lambda_m \partial_t i_2 - \lambda_m \partial_t i_3 \]

\[= - (\lambda - \lambda_m) \partial_t i_1 \]

because

\[i_1 + i_2 + i_3 = 0 \]

Stator leakage reactance

\[X_r = \omega (\lambda - \lambda_m) \]

End-winding leakage flux

(seen by the stator but not coming from the rotor)

Resistance of stator winding

Equivalent excitation current

\[E_r \equiv \text{no-load e.m.f. produced by } I_r \]
‘Which excitation current I_e should one impose in the synchronous machine to reach the functioning point corresponding to a given voltage U and current I in the stator, with a phase shift of φ between U and I?’

$$E_r = U + R \bar{I} + j X_f \bar{I}$$

$E_r \equiv$ no-load e.m.f produced by the equivalent current I_r

$\bar{I}_e = \bar{I}_r - \frac{\delta}{\gamma} \bar{I}$

Synchronous machines
Reaction

Demagnetizing reaction

The m.m.f. is smaller than the no-load m.m.f. ($I_r < I_e$)

Inductive behaviour of the load
(I lagging behind U)

Magnetizing reaction

The m.m.f. is larger than the no-load m.m.f. ($I_r > I_e$)

Capacitive behaviour of the load
(I in front of U)

Synchronous machines
Zero power factor characteristic

Evolution of the stator voltage U as a function of the excitation current I_e, for a given rotation speed and stator current, with a zero power factor.

$U = f(I_e)$ with

\[
\begin{align*}
\text{speed } \dot{\theta} &= \text{constant} \\
I &= \text{constant} \\
\cos \phi &= 0 \ (\phi = \pm \pi/2)
\end{align*}
\]

Example: $\phi = \pi/2$

\[
I_e \approx I_r + \frac{\delta}{\gamma} I
\]

\[
U \approx E_r - X_f I
\]

Synchronous machines
Short-circuit characteristic

Evolution of the stator current as a function of the excitation current I_e, for a given rotation speed and with the stator windings in short-circuit

$$E_r = U + R \bar{I} + j X_f \bar{I}$$

with $U = 0$

$$E_r \approx X_f I$$

$$I_e \approx I_r + \frac{\delta}{\gamma} I$$

$$E_r = \beta I_r$$

$$I \approx \frac{\beta}{X_f + \beta} \frac{\delta}{\gamma} I_e$$

Non saturated machine

Synchronous machines
When the magnetic materials are not saturated, the combined effect of the reaction and of stator leakage fluxes can be taken into account thanks to a single parameter: the synchronous reactance X_s.

\[\frac{E_v}{I_e} = \frac{E_r}{I_r} = \text{constant} \]

Equal angles OAB and A’OB’

Similar triangles OAB and OA’B’

A, B and C colinear

\[E_v = U + R \bar{I} + jX_s \bar{I} \]

Synchronous reactance
Experimental determination of X_s

Behn-Eschenburg’s method – Synchronous reactance X_s

$U = 0 \Rightarrow \bar{E}_v = (R + jX_s)I_{cc}$

$\Rightarrow R + jX_s = \frac{\bar{E}_v}{I_{cc}}$ with $R << X_s$

$X_s \approx \frac{E_v(I_e)}{I_{cc}(I_e)}$

Approximation when magnetic materials are saturated!

Synchronous machines
Exterior characteristic

Alternator exterior characteristic

Evolution of the voltage U on a given stator phase as a function of the current I in this phase, when the alternator drives a load characterized by a constant power factor, at constant speed and excitation.

$$U = f(I) \quad \text{with} \quad \begin{cases} \text{speed } \dot{\theta} = \text{constant} \\ I_e = \text{constant} \\ \cos \varphi = \text{constant} \end{cases}$$
Network connection

Need for interconnection of electric power plants

- Economical organization of power production + Stability of the network despite local defects

Synchronization of an alternator on an ideal (infinitely powerful) AC network

- Large number of production units in parallel ⇒ constant voltage and frequency

The current should be zero when the connection is made → 4 conditions

1. **same pulsation** ω (correct rotation speed)
2. **same amplitudes** for E_v and U (adjusting I_e)
3. **no phase shift** between E_v and U
4. **identical phase ordering** (in a 3-phase system)
Behaviour with load

Electromagnetic power

\[P_{elm} \approx P = 3UI \cos \varphi \]

Active electric power

\[C = \frac{P}{\omega / p} = \frac{3p}{\omega} UI \cos \varphi \]

Torque

\[X_s I \cos \varphi = E_v \sin \delta_{int} \]

\[C = \frac{3p}{\omega X_s} U E_v \sin \delta_{int} \]

Internal angle

The variations of the rotor mechanical angle \(\Delta \delta_{mec} \) are proportional to the variations of the internal (electric) angle \(\Delta \delta_{int} \)

\[\Delta \delta_{mec} = \frac{\Delta \delta_{int}}{p} \]

After network synchronization, there is no exchanged current. Then:

- If mechanical power is provided to the alternator, \(E_v \) gets ahead of \(U \) \(\Rightarrow \delta_{int} \) increases (until the equilibrium of the electromagnetic and mechanical torques)
- If a braking torque is applied to the alternator, \(E_v \) gets behind \(U \) \(\Rightarrow \delta_{int} \) decreases (negative torque)
Behaviour with load

Static stability

Increasing the mechanical (breaking) torque leads to an increase of the absolute value of δ_{int} and thus to a decrease in the absolute value of $C_{\text{elm}} \Rightarrow \text{unstable}$.

The equilibrium is reached when the two torques are equal.

Increasing the mechanical (breaking) torque leads to an increase of δ_{int} and thus of $C_{\text{elm}} \Rightarrow \text{stable}$.

The equilibrium is reached when the two torques are equal.
Behaviour with load

Power diagram

$$MB = X_s \ I \ cos \ \phi = \frac{X_s}{3 \ U} \ \ 3 \ U \ I \ cos \ \phi = \frac{X_s}{3 \ U} \ P = \frac{X_s}{3 \ U} P_{elm}$$

Active power P

$$O'B = X_s \ I \ sin \ \phi = \frac{X_s}{3 \ U} \ 3 \ U \ I \ sin \ \phi = \frac{X_s}{3 \ U} \ Q$$

Reactive power Q

Alternator

Motor

Synchronous machines
V-curves (Mordey curves)

Evolution of the stator current I as a function of the excitation current I_e of a synchronous machine connected to an ideal network, at constant active power.

- **under-excited machine**
- **Over-excited machine**

- \(\phi > 0 \) ...
- \(\phi > 0 \)

Network: inductive load
Machine: capacitive system

Static stability limit

Synchronous machines