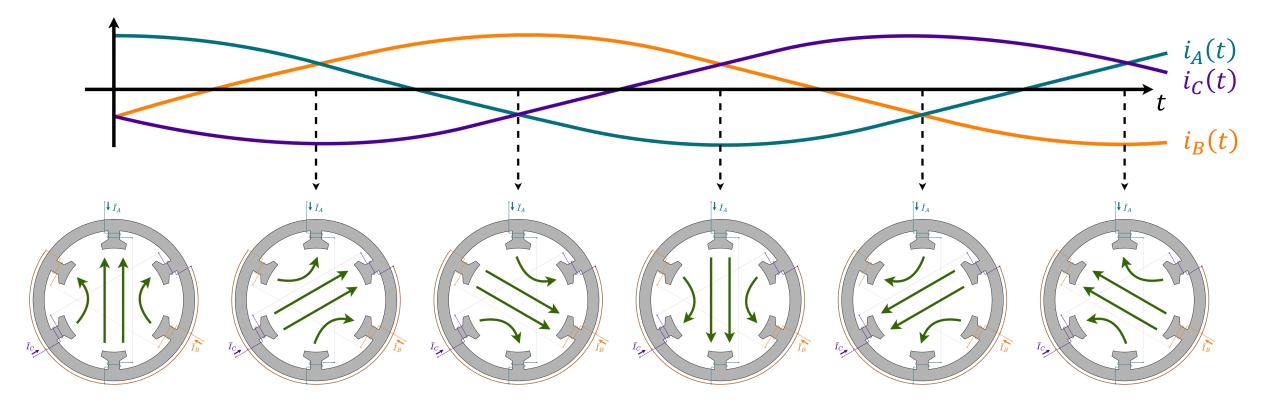


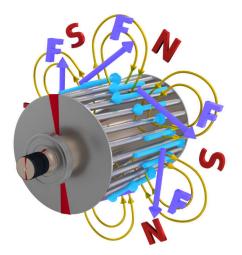
Electromagnetic Energy Conversion ELEC0431

Exercise session 7: Asynchronous machines


22 March 2024

Florent Purnode (florent.purnode@uliege.be)

Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

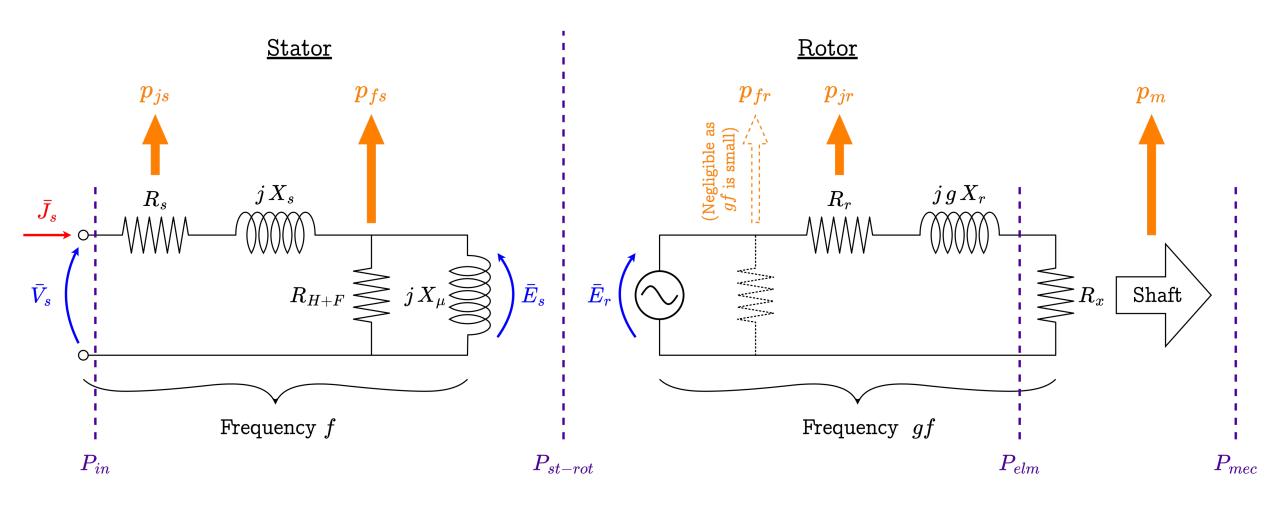

- Reminder: Magnetic field in three-phase motors
- > The asynchronous motor: working principle
- Equivalent circuit of an asynchronous motor
- \succ Exercise 12

Reminder: Magnetic field in three-phase motors

The magnetic field generated in the stator is constant in amplitude and rotates at the frequency of the three-phase power source.

The asynchronous motor: working principle

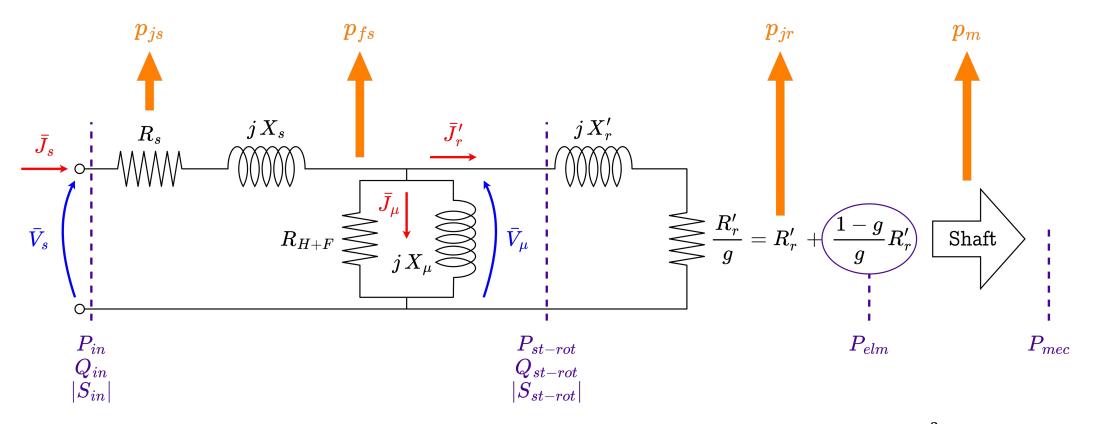
https://www.lesics.com/tesla-model-3_s-ipm-synrm-electric-motor.html


- 1. The stator generates a magnetic field rotating at a speed $\dot{\theta}_s = f/p$, with f the frequency of the stator currents and p the number of pairs of poles. $\dot{\theta}_s$ is called the synchronous speed, as it would be the speed reached by a synchronous motor.
- 2. Currents are induced in the rotor as it perceives a varying magnetic field (Faraday).
- 3. The induced currents flow through the magnetic field generated by the stator and hence produce a torque (Laplace), which puts the rotor into movement.
- 4. The rotor reaches a speed $\dot{\theta}$, which remains lower than $\dot{\theta}_s$ as no current would be induced in the rotor otherwise.

The slip g (or "glissement" in French) is defined as a normalized difference between $\dot{\theta}_s$ and $\dot{\theta}$:

$$g = \frac{\dot{\theta}_s - \dot{\theta}}{\dot{\theta}_s} \in [0; 1].$$

$$g = 0 \rightarrow \dot{\theta} = \dot{\theta}_s \quad \longleftarrow \quad g = 1 \rightarrow \dot{\theta} = 0$$


Equivalent circuit of an asynchronous motor

5

Equivalent circuit of an asynchronous motor

The previous equivalent circuit can be simplified as:

Power transmitted from the stator to the rotor: $P_{st-rot} = P_{in} - p_{js} - p_{fs} = P_{in} - R_s J_s^2 - \frac{V_{\mu}^2}{R_{H+F}}$ Electromagnetic power: $P_{elm} = P_{st-rot} - p_{jr} = P_{st-rot} - R'_r J'_r^2$ Useful mechanical power: $P_{mec} = P_{elm} - p_m$

Exercise 12: Asynchronous motor for washer cleaner

The asynchronous motor of a high-pressure washer cleaner has the following nominal characteristics:

- Three-phase mechanical power $P_{3\varphi,n} = 5.5 \ kW$
- Frequency $f_n = 50 Hz$

- RMS line voltage U_n = 400 V
 RMS line current I_n = 11 A
 Star configuration
- 1. Calculate the synchronous speed of rotation $\dot{\theta}_s$, the number of pair of poles p and the nominal slip g_n .
- 2. Determine the value of the stator resistance R_s given that a DC current I_o of 10 A flows when a DC voltage U_o of 20.6 V is applied between two lines (the last line is left open-circuited).
- 3. When applying nominal line voltages without mechanical load, the motor draws RMS line currents I_s of 3.07 A for a three-phase active power $P_{3\varphi,s}$ of 245 W. Calculate the overall losses and calculate the resistance modelling ferromagnetic losses R_{H+F} and the magnetizing inductance X_{μ} . Use a single-phase equivalent model of the asynchronous motor assuming the stator reactance X_s equals the stator resistance R_s , and assuming mechanical losses p_m equals ferromagnetic losses p_{fs} .
- 4. At the nominal operating point, calculate the transmitted power from the stator to the rotor P_{st-rot} and the Joules losses in the stator p_{js} . Assuming identical ferromagnetic losses as for point 3, deduce the three-phase input power $P_{3\varphi,in}$.
- 5. Calculate the rotoric resistance R'_r and the leak inductance X'_r .
- 6. At the nominal operating point, calculate the mechanical torque C_n and the electromagnetic torque C_{elm} , the power factor $\cos \varphi_n$ and the efficiency η_n .
- 7. Compute the RMS value I_s of the line currents, and the power factor $\cos \varphi$ at a rotation speed of 0 RPM.