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Today’s aim: Introduce a very important concept: The phasors

In this class… 

(pay particular attention to this class!)

Ø Reminders (one-ports and Kirchhoff’s laws)
Ø Harmonic functions
Ø Root Mean Square value
Ø The phasors 
Ø Exercise 1
Ø Product of two harmonic functions
Ø Active, reactive and apparent power
Ø Exercises 2



Reminders

One-ports
Kirchhoff laws
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A one-port is a two-terminal electric component. 
It can be:

Ø A resistance 𝑅
Ø An inductance 𝐿
Ø A capacitance 𝐶
Ø A power generator 
Ø A diode
Ø A combination of components
Ø Etc.

One-ports (or “dipoles” in French)

Terminal 1

Terminal 2



5

Each one-port is associated with a current 𝑖 𝑡 and a voltage 𝑣 𝑡 .
Ø 𝑖 𝑡 is positive if the positive charges flow in the direction indicated by the arrows.
Ø 𝑣 𝑡 is positive if the tension at the head of the arrow is larger than the one at the tip.

Four different configurations can thus be obtained.
è Two of them consume power and two of them deliver power. 

One-ports (or “dipoles” in French)

Consume
Power
(like a passive
component)

Deliver
Power
(like an active
component)

è This leads to two different conventions: the passive convention and the active convention.



The passive convention
(also called receiver, motor or load convention)

The passive one-port receives the 
power 𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡

This convention is used for 𝑅, 𝐿, 𝐶, lumped parameters, 
motors and primary side of transformers.

The active convention
(also called generator or source convention)

The active one-port delivers the 
power 𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡

This convention is used for voltage sources, current 
sources, generator and secondary side of transformers.

6

Passive VS Active conventions
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𝑣 𝑡 − i t relationship of basic components

𝑅

𝑑
𝑑
𝑣 𝑡 = 𝑅 𝑖 𝑡

𝑑
𝑑

𝐿

𝑣 𝑡 = 𝐿
𝑑𝑖 𝑡
𝑑𝑡

𝐶

𝑖 𝑡 = 𝐶
𝑑𝑣 𝑡
𝑑𝑡

Voltage source

𝑣 𝑡 is imposed, 𝑖 𝑡 is 
set by the rest of the circuit

Current source

𝑖 𝑡 is imposed, 𝑣 𝑡 is 
set by the rest of the circuit
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When connected 
together, use 
Kirchhoff laws
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Kirchhoff’s laws

Kirchhoff’s first law 
(also called Kirchhoff’s junction rule or Kirchhoff’s current law)

At any junction in the electrical circuit, the sum of currents flowing into the 
junction is equal to the sum of currents flowing out of the junction.
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Kirchhoff’s laws

Kirchhoff’s second law 
(also called Kirchhoff’s loop rule or Kirchhoff’s voltage law)

Around any closed loop in a circuit, the directed sum of potential differences 
across components is zero.



Introduction to 
phasors

Harmonic functions
Root Mean square value
The phasors
Harmonic function ó Phasor equivalence
Phasors applied to circuits
Application: Exercise 1
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In this class, we deal with harmonic functions:

𝑓 𝑡 = 𝐹$%&' cos 𝜔𝑡 + 𝜃

where:

Ø 𝐹$%&' is the amplitude, 
Ø 𝜔 is the angular frequency,
Ø 𝜃 is the phase angle.

The angular frequency is linked to the frequency 𝑓 and period 𝑇 as 

𝜔 = 2𝜋𝑓 = ()
* .

Harmonic functions
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Let’s consider a resistance 𝑅:

The instantaneous power 𝑝 𝑡 dissipated in the resistance is

𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡 = 𝑅 𝑖 𝑡 ( =
𝑣 𝑡 (

𝑅

And the mean dissipated power is

𝑃 =
1
𝑇
4
+

*
𝑣 𝑡 𝑖 𝑡 𝑑𝑡 = 𝑅

1
𝑇
4
+

*
𝑖 𝑡 ( 𝑑𝑡 =

1
𝑅
1
𝑇
4
+

*
𝑣 𝑡 ( 𝑑𝑡

Root Mean square (RMS) value

𝐼,-.( 𝑉,-.(
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The Root Mean Square (RMS) value (or effective value) of 𝑓 𝑡 is 
defined as:

𝐹,-. =
/
* ∫+

* 𝑓 𝑡 ( 𝑑𝑡.

With 𝑓 𝑡 = 𝐹&'() cos 𝜔𝑡 + 𝜃 , we obtain:

𝐹,-. =
1
𝑇
4
+

*
𝐹$%&'( 𝑐𝑜𝑠( 𝜔𝑡 + 𝜃 𝑑𝑡 = 𝐹$%&'

1
𝑇
4
+

*
𝑐𝑜𝑠( 𝜔𝑡 𝑑𝑡

= 𝐹$%&'
1
𝑇
4
+

* 1 + cos(2𝜔𝑡)
2

𝑑𝑡 = 𝐹$%&'
1
𝑇
4
+

* 1
2
𝑑𝑡 =

𝐹$%&'
2

Root Mean square (RMS) value
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Root Mean square (RMS) value

Remark:

The following conventions will be used in the rest of the course for RMS 
and peak/max values:

𝐹*+, ⇒ 𝐹

𝐹&'() ⇒ 𝐹-

In this class, we deal only with harmonic functions 𝑓 𝑡 = 𝐹- cos 𝜔𝑡 + 𝜃
for which we have

𝐹- = 2 𝐹
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The definition of the phasors is obtained by manipulating the expression of 𝑓(𝑡):

𝑓 𝑡 = 𝐹) cos 𝜔𝑡 + 𝜃
= 2 𝐹 cos 𝜔𝑡 + 𝜃
= 𝑹 2 𝐹 𝑒* +,-.

= 𝑹 2 𝐹 𝑒*. 𝑒*+,

0𝐹 = 𝐹 𝑒*. is the phasor of 𝑓 𝑡 . It is a complex number with information on the signal 

amplitude (𝐹) and the signal phase (𝜃). For a system operating at a 

fixed frequency, 𝐹 and 𝜃 holds all the relevant information to describe the 

system.

The phasors

0𝐹
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The phasors
For signals evolving at a same angular frequency 𝝎, phasors are like a snapshot representation 
containing all the necessary information (phase angle and amplitude).

𝑓! 𝑡 = 2 𝐹! cos 𝜔𝑡 + 𝜃! ⇔ -𝐹! = 𝐹! 𝑒"#! = 𝐹! ∠ 𝜃!

𝑓$ 𝑡 = 2 𝐹$ cos 𝜔𝑡 + 𝜃$ ⇔ -𝐹$ = 𝐹$ 𝑒"#" = 𝐹$ ∠ 𝜃$
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Linearity:

𝑓/ 𝑡 + 𝑓0 𝑡 = 𝐹/- cos 𝜔𝑡 + 𝜃 + 𝐹0- cos 𝜔𝑡 + 𝜓
= 2 𝐹/ cos 𝜔𝑡 + 𝜃 + 2 𝐹0 cos 𝜔𝑡 + 𝜓
= 𝑹 2 𝐹/ e1 2345 + 𝑹 2 𝐹0 𝑒1 234 6

= 𝑹 2 𝑒123 𝐹/𝑒15 + 𝐹0𝑒16

Harmonic function ó Phasor equivalence

0𝐹! + 0𝐹"

𝑎 𝑓/ 𝑡 + 𝑏 𝑓0 𝑡 ⟺ 𝑎 8𝐹/ + 𝑏 8𝐹0
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Differentiation:
𝑑𝑓 𝑡
𝑑𝑡

=
𝑑
𝑑𝑡

𝐹- cos 𝜔𝑡 + 𝜃

=
𝑑
𝑑𝑡

𝑹 2 𝐹 𝑒1 2345

= 𝑹 2 𝐹 𝑒1 2345 𝑗𝜔
= 𝑹 2 𝑗𝜔 𝐹 𝑒15 𝑒123

Harmonic function ó Phasor equivalence

𝑗𝜔 8𝐹

𝑑𝑓 𝑡
𝑑𝑡

⟺ 𝑗𝜔 8𝐹
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Integration:

;𝑓 𝑡 𝑑𝑡 = ;𝐹- cos 𝜔𝑡 + 𝜃 𝑑𝑡

= ;𝑹 2 𝐹 𝑒1 2345 𝑑𝑡

= 𝑹 2 𝐹 𝑒1 2345 <1 𝑗𝜔
= 𝑹 2 <1 𝑗𝜔 𝐹 𝑒

15 𝑒123

Harmonic function ó Phasor equivalence

;𝑓 𝑡 𝑑𝑡 ⟺
8𝐹
𝑗𝜔

<8𝐹 𝑗𝜔
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The phasor formalism can be exported to voltages and currents:

Phasors applied to circuits

𝑣 𝑡 = 2 𝑉 cos 𝜔𝑡 + 𝜃 ⟺ ?𝑉 = 𝑉 𝑒34

𝑖 𝑡 = 2 𝐼 cos 𝜔𝑡 + 𝜓 ⟺ ̅𝐼 = 𝐼 𝑒35
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Phasors applied to circuits

The phase angle difference (or phase lag) is noted 𝜑. It is defined as:

𝜑 = 𝜃 − 𝜓
(𝝋 always goes from the current to the voltage !!!)

It is common 
to take 8𝑉 as 
the reference 
with 𝜃 = 0
and 𝜑 = −𝜓.
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Phasors applied to circuits
Time domain ⟺ Frequency domain

𝑓 𝑡 = 2 𝐹 cos(𝜔𝑡 + 𝜃) ⟺ D𝐹 = 𝐹 𝑒!"

𝑎 𝑓# 𝑡 + 𝑏 𝑓$ 𝑡 ⟺ 𝑎 D𝐹# + 𝑏 D𝐹$
⁄𝑑𝑓 𝑡 𝑑𝑡 ⟺ 𝑗𝜔 D𝐹

∫ 𝑓 𝑡 𝑑𝑡 ⟺ ⁄D𝐹 𝑗𝜔

Resistance: 𝑣 𝑡 = 𝑅 𝑖 𝑡 ⟺ D𝑉 = 𝑅 ̅𝐼

Inductance: 𝑣 𝑡 = 𝐿 ⁄𝑑𝑖 𝑡 𝑑𝑡 ⟺ D𝑉 = 𝑗𝜔𝐿 ̅𝐼

Capacitance: 𝑣 𝑡 = ⁄1 𝐶 ∫ 𝑖 𝑡 𝑑𝑡 ⟺ D𝑉 = ⁄̅𝐼 𝑗𝜔𝐶

Thanks to the linearity equivalence, the Kirchhoff laws can be applied to 
phasors. In addition, resistances, inductances and capacitances can be replaced 
by complex impedances 𝑍 =

67
̅9
of value respectively equal to 𝑅, 𝑗𝜔𝐿 and /

3:;
.



Application: Exercise 1
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For the hereunder circuit powered with a 50 𝐻𝑧 sinusoidal voltage 
generator, find the voltages and currents across all components 
(magnitude and phase angle). Represent all of them on a phasor diagram. 



Application: Exercise 1: Watch out !
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?𝑉 = ?𝑉, + ?𝑉<

𝑉 = 𝑉, + 𝑉<

🤩

😢

What the student writes 
on the exam copy:

The teaching assistant 
face when correcting:

Student score 
at the question:

≥ 0

= 0

0𝑉, 0𝑉# and 0𝑉$ are complex numbers,
𝑉, 𝑉# and 𝑉$ are their respective magnitudes/norms.

The sum of the norms of individual complex numbers usually 
differs from the norm of the sum of those complex numbers.



Homework 1
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For the hereunder circuit powered with a 50 𝐻𝑧 sinusoidal voltage 
generator, find the voltages and currents across all components 
(magnitude and phase angle). Represent all of them on a phasor diagram. 

Answer:

𝐼 = 9.044 ∠ 21.854°
𝑉! = 180.88 ∠ 21.854°
𝑉" = 142.06 ∠ 111.854°
(rotation of 40° compared to Ex. 1.)



Homework 2
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For the hereunder circuit powered with a 200 𝐻𝑧 sinusoidal voltage 
generator, find the voltages and currents across all components 
(magnitude and phase angle). Represent all of them on a phasor diagram. 

Answer:

𝐼 = 3.488 ∠ − 52.34°
𝑉! = 69.762 ∠ − 52.34°
𝑉" = 219.165 ∠ 37.66°
(Try to understand the impact of 
the frequency by comparison to Ex. 1.)



Homework 3
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For the hereunder circuit powered with a 50 𝐻𝑧 sinusoidal voltage 
generator, find the voltages and currents across all components 
(magnitude and phase angle). Represent all of them on a phasor diagram. 

Answer:

𝐼 = 21.916 ∠ − 12.34°
𝑉! = 219.16 ∠ − 12.34°
𝑉# = 69.762 ∠ − 102.34°
(Compare the phasor diagram with the one of Ex. 1, Hw. 1 and Hw. 2:
- for a capacitor, the voltage is always delayed by 90° compared to the current through it;
- for an inductor, the voltage is always in advance by 90° compared to the current through it.)



Homework 4
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For the hereunder circuit powered with a 200 𝐻𝑧 sinusoidal voltage 
generator, find the voltages and currents across all components 
(magnitude and phase angle). Represent all of them on a phasor diagram. 

Answer:

𝐼 = 22.928 ∠ − 25.45°
𝑉! = 229.28 ∠ − 25.45°
𝑉# = 18.245 ∠ − 115.45°
(Try to understand the impact of 
the frequency by comparison to Hw. 3.)



Homework 5
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For the hereunder circuit powered with a 50 𝐻𝑧 sinusoidal voltage 
generator, find the voltages and currents across all components 
(magnitude and phase angle). Represent all of them on a phasor diagram. 

Answer:

𝐼!# = 21.915 ∠17.657°
𝐼" = 73.211 ∠ − 90°
𝐼 = 69.763 ∠ − 72.581°
𝑉! = 219.15 ∠ 17.657°
𝑉# = 69.762 ∠ − 72.343°
𝑉" = 230 ∠ 0°
(Note	that	𝐼 = 𝐼" + 𝐼!# but	𝐼 ≠ 𝐼" + 𝐼!# è see	slide	24) *Answers updated on the 20/02/2024



Homework 6
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A resistor R = 10 Ω and an inductor L are connected in series to a 50 𝐻𝑧
sinusoidal voltage generator of RMS voltage 𝑉 = 230 𝑉. An RMS voltage 
of 100 𝑉 is measured on the terminals of the resistor. What is the value 
of L?

Hint: 
Use the norm of 𝑅 + 𝑗𝜔𝐿.

Answer:

𝐿 = 65.929 𝑚𝐻



Homework 7
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Consider the circuit hereunder operating with a pulsation 
𝜔 = 2𝜋𝑓 = 100 𝑟𝑎𝑑/𝑠. Find the voltages and currents across all 
components (magnitude and phase angle). Represent all of them on a 
phasor diagram. Do the same in case the inductance is increased to 
200 𝑚𝐻.

Answer:

𝐿 = 60 𝑚𝐻:
𝐼 = 14.286 ∠ 90°
𝑉# = 185.714 ∠ 0°
𝑉" = 85.714 ∠ 180°

𝐿 = 200 𝑚𝐻:
𝐼 = 14.286 ∠ − 90°
𝑉# = 185.714 ∠ 180°
𝑉" = 285.715 ∠ 0°



Homework 8
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Consider the circuit hereunder operating at 50 𝐻𝑧. What is the value of 𝐶
if the RMS current is measured to be 20 𝐴? Find the voltages and 
currents across all components (magnitude and phase angle). Represent 
all of them on a phasor diagram. 

Answer:

𝐶 = 2.3 𝑚𝐹
𝐼 = 20 ∠ − 78.464°
𝑉! = 20 ∠ − 78.464°
𝑉# = 27.678 ∠ − 168.464°
𝑉" = 125.658 ∠ 11.536°



Homework 9
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Consider the load showed on the right. 

To determine the value of the resistance and the value of the inductance, 
two tests are performed:
• A DC voltage of 150 𝑉 is applied between the load terminals for a 

measured current of 1.95 𝐴.
• An AC voltage of RMS value 230 𝑉, oscillating at 50 𝐻𝑧, is applied 

between the load terminals for a measured RMS current of 2.81 𝐴.
What are the values of R and L?

Answer:

𝑅 = 76.923 Ω
𝐿 = 89𝑚𝐻



Homework 10
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Considering the circuit depicted hereunder, find the input voltage 8𝑉
(magnitude and phase angle).

Answer:
𝑉!! = 74.484 ∠ 57.518°
𝐼!" = 24.073 ∠ 4.45°
𝑉 = 151.68 ∠ 67.465°



Active, reactive, 
complex and 

apparent power

Product of two harmonic functions
Active, reactive, complex and apparent power
Application: Exercise 2



36

The instantaneous power 𝑝(𝑡) consumed by passive components (or 
delivered by active components) is the product of the instantaneous 
voltage 𝑣(𝑡) with the instantaneous current 𝑖(𝑡):

𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡
= 2 𝑉 cos 𝜔𝑡 + 𝜃 2 𝐼 cos 𝜔𝑡 + 𝜓
= 2 𝑉 𝐼 cos 𝜔𝑡 + 𝜃 cos 𝜔𝑡 + 𝜓
= 𝑉 𝐼 cos 𝜃 − 𝜓 + cos 2𝜔𝑡 + 𝜃 + 𝜓

Product of two harmonic functions

DC 
component

AC component
(at twice the original 

frequency)
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Product of two harmonic functions

The instantaneous power can be split 
in two parts:

Ø VI cos 𝜃 − 𝜓 : A DC component 
called the Active power P.

Ø 𝑉 𝐼 cos 2𝜔𝑡 + 𝜃 + 𝜓 : An AC 
component oscillating at twice 
the original frequency. 

𝑝 𝑡 = 𝑉 𝐼 cos 𝜃 − 𝜓 + cos 2𝜔𝑡 + 𝜃 + 𝜓
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𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡
= 𝑉 𝐼 cos 𝜃 − 𝜓 + cos 2𝜔𝑡 + 𝜃 + 𝜓
= 𝑉 𝐼 cos 𝜃 − 𝜓 + cos 2 𝜔𝑡 + 𝜃 − 𝜃 − 𝜓
= 𝑉 𝐼 cos 𝜃 − 𝜓 + cos 2 𝜔𝑡 + 𝜃 cos 𝜃 − 𝜓 + sin 2 𝜔𝑡 + 𝜃 sin 𝜃 − 𝜓
= 𝑉 𝐼 cos 𝜃 − 𝜓 1 + cos 2 𝜔𝑡 + 𝜃 + 𝑉 𝐼 sin 𝜃 − 𝜓 sin 2 𝜔𝑡 + 𝜃

Active, reactive, complex and apparent power 

𝑃 𝑄≥ 0 Oscillating +-

𝑝 𝑡 can be decomposed into:

ØA flow of energy going always in the same direction with an average value 
𝑃 = 𝑉𝐼 𝑐𝑜𝑠 𝜃 − 𝜓 . The value 𝑃 is called the active power.

ØA fluctuating flow of energy, exchanged back and forth twice a period, with 
an average value 𝑄 = 𝑉𝐼 sin 𝜃 − 𝜓 . The value 𝑄 is called the reactive 
power.
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Active, reactive, complex and apparent power 
Although 𝑝 𝑡 = 𝑃 1 + cos 2 𝜔𝑡 + 𝜃 + 𝑄 sin 2 𝜔𝑡 + 𝜃 is a real number, one 
defines the complex power 𝑆 as:

𝑆 = 𝑃 + 𝑗𝑄

𝑆 IS NOT A PHASOR, it is just a convenient complex number 
allowing to describe easily and completely the instantaneous power 
(real number). 

One also shows that is is really easy to determine 𝑆 using phasors:

𝑆 = 𝑃 + 𝑗𝑄 = 𝑉𝐼 cos 𝜃 − 𝜓 + 𝑗 𝑉𝐼 sin 𝜃 − 𝜓 = 𝑉𝐼 cos 𝜃 − 𝜓 + 𝑗 sin 𝜃 − 𝜓
= 𝑉𝐼 𝑒3 4A5 = 𝑉 𝑒34 𝐼 𝑒A35 = ?𝑉 ̅𝐼∗

𝑆 = 8𝑉 ̅𝐼∗
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Active, reactive, complex and apparent power 
One also defines the apparent power:

𝑆 = 𝑃/ + 𝑄/

= 𝑉/𝐼/𝑐𝑜𝑠/ 𝜃 − 𝜓 + 𝑉/𝐼/ sin/ 𝜃 − 𝜓
= 𝑉𝐼

And the power factor:

𝑃𝐹 = cos 𝜃 − 𝜓 = cos 𝜑 =
𝑃
𝑆

Let’s now suppose that we want to deliver an active power 𝑃 to a load. What current 𝐼 should 
we inject for a fixed voltage 𝑉 ?

𝐼 =
𝑆
𝑉 =

𝑃
𝑉 cos 𝜑

𝐼 is larger when cos 𝜑 is small è If cos 𝜑 is small, there are more transmission losses.
è We want cos 𝜑 to be 1 è To avoid transmission losses, we want the reactive power 𝑄 to 

be as small as possible.
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Application: Exercise 2

Your colleague suggests to add a 50 𝜇𝐹 capacitor in parallel of the 
RL load. It is supposed to compensate the reactive power 
consumed by the inductive load. Is it a good idea ? If so, what 
would be the exact value of 𝐶 needed ?
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Homework 11

Fill the cells of the table below with the most appropriate answer among

= 0, < 0, > 0, = 1, < 1, +∞ and  −∞.

Answer:


