Hysteretic Buck Regulators
Hysteretic Buck Regulator

Basic Architecture

- \(t_{\text{ON}} \) and \(t_{\text{OFF}} \), and therefore the frequency, are functions of:
 - \(V_{\text{IN}}, V_{\text{OUT}}, I_L, L, \text{ESR}, \text{ESL}, V_{\text{HYS}} * (R_{F1} + R_{F2})/R_{F2}, \) and \(t_d \)

- Frequency is difficult to control!!

Advantages:
- Wide Bandwidth means fast transient response.
- No frequency compensation (poles, zeroes) to deal with.
- VIN feedforward is inherent.

Disadvantages:
- Ripple is needed to properly switch the comparator!!
Constant On-Time (COT)
Hysteretic Regulator
ON-time is constant, for a given V_{IN}, as load current varies.

- **Advantages**
 1. Constant frequency vs V_{IN}
 2. High Efficiency at light load
 3. Fast transient response

- **Disadvantages**
 1. Requires ripple at feedback comparator
 2. Sensitive to output noise, because it translates to feedback ripple

Ripple is needed to properly switch the comparator!!

![COT Diagram](image-url)
COT regulation with V_{IN} Feedforward

Definition of Duty Cycle:

$$D = \frac{t_{ON}}{T} = \frac{f_{sw}}{f}$$

For Buck Regulator:

$$D = \frac{V_{OUT}}{V_{IN}}$$

Setting EQ1 = EQ2:

$$t_{ON} \cdot f_{sw} = \frac{V_{OUT}}{V_{IN}}$$

For COT with Feed-forward:

$$t_{ON} = \frac{K \cdot R_{ON}}{V_{IN}}$$

K is a constant = 1.3×10^{-10}

Insert EQ4 in EQ3:

$$\frac{K \cdot R_{ON}}{V_{IN}} \cdot f_{sw} = \frac{V_{OUT}}{V_{IN}}$$

Solve for f_{sw}:

$$f_{sw} = \frac{V_{OUT}}{K \cdot R_{ON}}$$
Constant ON-Time Achieves Nearly Constant Frequency

Switching frequency is almost constant; the variations are due to effects of R_{DS-ON}, diode voltage and input impedance of the R_{on} pin

Note: A resistor from V_{IN} to R_{on} sets the ON-time
COT needs ESR for Sufficient Ripple on V_{OUT}

- COT regulates by comparing V_{OUT} to V_{ref}
- V_{OUT} ripple must be large enough to overcome the comparator hysteresis
- ESR of output capacitor is directly proportional to V_{OUT} ripple
- ESR must be large enough to create sufficient V_{OUT} ripple to properly switch the comparator!!

Ripple is needed to properly switch the comparator!!
New Emulated Ripple Mode (ERM) Constant-On-Time

New patented ERM technology allows COT regulators to:

- Eliminate the need for large output ripple
- Eliminate the need for high ESR output capacitor
- Allows the use of smaller, less expensive ceramic capacitors
ESR current can be sensed through R_j (R_{DS_ON} of the Low Side Mosfet).

The inverted V_{SEN} is the replication of V_{ESR} ripple during t_{OFF}.

This is added to the DC reference voltage V_{ref} before comparing to V_{OUT}.

No ESR is required on the output capacitor.
New ERM Constant-On-Time Allows Use of Ceramic Capacitors

Benefits of Ceramic Capacitors:

Clean Output Voltage
 • Low Output Ripple
 • Comparable to voltage-mode and current-mode control schemes

Low profile and small size
 • Can reduce required output ESR ~ 1/3
 • Save PCB area

Not sensitive to Transient Voltage Stress
 • Higher reliability

No polarity – ease for production
Summary of Advantages of Constant On Time with ERM

• No loop compensation needed
 – Low external component count
 – Excellent transient response
 • Lower cost
 • Easy to use
 • Reliable

• Operates in fixed frequency mode
 – External discrete component values don’t affect frequency
 • Reliable/Robust Operation
 • Makes design easier

• Emulated Ripple Mode (ERM) Circuitry
 – Allows the use of low ESR output capacitors without additional ESR compensation
 • Lower output ripple
 • Smaller size (ceramic caps)
 • Lower cost