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Introduction 

! Formulations of electromagnetic problems 
♦ Maxwell equations, material relations 
♦ Electrostatics, electrokinetics, magnetostatics, magnetodynamics 
♦ Strong and weak formulations 

❖ Discretization of electromagnetic problems 
♦ Finite elements, mesh, constraints 
♦ Very rich content of weak finite element formulations 
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Formulations  
of Electromagnetic Problems 

Maxwell equations 

Electrostatics 

Electrokinetics 

Magnetostatics 

Magnetodynamics 



4 

Electromagnetic models 
❖  Electrostatics 

♦  Distribution of electric field due to static charges and/or levels of electric 
potential 

❖  Electrokinetics 
♦  Distribution of static electric current in conductors 

❖  Electrodynamics 
♦  Distribution of electric field and electric current in materials (insulating 

and conducting) 

❖  Magnetostatics 
♦  Distribution of static magnetic field due to magnets and continuous 

currents 

❖  Magnetodynamics 
♦  Distribution of magnetic field and eddy current due to moving magnets 

and time variable currents 

❖  Wave propagation 
♦  Propagation of electromagnetic fields 

All phenomena are described by Maxwell equations 
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Maxwell equations 

curl h = j + ! t d 

curl e = – ! t b 

div b = 0 

div d = " v 

Maxwell equations 

Ampère equation 

Faraday equation 

Conservation equations 

Principles of electromagnetism 

h  magnetic field (A/m)  e  electric field (V/m) 
b  magnetic flux density (T)  d  electric flux density (C/m2) 
j  current density (A/m2)  " v  charge density (C/m3) 

Physical fields and sources 
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Constants (linear relations) 

Functions of the fields 
(nonlinear materials) 

Tensors (anisotropic materials) 

Material constitutive relations 

b = µ h (+ bs) 

d = # e (+ ds) 

j = $ e (+ js) 

Constitutive relations 

Magnetic relation 

Dielectric relation 

Ohm law 

bs  remnant induction, ... 
ds  ... 
js  source current in stranded inductor, ... 

Possible sources 

µ  magnetic permeability (H/m) 
#  dielectric permittivity (F/m) 
$  electric conductivity (%–1m–1) 

Characteristics of materials 
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• Formulation for  • the exterior region %0 
 • the dielectric regions %d,j 

• In each conducting region %c,i :  v = vi  &   v = vi  on  ' c,i 

e  electric field (V/m) 
d  electric flux density (C/m2) 
"  electric charge density (C/m3) 
#  dielectric permittivity (F/m) 

Electrostatics 

Type of electrostatic structure 

%0  Exterior region 
%c,i  Conductors 
%d,j  Dielectric 

div # grad v = – "  

with  e = – grad v 

Electric scalar potential formulation 

curl e = 0 
div d = " 
d = # e 

Basis equations 

n (  e | ' 0e = 0 
n ) d | ' 0d = 0 

& boundary conditions 
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• Formulation for  • the conducting region %c 
• On each electrode ' 0e,i :  v = vi  &   v = vi  on  ' 0e,i 

e  electric field (V/m) 
j  electric current density (C/m2) 
$  electric conductivity (%–1m–1) 

Electrokinetics 

Type of electrokinetic structure 

%c  Conducting region div $ grad v = 0 

with  e = – grad v 

Electric scalar potential formulation 

curl e = 0 
div j = 0 
j = $ e 

Basis equations 

n (  e | ' 0e = 0 
n ) j | ' 0j = 0 

& boundary conditions 

' 0e,0 

' 0e,1 
' 0j 

e=?, j=? 

%c 

V = v1 – v0 
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"e" side "d" side 

Electrostatic problem 

Basis equations 
curl e = 0 div d = "*d = # e 

e = – grad v* d = curl u 

+* ,*

#   e  =  d 
d 

" *
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"e" side "j" side 

Electrokinetic problem 

Basis equations 
curl e = 0 div j = 0*j = $ e 

e = – grad v* j = curl t 

+* ,*

$   e  =  j  
j  
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u -  weak solution 

u v v v v ( , L * ) ��*( f , ) +* Q g ( ) ds 
'*
.* =*0 , /* 0*V ( %*) 

Classical and weak formulations 

u -  classical solution 

L u = f  in  % 
B u = g  on  '  = !%*

Classical formulation 

Partial differential problem 

Weak formulation 

( u , v ) =* u ( x ) v ( x ) d x 
%*
.* , u , v 0*L 2 ( %*) 

( u , v ) =* u ( x ) . v ( x ) d x 

%*
.* , u , v 0*L 2 ( %*) 

Notations 

v -  test function Continuous level :  1  (  1  system 
Discrete level :  n (  n system 
      2   numerical solution 
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Classical and weak formulations 
Application to the magnetostatic problem 

curl e = 0 
div d = 0*

d = # e 
n (  e 3' e = 0 n . d 3' d = 0 

' e ' d 

Electrostatic 
classical formulation 

Weak formulation 
of  div d = 0 

(+ boundary condition) 

( d , grad v' ) = 0   ,   /  v' 0  V(%) 

d = # e &      e = – grad v   4    curl e = 0 

( – # grad v , grad v' ) = 0   ,   /  v' 0  V(%) Electrostatic  
weak formulation with v 

with  V(%) = { v 0  H0(%) ; v3' e = 0 } 

( div d , v' ) + < n . d , v' >'  = 0   ,   /  v' 0  V(%) 

div d = 0 
5*

n . d 3' d = 0 
5*

2*
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Classical and weak formulations 
Application to the magnetostatic problem 

curl h = j 
div b = 0 
b = µ h 

n (  h 3' h = 0 n . b 3' e = 0 
' h ' e 

Magnetostatic 
classical formulation 

Weak formulation 
of  div b = 0 

(+ boundary condition) 

( b , grad 6' ) = 0   ,   /  6' 0  7 (%) 

b = µ h &      h = hs – grad 6   (with  curl hs = j)   4    curl h = j 

( µ (hs – grad 6) , grad 6' ) = 0   ,   /  6' 0  7 (%) Magnetostatic  
weak formulation with 6*

with  7 (%) = { 6 0  H0(%) ; 63' h = 0 } 

( div b , 6' ) + < n . b , 6' >'  = 0   ,   /  6' 0  7 (%) 

div b = 0 
5*

n . b 3' e = 0 
5*

2*
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Quasi-stationary approximation 

Conduction current 
density 

Displacement current 
density > > > 

curl h = j + ! t d 

curl h = j 

Electrotechnic apparatus (motors, transformers, ...) 
Frequencies from Hz to a few 100 kHz 

Applications 

Dimensions << wavelength 
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curl h = j 

  

div b = 0 

Magnetostatics 

Equations 

b = µ h + bs 

j =          js 

Constitutive relations 

Type of studied configuration 

Ampère equation 

Magnetic conservation 
equation 

Magnetic relation 

Ohm law  
& source current 

%  Studied domain 
%m  Magnetic domain 
 
 
%s  Inductor 

!

j

! m

! s
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curl h = j 

curl e = – ! t b 

div b = 0 

Magnetodynamics 

Equations 

b = µ h + bs 

j = $ e + js 

Constitutive relations 

! p

!

! a

Va

I a

! s

j s

Type of studied configuration 

Ampère equation 

Faraday equation 

Magnetic conservation 
equation 

Magnetic relation 

Ohm law  
& source current 

%  Studied domain 
%p  Passive conductor 
  and/or magnetic domain 

%a  Active conductor 
%s  Inductor 
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Magnetic constitutive relation 

❖  Diamagnetic and paramagnetic materials 
Linear material  µr 8 1  (silver, copper,  aluminium) 

❖  Ferromagnetic materials 
Nonlinear material  µr >> 1 ,   µr = µr(h)  (steel, iron) 

b = µ h µr  relative magnetic permeability µ = µr µ0 

b-h characteristic of steel µr-h characteristic of steel 
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Maxwell equations 
(magnetic - static) 

Magnetostatic formulations 

a Formulation 6 Formulation 

curl h = j 
div b = 0 

b = µ h 

!

j

! m

! s

"h" side "b" side 
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Magnetostatic formulations 

a Formulation 6 Formulation 

Multivalued potential 
Cuts 

Non-unique potential 
Gauge condition 

Magnetic scalar potential 6* Magnetic vector potential a 

curl ( µ–1  curl a ) = j 

b =  curl a 

hs  given such as  curl hs = j 
(non-unique) 

div ( µ ( hs – grad 6 ) ) = 0 

h = hs – grad 6*

curl h = j div b = 0 b = µ h 

Basis equations 

(h) (b) (m) 

2  (h) OK (b) OK 9*

:  (b) & (m) (h) & (m) &*
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Multivalued scalar potential 

Kernel of the curl (in a domain %) 
ker ( curl ) = { v : curl v = 0 } 

dom(grad) 

dom(curl) 

ker(curl) 

cod(grad) 

cod ( grad ) +  ker ( curl ) 

cod(curl) 

. 0 

grad 

curl 

curl 
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AB AB 

h . d l 
;*
.* =* ��*grad 6*. d l 

;*
.* =*6*A ��*6*B 

Multivalued scalar potential - Cut 

curl h = 0     in %*
h = – grad 6     in %*

Scalar potential 6*

2  
? 

OK 
9*

I

γ

Ω

(Σ)

Circulation of h along path ; AB in %*

2    6A – 6B = 0  <  I     !  !  ! 

Closed path ; AB (A- B) 
surrounding a conductor (with current I) 

= 6 =  I 

6 must be discontinuous ... through a cut 
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Vector potential - gauge condition 

div b = 0     in %*
b = curl a     in %*

Vector potential a 
2  
? 

OK 
9*

b = curl a = curl ( a + grad > ) 
Non-uniqueness of vector potential a 

Coulomb gauge   div a = 0 O

P

Q
ex.: 
w(r)=r 

?  vector field with non-closed lines 
linking any 2 points in %*

Gauge   a . ?  = 0 

Gauge condition 
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Magnetodynamic formulations 

"h" side "b" side 

Maxwell equations 
(quasi-stationary) 

h-6 Formulation 

a-v Formulation t-?  Formulation 

a* Formulation 

curl h = j 
curl e = – ! t b 

div b = 0 

b = µ h 
j = $ e 

! p

!

! a

Va

I a

! s

j s
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Magnetodynamic formulations 

t-?  Formulation h-6 Formulation 

Magnetic field h 
Magnetic scalar potential 6*

Electric vector potential t 
Magnetic scalar potential ?*

curl ($–1 curl t) + ! t (µ (t – grad ? )) = 0 

div (µ (t – grad ? )) = 0 

curl h = j 
curl e = – ! t b 

div b = 0 b = µ h 

Basis equations 

(h) (b) 

curl hs = js 

h  ds %c 
h = hs – grad 6  ds %c

C 
2  (h) OK 

j = $ e 

curl ($–1 curl h) + ! t (µ h) = 0 

div (µ (hs – grad 6)) = 0 

j =  curl t 
(h) OK 9*

h = t – grad ?*

:  in %c &  

:  in %c
C &*

:  (b) &*

+ Gauge 
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Magnetodynamic formulations 

a-v Formulation a* Formulation 

Magnetic vector potential a* Magnetic vector potential a 
Electric scalar potential v 

curl (µ–1 curl a) + $ (! t a + grad v)) = js 

curl h = j 
curl e = – ! t b 

div b = 0 b = µ h 

Basis equations 

(h) (b) j = $ e 

curl (µ–1 curl a*) + $ ! t a* = js 

b =  curl a 
(b) OK 9*

e = – ! t a – grad v 

b =  curl a* 

2  (b) OK 
e = – ! t a* 

+ Gauge in %*

:  (h) &*

+ Gauge in %c
C 
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"h" side "b" side 

Magnetostatic problem 

Basis equations 
curl h = j div b = 0 b = µ h 

hS
0

Sh
1

Sh
2

Sh
3

Se
3

Se2

Se1

Se
0

h = – grad 6* b = curl a 

+* ,*

µ h = b
b

0

(a)

grad

curl

div

h

h

h

h

j

0

(œφ)Fh
0

Fh
1

Fh
2

Fh
3

div

curl

grad

e

e

e

Fe
3

Fe
2

Fe
1

Fe
0



27 
"h" side "b" side 

Magnetodynamic problem 

hS
0

Sh
1

Sh
2

Sh
3

Se
3

Se2

Se1

Se
0

h = t – grad 6* b = curl a 

+* ,*

curl h = j 
curl e = – ! t b 

div b = 0 b = µ h 

Basis equations 

j = $ e 

h

j

0

µ h = b b

0

e

grad

curl

div

h

h

h

j = σ e

(œφ)

(œv)

Fh
0

Fh
1

Fh
2

Fh
3

div

curl

grad

e

e

e

(t)

(a, a  )*

Fe
3

Fe
2

Fe
1

Fe
0

e = – ! t a – grad v 
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 dom (grade)  = Fe
0 = { v 0  L2(%) ; grad v 0  L2(%) ,  v3' e = 0 } 

 dom (curle)  = Fe
1 = { a 0  L2(%) ; curl a 0  L2(%) , n @ a3' e = 0 } 

 dom (dive)  = Fe
2 = { b 0  L2(%) ; div b 0  L2(%) ,  n . b3' e = 0 } 

Boundary conditions on ' e 

 dom (gradh)  = Fh
0 = { 6 0  L2(%) ; grad 6 0  L2(%) ,  63' h = 0 } 

 dom (curlh)  = Fh
1 = { h 0  L2(%) ; curl h 0  L2(%) , n @ h3' h = 0 } 

 dom (divh)  = Fh
2 = { j 0  L2(%) ; div j 0  L2(%) ,  n . j3' h = 0 } 

Boundary conditions on ' h 

Function spaces  Fe
0 +  L2, Fe

1 +  L2, Fe
2 +  L2, Fe

3 +  L2 

Function spaces  Fh
0 +  L2, Fh

1 +  L2, Fh
2 +  L2, Fh

3 +  L2 Basis structure 

Basis structure 

Continuous mathematical structure 

gradh Fh
0 +  Fh

1 ,   curlh Fh
1 +  Fh

2 ,   divh Fh
2 +  Fh

3 

F h 
0 grad h A  * &  *A  *A  *A  * F h 

1 curl h A  * &  *A  *A  * F h 
2 div h A  * &  *A  *A  * F h 

3 Sequence 

gradh Fe
0 +  Fe

1 ,   curle Fe
1 +  Fe

2 ,   dive Fe
2 +  Fe

3 

F e 
3 div e :  * A  *A  *A  * F e 

2 curl e :  * A  *A  *A  * F e 
1 grad e :  * A  *A  *A  *A  * F e 

0 Sequence 

Domain %, Boundary !%  = ' h U ' e 
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Discretization  
of Electromagnetic Problems 

Nodal, edge, face and volume finite elements 



30 

Discrete mathematical structure 

Continuous function spaces & domain 
Classical and weak formulations  

Continuous problem 

Finite element method 

Discrete function spaces piecewise defined 
in a discrete domain (mesh)  

Discrete problem 

Discretization Approximation 

Classical & weak formulations &  ? 
Properties of the fields &  ? 

Questions 
To build a discrete structure 

as similar as possible 
as the continuous structure 

Objective 
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Discrete mathematical structure 

Sequence of finite element spaces 
Sequence of function spaces  
& Mesh 

Finite element space 
Function space  
& Mesh 

  !

  !
+* f i 

i 
∪!

+* f i 
i 
∪!

B *
C *
D *E *

F *
G *
H *E *

Finite element 
Interpolation in a geometric  
element of simple shape 

+  f 
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Finite elements 

❖  Finite element (K, PK, I K) 
♦  K =  domain of space (tetrahedron, hexahedron, prism) 
♦  PK = function space of finite dimension nK, defined in K 
♦  I K = set of nK degrees of freedom  

 represented by nK linear functionals 6i, 1 J i J nK,  
 defined in PK and whose values belong to IR 

IR

cod(f)
K = dom(f) f ∈ P

x
f(x)

φ  (f)i

κ

K
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Finite elements 

❖  Unisolvance 
/  u 0  PK ,  u is uniquely defined by the degrees of freedom 

❖  Interpolation 
 
 
 
❖  Finite element space 

Union of finite elements (Kj, PKj, I Kj) such as : 
❍  the union of the Kj fill the studied domain (-  mesh) 
❍  some continuity conditions are satisfied across the element 

interfaces 

Basis functions 

Degrees of freedom 

u K =* 6*i ( u ) p i 
i =*1 

n K 

K*
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Sequence of finite element spaces 

Geometric elements 
Tetrahedral 

(4 nodes) 
Hexahedra 

(8 nodes) 
Prisms 
(6 nodes) 

Mesh 

Geometric entities 

Nodes 
i 0  N 

Edges 
i 0  E 

Faces 
i 0  F 

Volumes 
i 0  V 

Sequence of function spaces 
S0 S1 S2 S3 
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Sequence of finite element spaces 

{si ,  i 0  N} 

{si ,  i 0  E} 

{si ,  i 0  F} 

{si ,  i 0  V} 

Bases Finite elements 

S0 

S1 

S2 

S3 Volume 
element 

Point 
evaluation 

Curve 
integral 
Surface 
integral 
Volume 
integral 

Nodal value 

Circulation 
along edge 
Flux across 

face 
Volume 
integral 

Functions Functionals Degrees of 
freedom Properties 

si (x j) = δij
∀ i, j ∈N

si . n ds
j∫ = δij

∀ i, j ∈F

si dv
j∫ = δij

∀ i, j ∈V

uK = φi (u) si
i
∑

Face 
element 

Edge 
element 

Nodal 
element 

si . dl
j∫ = δij

/* i , j 0*E 
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Sequence of finite element spaces 

Base 
functions 

Continuity across 
element interfaces 

Codomains of the 
operators 

{si ,  i 0  N} value 

{si ,  i 0  E} tangential component    grad S0 +  S1 

{si ,  i 0  F} normal component    curl S1 +  S2 

{si ,  i 0  V} discontinuity    div S2 +  S3 

Conformity 
S 0 grad A  * &  *A  *A  * S 1 curl A  * &  *A  *A  * S 2 div A  * &  *A  *A  * S 3 

Sequence 

S0 

S1 grad S0 

S2 curl S1 

S3 div S2 

S0 

S1 

S2 

S3 
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Function spaces S0 et S3 

For each node  i 0  N  &   scalar field 

0 

0 0 

0 0 

0 0 

0 

0 

0 pi = 1 node i 

si (x) = pi (x)    0   S0 

p i =*
1 at node i 
0 at all other nodes 

B *
C *
D *

p i continuous in %*

sv = 1 / vol (v)    0   S3 

For each Volume  v 0  V  &   scalar field 
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Edge function space S1 

For each edge  eij = {i, j} 0  E  &   vector field  

se 0  S1 

m

p

o

n n

m

q
p

o

NF,mn = {i∈N ; i∈fmop(q ) , o, p,q ≠ n}

N.B.: In an element : 3 edges/node 

Illustration of the vector field se Definition of the set of nodes NF,mn - 

s e ij =*p j grad p r 
r 0*N F , j i  

K* ��* p i grad p r 
r 0*N F , i j  

K*

e ij

s e
i

j

NF, ij-
NF, ji

-
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Edge function space S1 

e iji
j

NF, ij-

e iji
j

NF, ji-

Geometric interpretation 
of the vector field se 

p j grad p r 
r 0*N F j , i  

K*
L*N F , j i  

s e ij =*p j grad p r 
r 0*N F , j i  

K* ��* p i grad p r 
r 0*N F , i j  

K*

��* p i grad p r 
r 0*N F , i j  

K*
L*N F , i j  

e ij

s e
i

j

NF, ij-
NF, ji

-
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Function space S2 

i

j

k

NF, ij
-

NF, ji-

NF, jk
-

NF, ki-

NF, ik
-

NF, kj
-

f ijk

For each facet f 0  F  &   vector field  
f = fijk(l) = {i, j, k (, l) } = {q1, q2, q3 (, q4) } 

Illustration of the vector field sf 

s f =*a f p q c 
c =*1 

# N f 

K* grad p r r 0*N F , q c q  c +*1 
K*

M *

N *
O *

P *

Q *
R *@*grad p r r 0*N F , q c q  c ��*1 

K*
M *

N *
O *

P *

Q *
R *

sf 0  S2 

 3  &   af = 2 
#Nf = 

 4  &   af = 1 
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Particular subspaces of S1 

Ampere equation 
in a domain %c

C 
without current  

(S  %c) 

Applications 

Gauge condition 
on a vector potential 

Definition of a 
generalized source field hs 

such that curl hs = js 

h 0  S1(%)  ;  curl h = 0  in %c
C +  %  &   h -  ? 

a 0  S1(%)  ;  b = curl a   0  S2(%)  &   a -  ? 
 Gauge  a . ?  = 0 
 to fix  a 

Kernel of the curl operator 

Gauged subspace 
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Kernel of the curl operator 

% c 
!  % c 

E c 

h k 

6 n 

6 n' 

% c C 

N c   , E c C C 
N c   , E c C C 

(interface) 

Base of H -  basis functions of 
• inner edges of %c 
• nodes of %c

C, 
with those of ! %c 

H =*{ h 0*S 1 ( %*) ; curl h =*0 in %*c 
C } 

with 

h =* h k s k 
k 0*E c 

K* +* 6*n v n 
n 0*N c 

C 
K*

v n =* s nj 
nj 0*E c 

C 
K*

h l 
l 0*E c 

C 
h =* h a s a 

e 0*E 
K* =* h k s k 

k 0*E c 

K* +* s l K*

h l =* h . dl 
l ab 

.* =* ��*grad 6*. dl 
l ab 

.* =*6*a l ��*6*b l 

(*h =* h k s k 
k 0*E c 

K* +* )*s l 
l 0*E c 

C 
K* a l ��*6*b l 6*

h = – grad 6 in %c
C 

Case of simply connected domains 
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Kernel of the curl operator 

H =*{ h 0*S 1 ( %*) ; curl h =*0 in %*c 
C } 

6+ – 6– = 63'
+

eci – 63'
–
eci = Ii 

qi  • defined in %c
C 

 • unit discontinuity across ' eci 
 • continuous in a transition layer 
 • zero out of this layer 

6 = 6cont + 6disc 

discontinuity 
of 6disc 

with 

edges of ! c
C 

starting from a node of the cut 
and located on side '+' 

but not on the cut 

h =* h k s k 
k 0*A c 

K* +* 6*cont 
n v n 

n 0*N c 
C 

K* +* I i c i 
i 0*C 
K*

c i =* s nj 
nj 0*A c 

C 

n 0*N ec i 
j 0*N c 

C 
+*

j T*N ec i 

K*

6*disc =* I i q i 
i 0*C 
K*

Basis of H -  basis functions of 
• inner edges of %c 
• nodes of %c

C 
• cuts of C 

(cuts) 
h = – grad 6 in %c

C 

Case of multiply connected domains 
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Gauged subspace of S1 

b = curl a 

co-tree   !
⌣ !
E  

Tree    -  set of edges connecting 
(in %)  all the nodes of % without  

 forming any loop (E) 
Co-tree -  complementary set of the tree (E) 

⌢ !
⌣ !

a =* a e s e 
e 0*E 
K* 0* S 1 ( %*) , b =* b f s f 

f 0*F 
K* 0* S 2 ( %*) 

  !
a =* a i s i 

i 0*
⌣ !
E  

K* 0*
⌣ !
S  1 ( %*) 

S1(%) = {a 0  S1(%) ; aj = 0 , /  j 0  E} 
⌣ !⌣ !

Gauged space of S1(%) 

with 

b f =* i ( e , f ) a e 
e 0*E 
K* , f 0*F matrix form: bf CFE 

ae 
= 

Face-edge 
incidence matrix 

Gauged space in % 

tree 
  !
⌢ !
E  

Basis of S1(%) -  co-tree edge basis functions 
(explicit gauge definition) 

⌣ !
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❖  Electromagnetic fields extend to infinity (unbounded 
domain) 

♦  Approximate boundary conditions: 

❍  zero fields at finite distance 

♦  Rigorous boundary conditions: 

❍  "infinite" finite elements (geometrical transformations) 

❍  boundary elements (FEM-BEM coupling) 

❖  Electromagnetic fields are confined (bounded domain) 
♦  Rigorous boundary conditions 

Mesh of electromagnetic devices 
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❖  Electromagnetic fields enter the materials up to a 
distance depending of physical characteristics and 
constraints 

♦  Skin depth U  (U<< if ? , $, µ >>) 
 
 
 

♦  mesh fine enough near surfaces (material boundaries) 

♦  use of surface elements when U &  0 

δ
ω σ µ

=
2

Mesh of electromagnetic devices 
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❖  Types of elements 

♦  2D : triangles, quadrangles 

♦  3D : tetrahedra, hexahedra, prisms, pyramids 

♦  Coupling of volume and surface elements 

❍  boundary conditions 

❍  thin plates 

❍  interfaces between regions 

❍  cuts (for making domains simply connected) 

♦  Special elements (air gaps between moving pieces, ...)  

Mesh of electromagnetic devices 
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Constraints in  
partial differential problems  

❖  Local constraints (on local fields) 
♦  Boundary conditions 

❍  i.e., conditions on local fields on the boundary of the studied domain 

♦  Interface conditions 

❍  e.g., coupling of fields between sub-domains 

❖  Global constraints (functional on fields) 
♦  Flux or circulations of fields to be fixed 

❍  e.g., current, voltage, m.m.f., charge, etc. 
♦  Flux or circulations of fields to be connected 

❍  e.g., circuit coupling 
Weak formulations for 
finite element models 

Essential and natural constraints,  
i.e., strongly and weakly satisfied 
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Constraints in  
electromagnetic systems 

❖  Coupling of scalar potentials with vector fields 
♦  e.g., in h-6 and a-v formulations 

❖  Gauge condition on vector potentials 
♦  e.g., magnetic vector potential a, source magnetic field hs 

❖  Coupling between source and reaction fields 
♦  e.g., source magnetic field hs in the h-6 formulation,  

source electric scalar potential vs in the a-v formulation 

❖  Coupling of local and global quantities 
♦  e.g., currents and voltages in h-6 and a-v formulations  

(massive, stranded and foil inductors) 

❖  Interface conditions on thin regions 
♦  i.e., discontinuities of either tangential or normal components 

Interest for a 
“correct” discrete 
form of these 
constraints 

Sequence of 
finite element 

spaces 
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Complementary 3D formulations 

! µ "t scurl curl
e

( , ' ) ( , ' ) , 'h h h h n e h# # $+ + < % > =&1 0 ! "h' ( )Fh
1 #

( , ' ) ( , ' ) , 'µ ! "# + + < $ > =1 0curl curl t s h
a a a a n h a% % & ! "a' ( )Fe

1 #

Magnetodynamic h-formulation 

Magnetodynamic a-formulation 

How to enforce global fluxes ? 
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h-6 formulation 

❖  h-6 magnetodynamic finite element formulations with 
massive and stranded inductors 

❖  Use of edge and nodal finite elements for h and 6 
♦  Natural coupling between h and 6 
♦  Definition of current in a strong sense with basis functions either for massive 

or stranded inductors 
♦  Definition of voltage in a weak sense 
♦  Natural coupling between fields, currents and voltages 
♦  etc. 
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a-v formulation 

❖  a-vs Magnetodynamic finite element formulation with 
massive and stranded inductors  

❖  Use of edge and nodal finite elements for a and vs 
♦  Definition of a source electric scalar potential vs in massive inductors in an 

efficient way (limited support) 
♦  Natural coupling between a and vs for massive inductors 
♦  Adaptation for stranded inductors: several methods 
♦  Natural coupling between local and global quantities, i.e. fields and currents 

and voltages 
♦  etc. 


