Finite Element Modeling of Electromagnetic Systems

Mathematical and numerical tools

Unit of Applied and Computational Electromagnetics (ACE)
Dept. of Electrical Engineering - University of Liège - Belgium
Patrick Dular, Christophe Geuzaine

February 2015
Introduction

- **Formulations of electromagnetic problems**
 - Maxwell equations, material relations
 - Electrostatics, electrokinetics, magnetostatics, magnetodynamics
 - Strong and weak formulations

- **Discretization of electromagnetic problems**
 - Finite elements, mesh, constraints
 - Very rich content of weak finite element formulations
Formulations of Electromagnetic Problems

Maxwell equations

Electrostatics
Electrokinetics
Magnetostatics
Magnetodynamics
Electromagnetic models

❖ Electrostatics
 ♦ Distribution of electric field due to static charges and/or levels of electric potential

❖ Electrokinetics
 ♦ Distribution of static electric current in conductors

❖ Electrodynamics
 ♦ Distribution of electric field and electric current in materials (insulating and conducting)

❖ Magnetostatics
 ♦ Distribution of static magnetic field due to magnets and continuous currents

❖ Magnetodynamics
 ♦ Distribution of magnetic field and eddy current due to moving magnets and time variable currents

❖ Wave propagation
 ♦ Propagation of electromagnetic fields

All phenomena are described by Maxwell equations
Maxwell equations

\[
\begin{align*}
\text{curl } \mathbf{h} &= \mathbf{j} + \partial_t \mathbf{d} \\
\text{curl } \mathbf{e} &= -\partial_t \mathbf{b} \\
\text{div } \mathbf{b} &= 0 \\
\text{div } \mathbf{d} &= \rho_v
\end{align*}
\]

Ampère equation

Faraday equation

Conservation equations

Principles of electromagnetism

Physical fields and sources

- \(\mathbf{h} \) magnetic field (A/m)
- \(\mathbf{b} \) magnetic flux density (T)
- \(\mathbf{j} \) current density (A/m²)
- \(\mathbf{e} \) electric field (V/m)
- \(\mathbf{d} \) electric flux density (C/m²)
- \(\rho_v \) charge density (C/m³)
Material constitutive relations

Constitutive relations

\[\mathbf{b} = \mu \mathbf{H} \pm \mathbf{b}_s \]
\[\mathbf{d} = \varepsilon \mathbf{E} \pm \mathbf{d}_s \]
\[\mathbf{j} = \sigma \mathbf{E} \pm \mathbf{j}_s \]

Magnetic relation

Dielectric relation

Ohm law

Characteristics of materials

\(\mu \) magnetic permeability (H/m)
\(\varepsilon \) dielectric permittivity (F/m)
\(\sigma \) electric conductivity (\(\Omega^{-1} \text{m}^{-1} \))

Possible sources

\(b_s \) remnant induction, ...
\(d_s \) ...
\(j_s \) source current in stranded inductor, ...

Constants (linear relations)

Functions of the fields

(nonlinear materials)

Tensors (anisotropic materials)
Electrostatics

Basis equations
- \(\text{curl } \mathbf{e} = 0 \)
- \(\text{div } \mathbf{d} = \rho \)
- \(\mathbf{d} = \varepsilon \mathbf{e} \)

& boundary conditions
- \(\mathbf{n} \times \mathbf{e} \mid \Gamma_{0e} = 0 \)
- \(\mathbf{n} \cdot \mathbf{d} \mid \Gamma_{0d} = 0 \)

Electric field (V/m)
Electric flux density (C/m\(^2\))
Electric charge density (C/m\(^3\))
Dielectric permittivity (F/m)

Electric scalar potential formulation
- \(\text{div } \varepsilon \text{ grad } v = - \rho \)
- with \(\mathbf{e} = - \text{ grad } v \)

- Formulation for
 - the exterior region \(\Omega_0 \)
 - the dielectric regions \(\Omega_{d,j} \)
- In each conducting region \(\Omega_{c,i} : v = v_i \rightarrow v = v_i \) on \(\Gamma_{c,i} \)

Type of electrostatic structure
- \(\Gamma_0 = \Gamma_{0e} \cup \Gamma_{0d} \)
- \(\Omega_0 \) Exterior region
- \(\Omega_{c,i} \) Conductors
- \(\Omega_{d,j} \) Dielectric

\(\mathbf{n} \times \mathbf{e} \mid \Gamma_{0e} = 0 \)
\(\mathbf{n} \cdot \mathbf{d} \mid \Gamma_{0d} = 0 \)
\(\text{curl } \mathbf{e} = 0 \)
\(\text{div } \mathbf{d} = \rho \)
\(\mathbf{d} = \varepsilon \mathbf{e} \)
Electrokinetics

Basis equations
- curl \(e = 0 \)
- div \(j = 0 \)
- \(j = \sigma e \)

\(e \) electric field (V/m)
\(j \) electric current density (C/m²)
\(\sigma \) electric conductivity (Ω⁻¹m⁻¹)

Electric scalar potential formulation
- div \(\sigma \) grad \(v \) = 0

with \(e = - \) grad \(v \)

Type of electrokinetic structure
- \(\Omega_c \) Conducting region
- \(\Gamma_{0e} \) to \(\Gamma_{0j} \)
- \(V = v^1 - v^0 \)

Boundary conditions
- \(n \times e \mid \Gamma_{0e} = 0 \)
- \(n \cdot j \mid \Gamma_{0j} = 0 \)

Formulation for
- the conducting region \(\Omega_c \)
- On each electrode \(\Gamma_{0e,i} \): \(v = v^i \rightarrow v = v^i \) on \(\Gamma_{0e,i} \)
Electrostatic problem

Basis equations

curl \(\mathbf{e} = 0 \)
\(\mathbf{d} = \varepsilon \mathbf{e} \)
\(\text{div} \mathbf{d} = \rho \)

\[\varepsilon \mathbf{e} = \nabla v \]
\[\mathbf{d} = \nabla \times \mathbf{u} \]
Electrokinetic problem

Basis equations

\[\text{curl } \mathbf{e} = 0 \]
\[\mathbf{j} = \sigma \mathbf{e} \]
\[\text{div } \mathbf{j} = 0 \]

\[\sigma \mathbf{e} = - \text{grad } \mathbf{v} \]
\[\mathbf{j} = \text{curl } \mathbf{t} \]
Classical and weak formulations

Partial differential problem

Classical formulation

\[\begin{align*}
L u &= f \quad \text{in} \ \Omega \\
B u &= g \quad \text{on} \ \Gamma = \partial \Omega \\
u &= \text{classical solution}
\end{align*} \]

Weak formulation

\[\begin{align*}
(u, L^* v) - (f, v) + \int_{\Gamma} Q g (v) \, ds &= 0 \quad \forall \ v \in V(\Omega) \\
u &= \text{weak solution}
\end{align*} \]

Notations

\[\begin{align*}
(u, v) &= \int_{\Omega} u(x) v(x) \, dx, \quad u, v \in L^2(\Omega) \\
(u, v) &= \int_{\Omega} u(x) \cdot v(x) \, dx, \quad u, v \in L^2(\Omega)
\end{align*} \]

Notations

\[\begin{align*}
v &= \text{test function} \
\text{Continuous level} : \ \infty \times \infty \text{ system} \\
\text{Discrete level} : \ n \times n \text{ system} \
\Rightarrow \text{numerical solution}
\end{align*} \]
Classical and weak formulations

Application to the magnetostatic problem

\[\text{curl } e = 0 \]
\[\text{div } d = 0 \]
\[d = \varepsilon e \]
\[n \times e \big|_{\Gamma_e} = 0 \]
\[n \cdot d \big|_{\Gamma_d} = 0 \]

Electrostatic classical formulation

\[(d, \text{grad } v') = 0 \quad \forall \ v' \in V(\Omega) \quad \text{with } V(\Omega) = \{ v \in H^0(\Omega) ; v \big|_{\Gamma_e} = 0 \} \]

\[\Rightarrow (\text{div } d, v') + <n \cdot d, v'>_{\Gamma} = 0 \quad \forall \ v' \in V(\Omega) \]

\[\downarrow \quad \downarrow \]

\[\text{div } d = 0 \quad n \cdot d \big|_{\Gamma_d} = 0 \]

\[d = \varepsilon e \quad \& \quad e = - \text{grad } v \quad \Leftrightarrow \quad \text{curl } e = 0 \]

Weak formulation of \(\text{div } d = 0 \)
(+ boundary condition)

Electrostatic weak formulation with \(v \)

\[(-\varepsilon \text{grad } v, \text{grad } v') = 0 \quad \forall \ v' \in V(\Omega) \]
Classical and weak formulations

Application to the magnetostatic problem

\(\nabla \times \mathbf{h} = \mathbf{j} \)
\(\nabla \cdot \mathbf{b} = 0 \)
\(\mathbf{b} = \mu \mathbf{h} \)
\(\mathbf{n} \times \mathbf{h} \mid_{\Gamma_h} = 0 \)
\(\mathbf{n} \cdot \mathbf{b} \mid_{\Gamma_e} = 0 \)

\((\mathbf{b}, \nabla \phi') = 0, \quad \forall \phi' \in \Phi(\Omega) \quad \text{with} \quad \Phi(\Omega) = \{ \phi \in H^0(\Omega) ; \phi \mid_{\Gamma_h} = 0 \} \)

\(\Rightarrow (\nabla \cdot \mathbf{b}, \phi') + \langle \mathbf{n} \cdot \mathbf{b}, \phi' \rangle_{\Gamma} = 0, \quad \forall \phi' \in \Phi(\Omega) \)

\(\nabla \cdot \mathbf{b} = 0 \quad \mathbf{n} \cdot \mathbf{b} \mid_{\Gamma_e} = 0 \)

\(\mathbf{b} = \mu \mathbf{h} \quad \& \quad \mathbf{h} = \mathbf{h}_s - \nabla \phi \quad \text{(with} \quad \nabla \times \mathbf{h}_s = \mathbf{j}) \quad \Leftrightarrow \quad \nabla \times \mathbf{h} = \mathbf{j} \)

(\mu (\mathbf{h}_s - \nabla \phi), \nabla \phi') = 0, \quad \forall \phi' \in \Phi(\Omega)
Quasi-stationary approximation

\[\text{curl } \mathbf{h} = \mathbf{j} + \partial_t \mathbf{d} \]

Dimensions \(<\) wavelength

Conduction current density

Displacement current density

Electrotechnic apparatus (motors, transformers, ...)
Frequencies from Hz to a few 100 kHz
Magnetostatics

Equations

\[\text{curl } \mathbf{h} = \mathbf{j} \]
Ampère equation

\[\text{div } \mathbf{b} = 0 \]
Magnetic conservation equation

Constitutive relations

\[\mathbf{b} = \mu \mathbf{h} + \mathbf{b}_s \]
Magnetic relation

\[\mathbf{j} = \mathbf{j}_s \]
Ohm law & source current

Type of studied configuration

\(\Omega \)
Studied domain

\(\Omega_m \)
Magnetic domain

\(\Omega_s \)
Inductor
Magnetodynamics

Equations

- $\text{curl } \mathbf{h} = \mathbf{j}$ (Ampère equation)
- $\text{curl } \mathbf{e} = -\frac{\partial}{\partial t} \mathbf{b}$ (Faraday equation)
- $\text{div } \mathbf{b} = 0$ (Magnetic conservation equation)

Constitutive relations

- $\mathbf{b} = \mu \mathbf{h} + \mathbf{b}_s$ (Magnetic relation)
- $\mathbf{j} = \sigma \mathbf{e} + \mathbf{j}_s$ (Ohm law & source current)

Type of studied configuration

- Ω: Studied domain
 - Ω_p: Passive conductor and/or magnetic domain
 - Ω_a: Active conductor
 - Ω_s: Inductor

- Ω_p: Passive conductor and/or magnetic domain
- Ω_a: Active conductor
- Ω_s: Inductor

- I_a: Source current
- V_a: Voltage
Magnetic constitutive relation

\[b = \mu \cdot h \]
\[\mu = \mu_r \cdot \mu_0 \]
\[\mu_r \text{ relative magnetic permeability} \]

- **Diamagnetic and paramagnetic materials**
 - Linear material \(\mu_r \approx 1 \) (silver, copper, aluminium)

- **Ferromagnetic materials**
 - Nonlinear material \(\mu_r \gg 1 \), \(\mu_r = \mu_r(h) \) (steel, iron)

b-h characteristic of steel

\(\mu_r \)-h characteristic of steel
Magnetostatic formulations

Maxwell equations
(magnetic - static)

\[\text{curl } h = j \]
\[\text{div } b = 0 \]
\[b = \mu \cdot h \]

ϕ Formulation

"h" side

a Formulation

"b" side
Magnetostatic formulations

Basis equations

- \(\text{curl } h = j \) (h)
- \(b = \mu h \) (m)
- \(\text{div } b = 0 \) (b)

\(\phi \) Formulation

- Magnetic scalar potential \(\phi \)
 - \(h = h_s - \text{grad } \phi \) \(\Rightarrow \) (h) OK
 - \(h_s \) given such as \(\text{curl } h_s = j \) (non-unique)
 - \(\text{div } (\mu (h_s - \text{grad } \phi)) = 0 \) \(\Leftarrow \) (b) & (m)

a Formulation

- Magnetic vector potential \(a \)
 - (b) OK \(\iff \) \(b = \text{curl } a \)
 - (h) & (m) \(\rightarrow \) \(\text{curl } (\mu^{-1} \text{curl } a) = j \)

Multivalued potential

- Cuts

Non-unique potential

- Gauge condition
Kernel of the curl (in a domain Ω)
\[
\text{ker (curl)} = \{ \mathbf{v} : \text{curl} \mathbf{v} = 0 \}
\]

\[
\text{cod (grad)} \subset \text{ker (curl)}
\]
Multivalued scalar potential - Cut

\[\text{curl } h = 0 \quad \text{in } \Omega \]

\[h = - \text{grad } \phi \quad \text{in } \Omega \]

Circulation of \(h \) along path \(\gamma_{AB} \) in \(\Omega \)

\[\int_{\gamma_{AB}} h \cdot dl = \int_{\gamma_{AB}} - \text{grad } \phi \cdot dl = \phi_A - \phi_B \]

Closed path \(\gamma_{AB} \) (A\(\equiv \)B) surrounding a conductor (with current I)

\[\Rightarrow \phi_A - \phi_B = 0 \neq I \]

\(\phi \) must be discontinuous ... through a cut

\[\Delta \phi = I \]
Vector potential - gauge condition

\[\text{div } b = 0 \quad \text{in } \Omega \]

\[b = \text{curl } a \quad \text{in } \Omega \]

Non-uniqueness of vector potential \(a \)

\[b = \text{curl } a = \text{curl } (a + \text{grad } \eta) \]

Gauge condition

Coulomb gauge \(\text{div } a = 0 \)

Gauge \(a \cdot \omega = 0 \)

\(\omega \) vector field with non-closed lines linking any 2 points in \(\Omega \)

Example: \(w(r) = r \)

ex.: \(w(r) = r \)
Magnetodynamic formulations

Maxwell equations (quasi-stationary)

\[
\begin{align*}
\text{curl } \mathbf{h} &= \mathbf{j} \\
\text{curl } \mathbf{e} &= -\partial_t \mathbf{b} \\
\text{div } \mathbf{b} &= 0 \\
\mathbf{b} &= \mu \mathbf{h} \\
\mathbf{j} &= \sigma \mathbf{e}
\end{align*}
\]

"h" side \quad | \quad "b" side
Magnetodynamic formulations

H-φ Formulation

Magnetic field h

Magnetic scalar potential φ

\[
\begin{align*}
\text{curl } h &= j \\
\mathbf{b} &= \mu \mathbf{h} \\
j &= \sigma \mathbf{e} \\
\text{div } \mathbf{b} &= 0
\end{align*}
\]

Basis equations

\[
\begin{align*}
\text{curl } h &= j \\
b &= \mu h \\
j &= \sigma e \\
curl e &= - \partial_t b \\
\text{div } b &= 0
\end{align*}
\]

\[
\begin{align*}
h &= \mathbf{h}_s - \text{grad } \phi \\
h = \mathbf{h}_s - \text{grad } \phi \quad \text{ds } \Omega_c
\end{align*}
\]

\[
\begin{align*}
\text{curl } \mathbf{h}_s &= j_s \\
\Rightarrow (\text{h}) \text{ OK}
\end{align*}
\]

\[
\begin{align*}
\text{curl } (\sigma^{-1} \text{curl } h) + \partial_t (\mu h) &= 0 \\
\text{div } (\mu (h_s - \text{grad } \phi)) &= 0
\end{align*}
\]

\[
\begin{align*}
\Rightarrow \text{ (h) OK} \\
\text{in } \Omega_c \rightarrow \\
\text{in } \Omega_c^C \rightarrow
\end{align*}
\]

T-ω Formulation

Electric vector potential t

Magnetic scalar potential ω

\[
\begin{align*}
j &= \text{curl } t \\
h &= t - \text{grad } \omega
\end{align*}
\]

\[
\begin{align*}
curl (\sigma^{-1} \text{curl } t) + \partial_t (\mu (t - \text{grad } \omega)) &= 0 \\
\text{div } (\mu (t - \text{grad } \omega)) &= 0
\end{align*}
\]

\[
\begin{align*}
\Rightarrow (\text{h}) \text{ OK} \\
\text{in } \Omega_c \leftarrow \\
\text{in } \Omega_c^C \leftarrow
\end{align*}
\]

+ Gauge
Magnetodynamic formulations

<table>
<thead>
<tr>
<th>Basis equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{curl } h = j) (h)</td>
</tr>
<tr>
<td>(b = \mu h)</td>
</tr>
<tr>
<td>(j = \sigma e)</td>
</tr>
<tr>
<td>(\text{curl } e = -\partial_t b) (b)</td>
</tr>
<tr>
<td>(\text{div } b = 0)</td>
</tr>
</tbody>
</table>

a* Formulation

Magnetic vector potential a*

\[
\begin{align*}
 b &= \text{curl } a^* \\
 e &= -\partial_t a^* \\
 \text{curl } (\mu^{-1} \text{curl } a^*) + \sigma \partial_t a^* &= j_s \\
 + \text{Gauge in } \Omega_c^C
\end{align*}
\]

a-v Formulation

Magnetic vector potential a

Electric scalar potential v

\[
\begin{align*}
 b &= \text{curl } a \\
 e &= -\partial_t a - \text{grad } v \\
 \text{curl } (\mu^{-1} \text{curl } a) + \sigma (\partial_t a + \text{grad } v)) &= j_s \\
 + \text{Gauge in } \Omega
\end{align*}
\]
Magnetostatic problem

Basis equations

curl \mathbf{h} = \mathbf{j} \quad \mathbf{b} = \mu \mathbf{h} \quad \text{div} \mathbf{b} = 0

\begin{align*}
\mathbf{h} &= -\text{grad} \phi \\
\mathbf{b} &= \text{curl} \mathbf{a}
\end{align*}

"h" side

"b" side
Magnetodynamic problem

Basis equations

\[\text{curl } \mathbf{h} = \mathbf{j} \]
\[\mathbf{b} = \mu \mathbf{h} \]
\[\mathbf{j} = \sigma \mathbf{e} \]
\[\text{curl } \mathbf{e} = - \partial_t \mathbf{b} \]
\[\text{div } \mathbf{b} = 0 \]

\[\mathbf{h} = \mathbf{t} - \text{grad } \phi \]
\[\mathbf{b} = \text{curl } \mathbf{a} \]
\[\mathbf{e} = - \partial_t \mathbf{a} - \text{grad } \mathbf{v} \]
Continuous mathematical structure

Domain \(\Omega \), Boundary \(\partial \Omega = \Gamma_h \cup \Gamma_e \)

Basis structure

Function spaces \(F^0_h \subset L^2, F^1_h \subset L^2, F^2_h \subset L^2, F^3_h \subset L^2 \)

- \(\text{dom} (\text{grad}_h) = F^0_h = \{ \phi \in L^2(\Omega) ; \text{grad} \phi \in L^2(\Omega) , \phi |_{\Gamma_h} = 0 \} \)
- \(\text{dom} (\text{curl}_h) = F^1_h = \{ h \in L^2(\Omega) ; \text{curl} \ h \in L^2(\Omega) , \mathbf{n} \wedge h |_{\Gamma_h} = 0 \} \)
- \(\text{dom} (\text{div}_h) = F^2_h = \{ j \in L^2(\Omega) ; \text{div} j \in L^2(\Omega) , \mathbf{n} \cdot j |_{\Gamma_h} = 0 \} \)

\(\text{grad}_h F^0_h \subset F^1_h, \text{curl}_h F^1_h \subset F^2_h, \text{div}_h F^2_h \subset F^3_h \)

Boundary conditions on \(\Gamma_h \)

Sequence

\[F^0_h \xrightarrow{\text{grad}_h} F^1_h \xrightarrow{\text{curl}_h} F^2_h \xrightarrow{\text{div}_h} F^3_h \]

Basis structure

Function spaces \(F^0_e \subset L^2, F^1_e \subset L^2, F^2_e \subset L^2, F^3_e \subset L^2 \)

- \(\text{dom} (\text{grad}_e) = F^0_e = \{ v \in L^2(\Omega) ; \text{grad} v \in L^2(\Omega) , v |_{\Gamma_e} = 0 \} \)
- \(\text{dom} (\text{curl}_e) = F^1_e = \{ a \in L^2(\Omega) ; \text{curl} a \in L^2(\Omega) , \mathbf{n} \wedge a |_{\Gamma_e} = 0 \} \)
- \(\text{dom} (\text{div}_e) = F^2_e = \{ b \in L^2(\Omega) ; \text{div} b \in L^2(\Omega) , \mathbf{n} \cdot b |_{\Gamma_e} = 0 \} \)

\(\text{grad}_e F^0_e \subset F^1_e, \text{curl}_e F^1_e \subset F^2_e, \text{div}_e F^2_e \subset F^3_e \)

Boundary conditions on \(\Gamma_e \)

Sequence

\[F^3_e \xleftarrow{\text{div}_e} F^2_e \xleftarrow{\text{curl}_e} F^1_e \xleftarrow{\text{grad}_e} F^0_e \]
Discretization of Electromagnetic Problems

Nodal, edge, face and volume finite elements
Discrete mathematical structure

Continuous problem
Continuous function spaces & domain
Classical and weak formulations

Discretization
Approximation

Discrete problem
Discrete function spaces piecewise defined in a discrete domain (mesh)

Finite element method

Questions
Classical & weak formulations \rightarrow ?
Properties of the fields \rightarrow ?

Objective
To build a discrete structure as similar as possible as the continuous structure
Discrete mathematical structure

Finite element
Interpolation in a geometric element of simple shape

Finite element space
Function space & Mesh

Sequence of finite element spaces
Sequence of function spaces & Mesh
Finite elements

- Finite element \((K, P_K, \Sigma_K)\)
 - \(K\) = domain of space (tetrahedron, hexahedron, prism)
 - \(P_K\) = function space of finite dimension \(n_K\), defined in \(K\)
 - \(\Sigma_K\) = set of \(n_K\) degrees of freedom represented by \(n_K\) linear functionals \(\phi_i\), \(1 \leq i \leq n_K\), defined in \(P_K\) and whose values belong to \(\mathbb{IR}\)
Finite elements

❖ **Unisolvance**

∀ u ∈ P_K, u is uniquely defined by the degrees of freedom

❖ **Interpolation**

\[u_K = \sum_{i=1}^{n_K} \phi_i(u) p_i \]

 Degrees of freedom

 Basis functions

❖ **Finite element space**

Union of finite elements (K_j, P_{Kj}, \Sigma_{Kj}) such as:

- the union of the K_j fill the studied domain (≡ mesh)
- some continuity conditions are satisfied across the element interfaces
Sequence of finite element spaces

Geometric elements
- Tetrahedral (4 nodes)
- Hexahedra (8 nodes)
- Prisms (6 nodes)

Mesh

Geometric entities
- Nodes \(i \in N \)
- Edges \(i \in E \)
- Faces \(i \in F \)
- Volumes \(i \in V \)

Sequence of function spaces
- \(S^0 \)
- \(S^1 \)
- \(S^2 \)
- \(S^3 \)
Sequence of finite element spaces

<table>
<thead>
<tr>
<th>Functions</th>
<th>Properties</th>
<th>Functionals</th>
<th>Degrees of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^0</td>
<td>${s_i, i \in N}$</td>
<td>$s_i(x_j) = \delta_{ij}$</td>
<td>Point evaluation</td>
</tr>
<tr>
<td>S^1</td>
<td>${s_i, i \in E}$</td>
<td>$\int_j s_i \cdot dl = \delta_{ij}$</td>
<td>Curve integral</td>
</tr>
<tr>
<td>S^2</td>
<td>${s_i, i \in F}$</td>
<td>$\int_j s_i \cdot n , ds = \delta_{ij}$</td>
<td>Surface integral</td>
</tr>
<tr>
<td>S^3</td>
<td>${s_i, i \in V}$</td>
<td>$\int_j s_i , dv = \delta_{ij}$</td>
<td>Volume integral</td>
</tr>
</tbody>
</table>

\[u_K = \sum_i \phi_i(u) s_i \]

Bases

Finite elements
Sequence of finite element spaces

<table>
<thead>
<tr>
<th>Base functions</th>
<th>Continuity across element interfaces</th>
<th>Codomains of the operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S^0) ({s_i, \ i \in N})</td>
<td>value</td>
<td>(\text{grad } S^0 \subset S^1)</td>
</tr>
<tr>
<td>(S^1) ({s_i, \ i \in E})</td>
<td>tangential component</td>
<td>(\text{curl } S^1 \subset S^2)</td>
</tr>
<tr>
<td>(S^2) ({s_i, \ i \in F})</td>
<td>normal component</td>
<td>(\text{div } S^2 \subset S^3)</td>
</tr>
<tr>
<td>(S^3) ({s_i, \ i \in V})</td>
<td>discontinuity</td>
<td></td>
</tr>
</tbody>
</table>

Conformity

Sequence

\[S^0 \xrightarrow{\text{grad}} S^1 \xrightarrow{\text{curl}} S^2 \xrightarrow{\text{div}} S^3\]
For each node $i \in N \rightarrow$ scalar field

$$s_i(x) = p_i(x) \in S^0$$

$$p_i = \begin{cases}
1 & \text{at node } i \\
0 & \text{at all other nodes}
\end{cases}$$

p_i continuous in Ω

For each Volume $v \in V \rightarrow$ scalar field

$$s_v = \frac{1}{\text{vol}(v)} \in S^3$$
Edge function space S^1

For each edge $e_{ij} = \{i, j\} \in E \rightarrow$ vector field

$$s_{e_{ij}} = p_j \text{ grad } \sum_{r \in N_{F,ij}} p_r - p_i \text{ grad } \sum_{r \in N_{F,ij}} p_r$$

$s_e \in S^1$

Definition of the set of nodes $N_{F,mn}$

$N_{F,mn} = \{i \in N; \ i \in f_{mop}(q), \ o,p,q \neq n\}$

Illustration of the vector field s_e

N.B.: In an element : 3 edges/node
Edge function space S^1

Geometric interpretation of the vector field s_e

$$s_{e,ij} = p_j \text{ grad } \sum_{r \in N_{F,j\hat{i}}} p_r - p_i \text{ grad } \sum_{r \in N_{F,i\hat{j}}} p_r$$
Function space S^2

For each facet $f \in F \rightarrow$ vector field $f = f_{ijk(l)} = \{i, j, k, (l)\} = \{q_1, q_2, q_3, (l)\}$

$\mathbf{s}_f = a_f \sum_{c=1}^{#N_f} p_{q_c} \text{grad} \left(\sum_{r \in F, q_c \tilde{q}_{c+1}} p_r \right) \wedge \text{grad} \left(\sum_{r \in F, q_c \tilde{q}_{c-1}} p_r \right)$

$\mathbf{s}_f \in S^2$

Illustration of the vector field \mathbf{s}_f

$\begin{align*}
#N_f &= 3 \rightarrow a_f = 2 \\
#N_f &= 4 \rightarrow a_f = 1
\end{align*}$
Particular subspaces of S^1

Kernel of the curl operator

$$h \in S^1(\Omega) \ ; \ \text{curl } h = 0 \ \text{in } \Omega_c^c \subset \Omega \rightarrow h \equiv ?$$

Gauged subspace

$$a \in S^1(\Omega) \ ; \ b = \text{curl } a \in S^2(\Omega) \rightarrow a \equiv ?$$

Gauge condition $a \cdot \omega = 0$

to fix a

Applications

Ampere equation in a domain Ω_c^c
without current ($\leftrightarrow \Omega_c$)

Gauge condition on a vector potential

Definition of a generalized source field h_s
such that $\text{curl } h_s = j_s$
Kernel of the curl operator

Case of simply connected domains

\[H = \{ h \in \mathbb{S}^1(\Omega); \text{curl} \ h = 0 \text{ in } \Omega_c^C \} \]

\[h = \sum_{k \in E_c} h_k \ s_k + \sum_{l \in E_c} h_l \ s_l \]

\[h_1 = \int_{l_{ab}} h \cdot dl = \int_{l_{ab}} -\text{grad} \phi \cdot dl = \phi_{a_1} - \phi_{b_1} \]

\[h = \sum_{k \in E_c} h_k \ s_k + \sum_{l \in E_c} \left(\phi_{a_1} - \phi_{b_1} \right) s_l \]

\[h = \sum_{k \in E_c} h_k \ s_k + \sum_{n \in N_c^C} \phi_n \ v_n \]

with \[v_n = \sum_{nj \in E_c^C} s_{nj} \]

Base of \(H \equiv \) basis functions of
- inner edges of \(\Omega_c \)
- nodes of \(\Omega_c^C \),
with those of \(\partial \Omega_c \)
Kernel of the curl operator

Case of multiply connected domains

\[H = \{ h \in S^1(\Omega) ; \text{curl } h = 0 \in \Omega_c^C \} \]

\[\phi = \phi^\text{cont} + \phi^\text{disc} \]

\[h = - \text{grad } \phi \text{ in } \Omega_c^C \text{ (cuts)} \]

\[\phi^+ - \phi^- = \phi |_{\Gamma_{eci}^+} - \phi |_{\Gamma_{eci}^-} = I_i \]

\[\phi^\text{disc} = \sum_{i \in C} I_i \cdot q_i \]

\[h = \sum_{k \in A_c} h_k \cdot s_k + \sum_{n \in N_c^C} \phi^\text{cont}_n \cdot v_n + \sum_{i \in C} I_i \cdot c_i \]

with

\[c_i = \sum_{j \in N_c^C} s_{nj} \]

edges of \(\Omega_c^C \)

starting from a node of the cut

and located on side '+'

but not on the cut

\[\sum_{nj \in A_c \cap A_{eci}} s_{nj} \]

\[\sum_{n \in N_{eci}} \phi^\text{disc}_n \]

\[\sum_{i \in C} q_i = 1 \]

\[\sum_{q_i = 0} \phi_i = 0 \]

\[\phi^+ \]

\[\phi^- \]

Transition layer of \(q_i \)

\(q_i \) • defined in \(\Omega_c^C \)

• unit discontinuity across \(\Gamma_{eci} \)

• continuous in a transition layer

• zero out of this layer

Basis of \(H \equiv \) basis functions of

• inner edges of \(\Omega_c \)

• nodes of \(\Omega_c^C \)

• cuts of \(C \)
Gauged subspace of S^1

Gauged space in Ω

$b = \text{curl } a$ with $a = \sum_{e \in E} a_e \, s_e \in S^1(\Omega)$, $b = \sum_{f \in F} b_f \, s_f \in S^2(\Omega)$

$b_f = \sum_{e \in E} i(e,f) \, a_e$, $f \in F$ → matrix form: $b_f = [C_{FE}] \, a_e$

- **Tree** (in Ω) = set of edges connecting all the nodes of Ω without forming any loop (\tilde{E})
- **Co-tree** = complementary set of the tree (\tilde{E})

Gauged space of $S^1(\Omega)$

$\tilde{S}^1(\Omega) = \{a \in S^1(\Omega) \mid a_j = 0, \forall j \in \tilde{E}\}$

$a = \sum_{i \in E} a_i \, s_i \in \tilde{S}^1(\Omega)$

Basis of $\tilde{S}^1(\Omega) \equiv$ co-tree edge basis functions (explicit gauge definition)
Mesh of electromagnetic devices

- Electromagnetic fields extend to infinity (unbounded domain)
 - Approximate boundary conditions:
 - zero fields at finite distance
 - Rigorous boundary conditions:
 - "infinite" finite elements (geometrical transformations)
 - boundary elements (FEM-BEM coupling)

- Electromagnetic fields are confined (bounded domain)
 - Rigorous boundary conditions
Mesh of electromagnetic devices

- Electromagnetic fields enter the materials up to a distance depending on physical characteristics and constraints
 - Skin depth δ ($\delta \ll \omega, \sigma, \mu$)
 \[\delta = \sqrt{\frac{2}{\omega \sigma \mu}} \]
 - Mesh fine enough near surfaces (material boundaries)
 - Use of surface elements when $\delta \to 0$
Mesh of electromagnetic devices

❖ Types of elements

♦ 2D : triangles, quadrangles

♦ 3D : tetrahedra, hexahedra, prisms, pyramids

♦ Coupling of volume and surface elements
 ○ boundary conditions
 ○ thin plates
 ○ interfaces between regions
 ○ cuts (for making domains simply connected)

♦ Special elements (air gaps between moving pieces, ...)

[Page 47]
Constraints in partial differential problems

- **Local constraints (on local fields)**
 - Boundary conditions
 - i.e., conditions on local fields on the boundary of the studied domain
 - Interface conditions
 - e.g., coupling of fields between sub-domains

- **Global constraints (functional on fields)**
 - Flux or circulations of fields to be fixed
 - e.g., current, voltage, m.m.f., charge, etc.
 - Flux or circulations of fields to be connected
 - e.g., circuit coupling

Weak formulations for finite element models

Essential and natural constraints, i.e., strongly and weakly satisfied
Constraints in electromagnetic systems

- Coupling of scalar potentials with vector fields
 - e.g., in h-φ and a-v formulations

- Gauge condition on vector potentials
 - e.g., magnetic vector potential a, source magnetic field h_s

- Coupling between source and reaction fields
 - e.g., source magnetic field h_s in the h-φ formulation, source electric scalar potential v_s in the a-v formulation

- Coupling of local and global quantities
 - e.g., currents and voltages in h-φ and a-v formulations (massive, stranded and foil inductors)

- Interface conditions on thin regions
 - i.e., discontinuities of either tangential or normal components

Interest for a “correct” discrete form of these constraints

Sequence of finite element spaces
Complementary 3D formulations

Magnetodynamic h-formulation

$$\partial_t (\mu \, h, h')_\Omega + (\sigma^{-1} \, \text{curl} \, h, \text{curl} \, h')_\Omega + <n \times e_s, h'>_{\Gamma_e} = 0 \quad \forall h' \in F_h^1(\Omega)$$

Magnetodynamic a-formulation

$$(\mu^{-1} \, \text{curl} \, a, \text{curl} \, a')_\Omega + (\sigma \, \partial_t a, a')_\Omega + <n \times h_s, a'>_{\Gamma_h} = 0 \quad \forall a' \in F_e^1(\Omega)$$

How to enforce global fluxes?
h-φ formulation

- h-φ magnetodynamic finite element formulations with massive and stranded inductors
- Use of edge and nodal finite elements for h and φ
 - Natural coupling between h and φ
 - Definition of current in a strong sense with basis functions either for massive or stranded inductors
 - Definition of voltage in a weak sense
 - Natural coupling between fields, currents and voltages
 - etc.
a-v formulation

- $a-v_s$ Magnetodynamic finite element formulation with massive and stranded inductors

- Use of edge and nodal finite elements for a and v_s
 - Definition of a source electric scalar potential v_s in massive inductors in an efficient way (limited support)
 - Natural coupling between a and v_s for massive inductors
 - Adaptation for stranded inductors: several methods
 - Natural coupling between local and global quantities, i.e. fields and currents and voltages
 - etc.