Math 471: Midterm Exam - Wed 10/18/2006

Consider the following heat problem in dimensionless variables:

$$
\begin{array}{ll}
u_{t}(x, t)=u_{x x}(x, t)+q, & 0<x<1, \quad t>0 \\
u_{x}(0, t)=0, \quad u(1, t)=1, & t>0 \\
u(x, 0)=u_{0}, & 0<x<1,
\end{array}
$$

where $q>0$ and $u_{0}>0$ are constants. This is the heat equation with a source, where the rod is insulated at $x=0$ and kept at 1 degree at $x=1$.

1. Derive the steady-state (equilibrium) solution $u^{s s}(x)$. ($\mathbf{1 0} \mathbf{~ p t s}$)

Solution: The steady-state $u^{s s}(x)$ satisfies

$$
\begin{array}{ll}
0=u_{x x}^{s s}(x)+q, & 0<x<1 \\
u_{x}^{s s}(0)=0, \quad u^{s s}(1)=1 . &
\end{array}
$$

Integrating the ODE gives $u^{s s}(x)=-q \frac{x^{2}}{2}+c_{1} x+c_{2}$. Applying the BCs leads to $c_{1}=0$ and $c_{2}=1+\frac{q}{2}$, hence:

$$
u^{s s}(x)=1+\frac{q}{2}\left(1-x^{2}\right) .
$$

2. Using the steady-state solution, transform the given heat problem for $u(x, t)$ into a problem for a function $v(x, t)$:

$$
\begin{array}{ll}
v_{t}(x, t)=v_{x x}(x, t), & 0<x<1, \quad t>0 \\
v_{x}(0, t)=0, \quad v(1, t)=0, & t>0 \\
v(x, 0)=f(x), & 0<x<1
\end{array}
$$

where $f(x)$ is to be determined by the transformation. (10 pts)

Solution: Writing $v(x, t)=u(x, t)-u^{s s}(x)$, we have

$$
\begin{aligned}
v_{t} & =u_{t} \\
v_{x x} & =u_{x x}-u_{x x}^{s s}=u_{x x}+q
\end{aligned}
$$

and hence the PDE becomes

$$
v_{t}=v_{x x} .
$$

The BCs become

$$
\begin{aligned}
v_{x}(0, t) & =u_{x}(0, t)-u_{x}^{s s}(0)=0-0=0 \\
v(1, t) & =u(1, t)-u^{s s}(1)=1-1=0
\end{aligned}
$$

The IC becomes

$$
v(x, 0)=u(x, 0)-u^{s s}(x)=u_{0}-1-\frac{q}{2}\left(1-x^{2}\right)=f(x)
$$

3. Prove that the problem in terms of $v(x, t)$ has a unique solution. (20 $\mathbf{~ p t s}$)

Solution: Consider 2 solutions $v_{1}(x, t)$ and $v_{2}(x, t)$ and define $h(x, t)=v_{1}(x, t)-v_{2}(x, t)$. Then $h(x, t)$ satisfies

$$
\begin{array}{ll}
h_{t}(x, t)=h_{x x}(x, t), & 0<x<1, \quad t>0, \\
h_{x}(0, t)=0, \quad h(1, t)=0, & t>0, \\
h(x, 0)=0, & 0<x<1 .
\end{array}
$$

Define the function

$$
H(t)=\int_{0}^{1} h^{2}(x, t) d x
$$

Differentiating in time, we get

$$
\frac{d H}{d t}=\int_{0}^{1} 2 h h_{t} d x=\int_{0}^{1} 2 h h_{x x} d x=\left.2 h h_{x}\right|_{0} ^{1}-2 \int_{0}^{1} h_{x}^{2} d x=-2 \int_{0}^{1} h_{x}^{2} d x \leq 0 .
$$

Also, $H(0)=\int_{0}^{1} 0 d x=0$ and $H(t) \geq 0$. Thus $H(t)=0$ for all time, which implies $h(x, t)=0$ for all space and time, and thus $v_{1}(x, t)=v_{2}(x, t)$.
4. Find the solution $v(x, t)$ in the form of an infinite series $v(x, t)=\sum_{n=1}^{\infty} v_{n}(x, t)$. You may use (without proof) the following integrals in your derivation $(n, m \in \mathbb{Z})$:

$$
\begin{gathered}
\int_{0}^{1} \cos \left(\frac{2 m-1}{2} \pi x\right) \cos \left(\frac{2 n-1}{2} \pi x\right) d x= \begin{cases}\frac{1}{2} & \text { if } m=n \\
0 & \text { if } m \neq n\end{cases} \\
\int_{0}^{1} \cos \left(\frac{2 m-1}{2} \pi x\right) d x=\frac{2(-1)^{m+1}}{(2 m-1) \pi} \\
\int_{0}^{1}\left(1-x^{2}\right) \cos \left(\frac{2 m-1}{2} \pi x\right) d x=\frac{16(-1)^{m+1}}{(2 m-1)^{3} \pi^{3}}
\end{gathered}
$$

(40 pts)

Solution: We separate variables $u(x, t)=X(x) T(t)$ and substitute in the PDE to obtain

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{T}=-\lambda
$$

where λ is a constant. The Sturm-Liouville problem for $X(x)$ is

$$
X^{\prime \prime}+\lambda X=0, \quad X^{\prime}(0)=0=X(1)
$$

whose solution is

$$
X_{n}(x)=B_{n} \cos \left(\sqrt{\lambda_{n}} x\right), \quad \lambda_{n}=(2 n-1)^{2} \pi^{2} / 4, \quad n=1,2, \ldots
$$

The equations for $T(t)$ are

$$
T^{\prime}+\lambda_{n} T=0, \quad n=1,2, \ldots
$$

and thus

$$
T_{n}(t)=C_{n} e^{-(2 n-1)^{2} \pi^{2} t / 4}, \quad n=1,2, \ldots
$$

which leads to the solutions $v_{n}(x, t)$ to the PDE (with $B C s$):

$$
v_{n}(x, t)=X_{n}(x) T_{n}(t)=A_{n} \cos \left(\frac{2 n-1}{2} \pi x\right) e^{-(2 n-1)^{2} \pi^{2} t / 4}, \quad n=1,2, \ldots
$$

Summing all $v_{n}(x, t)$ together gives

$$
v(x, t)=\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{2 n-1}{2} \pi x\right) e^{-(2 n-1)^{2} \pi^{2} t / 4}
$$

Imposing the IC gives

$$
v(x, 0)=u_{0}=\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{2 n-1}{2} \pi x\right) .
$$

Using the given orthogonality relation leads to

$$
A_{n}=2 \int_{0}^{1} f(x) \cos \left(\frac{2 n-1}{2} \pi x\right) d x=2 \int_{0}^{1}\left(u_{0}-1-\frac{q}{2}\left(1-x^{2}\right)\right) \cos \left(\frac{2 n-1}{2} \pi x\right) d x
$$

and thus, using the given integrals,

$$
A_{n}=2\left(u_{0}-1\right) \frac{2(-1)^{n+1}}{(2 n-1) \pi}-q \frac{16(-1)^{n+1}}{(2 n-1)^{3} \pi^{3}}, \quad n=1,2, \ldots
$$

5. Without doing any computations, explain how you would prove that the series solution $v(x, t)=\sum_{n=1}^{\infty} v_{n}(x, t)$ converges uniformly for $0<x<1$. (5 pts)

Solution: Bound each $v_{n}(x, t)$ on $[0,1]$ by M_{n}. If $\sum_{n=1}^{\infty} M_{n}$ converges absolutely (which can be shown using the ratio test), then $\sum_{n=1}^{\infty} v_{n}(x, t)$ converges uniformly (by the M-test theorem).
6. Find the solution $u(x, t)$. (5 pts)

Solution: $\quad u(x, t)=u^{s s}(x)+v(x, t)=\ldots$
7. Assuming that $u_{0}=1$ and $q=1$, sketch the spatial (in x) temperature profile $u(x, t)$ for $t=0$ and $t \rightarrow \infty$. ($5 \mathbf{~ p t s}$)

Solution:

8. Briefly (in a couple of sentences) explain how you would solve the same heat problem if the boundary condition on the right end of the rod was changed to $u(1, t)=\cos (t)$. (5 pts)

Solution: Look for a solution in the form $u(x, t)=v(x, t)+u^{s s}(x, t)$, where $v(x, t)$ is a transient satisfying a PDE with homogeneous BCs and $u^{s s}(x, t)=A(x) \cos (t+\phi(x))$ is a quasi steady-state.

