Consider the following heat problem in dimensionless variables:

$u_t(x,t) = u_{xx}(x,t) + q,$	0 < x < 1, t > 0,
$u_x(0,t) = 0, u(1,t) = 1,$	t > 0,
$u(x,0) = u_0,$	0 < x < 1,

where q > 0 and $u_0 > 0$ are constants. This is the heat equation with a source, where the rod is insulated at x = 0 and kept at 1 degree at x = 1.

1. Derive the steady-state (equilibrium) solution $u^{ss}(x)$. (10 pts)

Solution: The steady-state $u^{ss}(x)$ satisfies

$$\begin{aligned} 0 &= u_{xx}^{ss}(x) + q, & 0 < x < 1 \\ u_{x}^{ss}(0) &= 0, \quad u^{ss}(1) = 1. \end{aligned}$$

Integrating the ODE gives $u^{ss}(x) = -q\frac{x^2}{2} + c_1x + c_2$. Applying the BCs leads to $c_1 = 0$ and $c_2 = 1 + \frac{q}{2}$, hence:

$$u^{ss}(x) = 1 + \frac{q}{2}(1 - x^2).$$

2. Using the steady-state solution, transform the given heat problem for u(x,t) into a problem for a function v(x,t):

$$\begin{split} v_t(x,t) &= v_{xx}(x,t), & 0 < x < 1, \quad t > 0, \\ v_x(0,t) &= 0, \quad v(1,t) = 0, & t > 0, \\ v(x,0) &= f(x), & 0 < x < 1, \end{split}$$

where f(x) is to be determined by the transformation. (10 pts)

Solution: Writing $v(x,t) = u(x,t) - u^{ss}(x)$, we have

$$v_t = u_t$$
$$v_{xx} = u_{xx} - u_{xx}^{ss} = u_{xx} + q$$

and hence the PDE becomes

$$v_t = v_{xx}$$
.

 $The \ BCs \ become$

$$v_x(0,t) = u_x(0,t) - u_x^{ss}(0) = 0 - 0 = 0$$

$$v(1,t) = u(1,t) - u^{ss}(1) = 1 - 1 = 0.$$

The IC becomes

$$v(x,0) = u(x,0) - u^{ss}(x) = u_0 - 1 - \frac{q}{2}(1 - x^2) = f(x).$$

3. Prove that the problem in terms of v(x,t) has a unique solution. (20 pts)

Solution: Consider 2 solutions $v_1(x,t)$ and $v_2(x,t)$ and define $h(x,t) = v_1(x,t) - v_2(x,t)$. Then h(x,t) satisfies

$$\begin{split} h_t(x,t) &= h_{xx}(x,t), & 0 < x < 1, \quad t > 0, \\ h_x(0,t) &= 0, \quad h(1,t) = 0, & t > 0, \\ h(x,0) &= 0, & 0 < x < 1. \end{split}$$

Define the function

$$H(t) = \int_0^1 h^2(x,t) \, dx.$$

Differentiating in time, we get

$$\frac{dH}{dt} = \int_0^1 2hh_t \, dx = \int_0^1 2hh_{xx} \, dx = 2hh_x \big|_0^1 - 2\int_0^1 h_x^2 \, dx = -2\int_0^1 h_x^2 \, dx \le 0.$$

Also, $H(0) = \int_0^1 0 \, dx = 0$ and $H(t) \ge 0$. Thus H(t) = 0 for all time, which implies h(x, t) = 0 for all space and time, and thus $v_1(x, t) = v_2(x, t)$.

4. Find the solution v(x,t) in the form of an infinite series $v(x,t) = \sum_{n=1}^{\infty} v_n(x,t)$. You may use (without proof) the following integrals in your derivation $(n, m \in \mathbb{Z})$:

$$\int_{0}^{1} \cos\left(\frac{2m-1}{2}\pi x\right) \cos\left(\frac{2n-1}{2}\pi x\right) dx = \begin{cases} \frac{1}{2} & \text{if } m = n\\ 0 & \text{if } m \neq n \end{cases}$$
$$\int_{0}^{1} \cos\left(\frac{2m-1}{2}\pi x\right) dx = \frac{2(-1)^{m+1}}{(2m-1)\pi}$$
$$\int_{0}^{1} (1-x^{2}) \cos\left(\frac{2m-1}{2}\pi x\right) dx = \frac{16(-1)^{m+1}}{(2m-1)^{3}\pi^{3}}$$

(40 pts)

Solution: We separate variables u(x,t) = X(x)T(t) and substitute in the PDE to obtain

$$\frac{X''}{X} = \frac{T'}{T} = -\lambda$$

where λ is a constant. The Sturm-Liouville problem for X(x) is

$$X'' + \lambda X = 0, \quad X'(0) = 0 = X(1),$$

whose solution is

$$X_n(x) = B_n \cos\left(\sqrt{\lambda_n}x\right), \quad \lambda_n = (2n-1)^2 \pi^2/4, \quad n = 1, 2, \dots$$

The equations for T(t) are

$$T' + \lambda_n T = 0, \quad n = 1, 2, \dots$$

 $and \ thus$

$$T_n(t) = C_n e^{-(2n-1)^2 \pi^2 t/4}, \quad n = 1, 2, \dots,$$

which leads to the solutions $v_n(x,t)$ to the PDE (with BCs):

$$v_n(x,t) = X_n(x)T_n(t) = A_n \cos\left(\frac{2n-1}{2}\pi x\right)e^{-(2n-1)^2\pi^2 t/4}, \quad n = 1, 2, \dots$$

Summing all $v_n(x,t)$ together gives

$$v(x,t) = \sum_{n=1}^{\infty} A_n \cos\left(\frac{2n-1}{2}\pi x\right) e^{-(2n-1)^2 \pi^2 t/4}$$

Imposing the IC gives

$$v(x,0) = u_0 = \sum_{n=1}^{\infty} A_n \cos\left(\frac{2n-1}{2}\pi x\right).$$

Using the given orthogonality relation leads to

$$A_n = 2\int_0^1 f(x)\cos\left(\frac{2n-1}{2}\pi x\right) \, dx = 2\int_0^1 \left(u_0 - 1 - \frac{q}{2}(1-x^2)\right)\cos\left(\frac{2n-1}{2}\pi x\right) \, dx,$$

and thus, using the given integrals,

$$A_n = 2(u_0 - 1)\frac{2(-1)^{n+1}}{(2n-1)\pi} - q\frac{16(-1)^{n+1}}{(2n-1)^3\pi^3}, \quad n = 1, 2, \dots$$

5. Without doing any computations, explain how you would prove that the series solution $v(x,t) = \sum_{n=1}^{\infty} v_n(x,t)$ converges uniformly for 0 < x < 1. (5 pts)

Solution: Bound each $v_n(x,t)$ on [0,1] by M_n . If $\sum_{n=1}^{\infty} M_n$ converges absolutely (which can be shown using the ratio test), then $\sum_{n=1}^{\infty} v_n(x,t)$ converges uniformly (by the M-test theorem).

6. Find the solution u(x,t). (5 pts)

Solution: $u(x,t) = u^{ss}(x) + v(x,t) = \dots$

7. Assuming that $u_0 = 1$ and q = 1, sketch the spatial (in x) temperature profile u(x,t) for t = 0 and $t \to \infty$. (5 pts)

Solution:

8. Briefly (in a couple of sentences) explain how you would solve the same heat problem if the boundary condition on the right end of the rod was changed to $u(1,t) = \cos(t)$. (5 pts)

Solution: Look for a solution in the form $u(x,t) = v(x,t) + u^{ss}(x,t)$, where v(x,t) is a transient satisfying a PDE with homogeneous BCs and $u^{ss}(x,t) = A(x)\cos(t + \phi(x))$ is a quasi steady-state.