Lecture 4: Nonlinear analysis of combinatorial problems

Yurii Nesterov, CORE/INMA (UCL)

March 16, 2012
Outline

1. Boolean quadratic problem
2. Simple bounds
3. SDP-relaxation and its quality
4. General constraints
5. Generating functions of integer sets
6. Knapsack volume
7. Fast computations
8. Further extensions
Boolean quadratic problem

Let $Q = Q^T$ be an $(n \times n)$-matrix.

Maximization: find $f^*(Q) \equiv \max_\mathcal{X} \{ \langle Qx, x \rangle : x_i = \pm 1, \ i = 1 \ldots n \}.$

Minimization: find $f_*(Q) \equiv \min_\mathcal{X} \{ \langle Qx, x \rangle : x_i = \pm 1, \ i = 1 \ldots n \}.$

Clearly $f^*(-Q) = -f_*(Q)$.

Trivial Properties

- Both problems are NP-hard.
- They can have up to 2^n local extremums.

Very often we are happy with approximate solutions.
Simple bounds: Eigenvalues

Upper bound. For any $x \in \mathbb{R}^n$ with $x_i = \pm 1$, we have $\|x\|^2 = n$. Therefore,

$$f^*(Q) \leq \max_{\|x\|^2 = n} \langle Qx, x \rangle = n \cdot \lambda_{\text{max}}(Q).$$

Lower bounds. 1. If $Q \succeq 0$, then

$$f^*(Q) = \max_{|x_i| \leq 1} \langle Qx, x \rangle \geq \max_{\|x\|^2 = 1} \langle Qx, x \rangle = \lambda_{\text{max}}(Q).$$

2. Consider random x with $\text{Prob}(x_i = 1) = \text{Prob}(x_i = -1) = \frac{1}{2}$. Then

$$f^*(Q) \geq E_x(\langle Qx, x \rangle) = \sum_{i,j=1}^{n} Q_{i,j} E_x(x_i x_j)$$

$$= \sum_{i=1}^{n} Q_{i,i} = \text{Trace}(Q).$$

Example: $Q = ee^T$, $\text{Trace}(Q) = \lambda_{\text{max}}(Q) = n$. In both cases, relative quality is n.
Polyhedral bound

For Boolean $x \in R^n$, we have

$$\langle Qx, x \rangle = \sum_{i,j=1}^{n} Q_{i,j}x_i x_j \leq \sum_{i,j} |Q_{i,j}| \overset{\text{def}}{=} \|Q\|_1.$$

How good is it?

Random hyperplane technique. (Krivine 70’s, Goemans, Williamson 95)

Let us fix $V \in M_n$. Consider the random vector

$$\xi = \text{sgn} \[V^T u]\,$$

with random $u \in R^n$, uniformly distributed on unit sphere.
([·] denotes component-wise operations.)

Lemma 1: $E(\xi_i \xi_j) = \frac{2}{\pi} \arcsin \frac{\langle v_i, v_j \rangle}{\|v_i\| \cdot \|v_j\|}$.

Lemma 2: For $X \succeq 0$, we have $\arcsin[X] \succeq X$.

Proof: $\arcsin[X] = X + \frac{1}{6}[X]^3 + \frac{3}{40}[X]^5 + \ldots \succeq X$.
Quality of polyhedral bound ($Q \geq 0$)

Let $Q = V^T V$ (this means that $Q_{i,j} = \langle v_i, v_j \rangle$). Then

$$f^*(Q) \geq E(\langle Q \xi, \xi \rangle) = \frac{2}{\pi} \sum_{i,j=1}^{n} Q(i,j) \arcsin \left(\frac{Q(i,j)}{\sqrt{Q(i,i)Q(j,j)}} \right) \overset{\text{def}}{=} \frac{2}{\pi} \rho.$$

Denote $D = \text{diag}(Q)^{-1/2}$. Then $\rho \geq \langle Q, D Q D \rangle_M$.

Denote $S_1 = \langle Q, I_n \rangle_M$, $S_2 = \sum_{i \neq j} |Q_{i,j}|$. Then $S_1 + S_2 = \|Q\|_1$. Thus,

$$\langle Q, D Q D \rangle_M = S_1 + \sum_{i \neq j} \frac{(Q_{i,j})^2}{\sqrt{Q_{i,i}Q_{j,j}}} \geq S_1 + \sum_{i \neq j} \frac{S_2^2}{\sqrt{Q_{i,i}Q_{j,j}}} = S_1 + \frac{S_2^2}{\sum_{i \neq j} \sqrt{Q_{i,i}Q_{j,j}}} \geq S_1 + \frac{S_2^2}{nS_1 - S_1} = \|Q\|_1 - S_2 + \frac{S_2^2}{(n-1)(\|Q\|_1 - S_2)}.$$

The minimum is attained for $S_2 = \|Q\|_1 \cdot (1 - \frac{1}{\sqrt{n}})$. Thus,

$$\|Q\|_1 \geq f^*(Q) \geq \langle Q, D Q D \rangle_M \geq \frac{2}{1 + \sqrt{n}} \|Q\|_1.$$

It is better than the eigenvalue bound!
SDP-bounds: Primal Relaxation (Lovász)

For $X, Y \in M_n$, we have

$$\langle XY, Z \rangle_M = \langle X, ZY^T \rangle_M = \langle Y, X^T Z \rangle_M.$$

Denote $1^k_n : (1^k_n)_j = \pm 1$, $j = 1 \ldots n$, $k = 1 \ldots 2^n$.

Then $\langle Q1^k_n, 1^k_n \rangle = \langle Q, 1^k_n(1^k_n)^T \rangle_M$. Therefore

$$f^*(Q) = \max_{X \in P_n} \langle Q, X \rangle_M,$$

where $P_n \overset{\text{def}}{=} \text{Conv} \{1^k_n(1^k_n)^T, k = 1 \ldots 2^n \}$. Note that:

- The complete description of P_n is not known.
- For $X \in P_n$ we have: $X \succeq 0$, and $d(X) = 1_n$. Thus,

$$f^*(Q) \leq \max\{\langle Q, X \rangle_M : X \succeq 0, d(X) = 1_n \}.$$
Dual Relaxation (Shor)

Problem: \(f^*(Q) = \max_x \{ \langle Qx, x \rangle : x_i^2 = 1, \; i = 1 \ldots n \} \).

Its Lagrangian is \(\mathcal{L}(x, \xi) = \langle Qx, x \rangle + \sum_{i=1}^n \xi_i (1 - (x_i)^2) \). Therefore

\[
f^*(Q) = \max \min_{x, \xi} \mathcal{L}(x, \xi) \leq \min \max_{x, \xi} \mathcal{L}(x, \xi)
= \min_{\xi} \{ \langle 1_n, \xi \rangle : Q \preceq D(\xi) \} \overset{\text{def}}{=} s^*(Q).
\]

Note: Both relaxations give exactly the same upper bound:

\[
s^*(Q) = \min \max_{\xi, X \succeq 0} \{ \langle 1_n, \xi \rangle + \langle X, Q - D(\xi) \rangle_M \}.
= \max \min_{X \succeq 0} \{ \langle 1_n - D(X), \xi \rangle + \langle X, Q \rangle_M \}.
= \max_{X \succeq 0} \{ \langle X, Q \rangle_M : d(X) = 1_n \}.
\]

Any hope? (Looks as an attempt to approximate \(Q \) by \(D(\xi) \).)
Trigonometric form of Quadratic Boolean Problem

We have seen that $f^*(Q) \geq \frac{2}{\pi} \arcsin[V^TV]$ with $d(V^TV) = 1_n$. Let us show that

$$f^*(Q) = \max_{\|v_i\|=1} \frac{2}{\pi} \langle Q, \arcsin[V^TV] \rangle_M.$$

Proof: Choose arbitrary a, $\|a\| = 1$. Let x^* be the global solution.

Define $v_i = a$ if $x_i^* = 1$, and $v_i = -a$ otherwise.

Then $V^TV = x^*(x^*)^T$ and $\frac{2}{\pi} \arcsin[V^TV] = x^*(x^*)^T$.

Since $\{X = V^TV : d(X) = 1_n\} \equiv \{X \succeq 0 : d(X) = 1_n\}$, we get

$$f^*(Q) = \max_{X \succeq 0} \left\{ \frac{2}{\pi} \langle Q, \arcsin[X] \rangle_M : d(X) = 1_n \right\}.$$

Corollary: $s^*(Q) \geq f^*(Q) \geq \frac{2}{\pi} s^*(Q)$.

Relative accuracy does not depend on dimension!
General constraints on squared variables

Consider two problems:

$$\phi^* = \max \{ \langle Qx, x \rangle : [x]^2 \in \mathcal{F} \}, \quad \phi_* = \min \{ \langle Qx, x \rangle : [x]^2 \in \mathcal{F} \},$$

where \mathcal{F} is a bounded closed convex set.

Trigonometric form:

$$\phi^* = \max \{ \frac{2}{\pi} \langle D(d)QD(d), \arcsin[X] \rangle : X \succeq 0, \ d(X) = 1_n, \ d \geq 0, \ [d]^2 \in \mathcal{F} \},$$

$$\phi_* = \min \{ \frac{2}{\pi} \langle D(d)QD(d), \arcsin[X] \rangle : X \succeq 0, \ d(X) = 1_n, \ d \geq 0, \ [d]^2 \in \mathcal{F} \}.$$

Relaxations:

Define the support function $\xi(u) = \max \{ \langle u, v \rangle : v \in \mathcal{F} \}$, and

$$\psi^* = \min \{ \xi(u) : D(u) \succeq Q \}, \quad \psi_* = \max \{ -\xi(u) : Q + D(u) \succeq 0 \},$$

$$\tau^* = \xi(d(Q)), \quad \tau_* = -\xi(-d(Q)).$$

Simple relations: $\psi_* \leq \phi_* \leq \tau_* \leq \tau^* \leq \phi^* \leq \psi^*$.
Main result

Denote $\psi(\alpha) = \alpha \psi^* + (1 - \alpha) \psi_*$, and $\beta^* = \frac{\psi^* - \tau^*}{\psi^* - \psi_*}$, $\beta_* = \frac{\tau_* - \psi_*}{\psi^* - \psi_*}$.

Theorem. 1. Let

$$\alpha^* = \max\left\{ \frac{2}{\pi} \omega(\beta_*), 1 - \beta^* \right\},$$

and $\alpha_* = \min\{1 - \frac{2}{\pi} \omega(\beta^*), \beta_*\}$,

where $\omega(\alpha) = \alpha \arcsin(\alpha) + \sqrt{1 - \alpha^2} \; (\geq 1 + \frac{1}{2} \alpha^2)$.

Then $\psi_* \leq \phi_* \leq \psi(\alpha_*) \leq \psi(\alpha^*) \leq \phi^* \leq \psi^*$.

2. $0 \leq \frac{\phi^* - \psi(\alpha^*)}{\phi^* - \phi_*} \leq \frac{24}{49}$.

3. Define $\bar{\alpha} = \frac{\alpha^*(2 - \alpha_*) - \alpha_*}{1 + \alpha^* - 2 \alpha_*}$. Then $\frac{\phi^* - \psi(\bar{\alpha})}{\phi^* - \phi_*} \leq \frac{12}{37}$.
Main limitation: Absence of linear constraints

Example. Let \(\beta > 0 \). Consider the problem

\[
\phi^* = \max_x \{ \langle Qx, x \rangle : [x]^2 = 1_n, \langle c, x \rangle = \beta \},
\]

\[
\phi_* = \min_x \{ \langle Qx, x \rangle : [x]^2 = 1_n, \langle c, x \rangle = \beta \}.
\]

Natural relaxation:

\[
\psi^* = \max_X \{ \langle Q, X \rangle : d(X) = 1_n, X \succeq 0, \langle Xc, c \rangle = \beta^2 \},
\]

\[
\psi_* = \min_X \{ \langle Q, X \rangle : d(X) = 1_n, X \succeq 0, \langle Xc, c \rangle = \beta^2 \}.
\]

Denote by \(v \) any vector with \([v]^2 = 1_n\).

Assumptions: 1. There exists a unique \(v_* \) such that \(\langle c, v_* \rangle = \beta \).
2. There exist \(v_- \) and \(v_+ \) such that \(0 < \langle c, v_- \rangle < \beta < \langle c, v_+ \rangle \).

Note: in this case \(\phi^* = \phi_* \) (unique feasible solution).
Consider the polytope $\mathcal{P}_n = \text{Conv}\{V_i = v_i v_i^T, \ i = 1, \ldots, 2^n\}$.

Lemma. Any V_i is an extreme point of \mathcal{P}_n. Any pair V_i, V_j is connected by an edge.

Note:

1. In view of our assumption $\exists \tilde{V} \in \mathcal{P}_n$:

 $$\tilde{V} = \alpha v_- v_-^T + (1 - \alpha) v_+ v_+^T, \ \alpha \in (0, 1), \ \langle \tilde{V} c, c \rangle = \beta^2.$$

2. $\mathcal{P}_n \subset \{X : d(X) = 1_n, \ X \succeq 0\}$.

Conclusion: We can choose Q: $\psi^* > \phi^*$.

Since $\psi_* \leq \phi_*$, the relative accuracy of ψ^* is $+\infty$.

Reason of the troubles: We intersect edges of \mathcal{P}_n.

*This cannot happen if $\beta = 0.$
Further developments

- Boolean quadratic optimization with m homogeneous linear equality constraints (accuracy $O(\ln m)$).
- Quadratic maximization with quadratic inequality constraints (accuracy $O(\ln m)$).

Main bottleneck: absence of cheap relaxations.
Generating functions of integer sets

1. Primal generating functions.

For set $S \subset Z^n$, define $f(S, x) = \sum_{\alpha \in S} x^{\alpha}$, where $x^{\alpha} = \prod_{i=1}^{n} x_i^{\alpha_i}$.

- $f(S, 1_n) = \mathcal{N}(S)$, the integer volume of S. Can be used for counting problems.
- Sometimes have short representation.

Example: $S = \{x \in Z : x \geq 0\}$. Then

$$f(S, x) = \frac{1}{1-x}.$$
2. Dual generating functions

2.1. Characteristic function of the set $X \subset \mathbb{Z}^n$ is defined as

$$\psi_X(c) = \sum_{x \in X} e^{\langle c, x \rangle}, \text{ if } X \neq \emptyset, \quad \text{and } 0 \text{ otherwise.}$$

- For counting problem, we have $\mathcal{N}(X) = \psi_X(0)$.
- We can approximate the optimal value of an optimization problem over X:

$$\mu \ln \psi_X \left(\frac{1}{\mu} c \right) \geq \max_{x} \{ \langle c, x \rangle : x \in X(y) \}$$

$$\geq \mu \ln \psi_X \left(\frac{1}{\mu} c \right) - \mu \ln \mathcal{N}(X), \quad \mu > 0.$$

2.2. Generating function of family $\mathcal{X} = \{X(y), y \in \Delta\} \subset \mathbb{Z}^m$ is defined as

$$g_{\mathcal{X}, c}(v) = \sum_{y \in \Delta} \psi_{X(y)}(c) \cdot v^y.$$

Dual counting function: $f_{\mathcal{X}}(v) = g_{\mathcal{X}, 0}(v)$.

Hope: short representation. **NB:** Constructed by set parameters.
Example

Let \(a \in \mathbb{Z}^n_+ \). Consider the Boolean knapsack polytope
\[
B_{a}^{1n}(b) = \{ x \in \{0, 1\}^n : \langle a, x \rangle = b \}.
\]

Goal: Compute \(\mathcal{N}(B_{a}^{1n}(b)) \) for a given \(b \in \mathbb{Z}_+ \). (It is NP-hard.)

Consider the function
\[
f(z) = \prod_{i=1}^{n} \left(1 + z^{a(i)} \right),
\]
where
\[z \in C \overset{\text{def}}{=} \{ z \in C : |z| = 1 \}.
\]

We will see later, that
\[
f(z) \equiv \sum_{b=0}^{\|a\|_1} \mathcal{N}(B_{a}^{1n}(b)) z^b, \quad z \in C,
\]
where
\[\|a\|_1 \overset{\text{def}}{=} \sum_{i=1}^{n} |a(i)|.
\]

Thus, we need to compute the coefficient of \(z^b \) in polynomial \(f(z) \).

For that, we compute all previous coefficients.

Direct computation: \(O(n \|a\|_1) \Rightarrow O(\|a\|_1 \cdot \ln \|a\|_1 \cdot \ln n) \).
Knapsack volumes

Notation: \(B^u_a(b) = \{ x \in \mathbb{Z}^n : 0 \leq x \leq u, \langle a, x \rangle = b \} \).

Consider the family \(B^u_a = \{ B^u_a(b) \} \) \(b \in \mathbb{Z}^+ \). Its counting function is

\[
 f_{B^u_a}(z) \overset{\text{def}}{=} \sum_{b=0}^{\infty} \mathcal{N}(B^u_a(b)) \cdot z^b, \quad z \in \mathbb{C}.
\]

Since \(u \) is finite, this is a polynomial of degree \(\langle a, u \rangle \).

Lemma. \(f_{B^u_a}(z) = \prod_{i=1}^{n} \left(\sum_{k=0}^{u(i)} z^{k \cdot a(i)} \right) \).

Proof. For \(n = 1 \) it is evident.

Denote \(a_+ = (a, a^{(n+1)})^T \in \mathbb{Z}^{n+1}_+ \), and \(u_+ = (u, u^{(n+1)})^T \in \mathbb{Z}^{n+1}_+ \).

For any \(b \in \mathbb{Z}^+ \) we have

\[
 \mathcal{N}(B^u_{a_+}(b)) = \sum_{k=0}^{u^{(n+1)}} \mathcal{N}(B^u_a(b - k \cdot a^{(n+1)})).
\]
Hence, in view of the inductive assumption, we have

\[f_{B^u_+}(z) = \sum_{b=0}^{\infty} N(B_{a+}^u(b)) \cdot z^b \]

\[= \sum_{b=0}^{\infty} \left(\sum_{k=0}^{u^{(n+1)}} N(B_{a}^u(b - ka^{(n+1)})) \right) \cdot z^b \]

\[= \sum_{b=0}^{\infty} N(B_{a}^u(b)) \sum_{k=0}^{u^{(n+1)}} z^{b + ka^{(n+1)}} \]

\[= f_{B^a}(z) \cdot \left(\sum_{k=0}^{k=0} z^{ka^{(n+1)}} \right) \]. \quad \square \]
Complexity

Lemma. Let polynomial $f(z)$ be represented as a product of several polynomials: $f(z) = \prod_{i=1}^{n} p_i(z), \quad z \in \mathbb{C}$. Then its coefficients can be computed by FFT in $O(D(f) \ln D(f) \ln n)$ arithmetic operations, where $D(f) = \sum_{i=1}^{n} D(p_i)$.

Corollary. All $\langle a, u \rangle$ coefficients of the polynomial $f_{B_a^u}(z)$ can be computed by FFT in $O(\langle a, u \rangle \ln \langle a, u \rangle \ln n)$ a.o.
Unbounded knapsack

Consider \(f_{B_a^\infty}(z) = \sum_{b=0}^{\infty} \mathcal{N}(B_a^\infty(b)) \cdot z^b \equiv \prod_{i=1}^{n} \frac{1}{1-za(i)} \),

where \(z \in \mathcal{C} \setminus \{1\} \).

Note:

1. The coefficients of the polynomial \(g(z) = \prod_{i=1}^{n} (1 - za(i)) \) can be computed by FFT in \(O(\|a\|_1 \ln \|a\|_1 \ln n) \) a.o.

2. After that, the first \(b + 1 \) coefficients of the generating function \(f_{B_a^\infty}(z) \) can be computed in \(O(b \min\{\ln^2 b, \ln^2 n\}) \) a.o.
Generating functions of knapsack polytopes

For characteristic function $\psi_X(c) = \sum_{y \in X} e^{\langle c, y \rangle}$ of set X, define its potential function: $\phi_X(c) = \ln \psi_X(c)$.

Note that $\xi_X(c) \overset{\text{def}}{=} \max_{y \in X} \langle c, y \rangle \leq \phi_X(c) \leq \xi_X(c) + \ln N(X)$.

Hence, $\xi_X(c) \leq \mu \phi_X(c/\mu) \leq \xi_X(c) + \mu \ln N(X)$, $\mu > 0$.

For a family of bounded knapsack polytopes $B^u_a = \{B^u_a(b)\}_{b \in \mathbb{Z}_+}$, the generating function looks as follows:

$$g_{B^u_a, c}(z) = \sum_{b=0}^{\infty} \psi_{B^u_a(b)}(c) \cdot z^b \equiv \sum_{b=0}^{\infty} \exp(\phi_{B^u_a(b)}(c)) \cdot z^b, \quad z \in \mathbb{C}.$$

Short representation: $g_{B^u_a, c}(z) = \prod_{i=1}^{n} \left(\sum_{k=0}^{u(i)} e^{kc(i)} z^{ka(i)} \right)$.

Unbounded case: $g_{B^\infty_a, c}(z) = \left[\prod_{i=1}^{n} \left(1 - e^{c(i)} z^{a(i)} \right) \right]^{-1}$.
Solving integer knapsack

Find \(f^* = \max_{x \in \mathbb{Z}_+^n} \{ \langle c, x \rangle : \langle a, x \rangle = b \} = \xi_{B_a^\infty}(b)(c) \).

Since \(f^* \) is an integer value, we need accuracy less than one.

Note that \(\mathcal{N}(B_a^\infty(b)) \leq \prod_{i=1}^n \left(1 + \frac{b}{a(i)}\right) \leq (1 + b)^n \).

Thus, if we take \(\mu < \frac{1}{n} \ln(1 + b) \), then

\[-1 + \mu \phi_{B_a^\infty}(b)(c/\mu) < f^* \leq \mu \phi_{B_a^\infty}(b)(c/\mu).\]

For finding coefficient \(\psi_{B_a^\infty}(b)(c/\mu) = \exp\{\phi_{B_a^\infty}(b)(c/\mu)\} \), we need

- Compute coefficients of \(f(z) = \prod_{i=1}^n (1 - e^{c(i)/\mu} \cdot z^{a(i)}) \).
 - Compute first \(b + 1 \) coefficients of the function \(g(z) = \frac{1}{f(z)} \).

This can be done in \(O(\|a\|_1 \cdot \ln \|a\|_1 \cdot \ln n + b \cdot \ln^2 n) \) operations of exact real arithmetics.
Further extensions

Problem: count the number of integer points in the set

\[X = \{ x \in \mathbb{Z}^n : 0 \leq x \leq \beta \cdot 1_n, \, Ax = b \in \mathbb{R}^m \}, \]

where \(|A_{i,j}| \leq \alpha \).

Dual counting: \(O(mn \cdot (1 + \alpha \beta \cdot n)^m) \) a.o.

Full enumeration: \(O(mn \cdot (1 + \beta)^n) \) a.o.

For fixed \(m \), the first bound is polynomial in \(n \).