Demand response of electric vehicles using reinforcement learning

Research topics

Frederik Ruelens1

1KULeuven ELECTA
EnergyVille (University of Leuven, VITO (Flemish Institute of Technology) and Imec)
frederik.ruelens@esat.kuleuven.be

December 13, 2012
Background

Education

- Graduated as an electrical engineer
 - KULeuven, 2010
- Currently PhD Student at Department of Electrical Engineering, div ELECTA
 - IWT scholarship 2012-2016

Topic of this presentation

- Present my ongoing research
 - Specific problem where I used reinforcement learning
- Get feedback!
 - Learn new techniques
 - Learn new scenarios
Opportunities for demand response

Problem statement

I Capacity shortage
- Nuclear phase-out

II Intraday problem
- New fluctuating load, e.g. electric vehicles
- New renewable generation, e.g. solar panels

Solutions

- Old solutions
 - switch on gas-fired power plants
 - import/export
- New solution: Demand response
 - demand \textit{adapts} generation
Research topics

What is my research about?

- Demand response algorithms for Smart Grids
 - Residential load, e.g. EVs, heat pumps, electrical boilers
 - Stochastic optimization
 - Learning

Why is learning import in smart grid?

- We don’t now the flexibility a household
 - EVs it is reasonable to assume
 - but what about heat pumps and electrical boilers
- We don’t now the transition model of the distribution grid
 - No information about voltage deviations and congestions
Intelligator

I. Aggregation
 ▶ Bidfunctions
II. Optimization
 ▶ Q-learning
III. Dis-aggregation
 ▶ Heuristic

Advantages
▶ Simple
▶ Compatible with PowerMatcher
▶ Limited local intelligence
Problem statement

- Aggregator of a fleet of electric vehicles
 - **Objective:** make money by charging his fleet as cheap as possible as long as the EV batteries are charged at the end of the flexibility horizon
 - **EV settings**
 - Required energy 10 kWh, 3 kW capacity, flexibility window: 5 pm until 8 am

- Distribution System Operator
 - **Objective:** operate the distribution grid within specified safety margins
 - Congestions
 - Voltage deviations
 - Aging of its assets
Experiment: Droop charger (2)

- Droop mechanism for EV chargers
 - Droop controllers can help succeed in limiting voltage deviation

![Graph showing the droop characteristic](image)

- The droop is an easy solution for the DSO, in order to safeguard the grid
- As a result the aggregator will have problems charging some EVs in peak moments
Experiment: Droop charger (2)

- Droop mechanism for EV chargers
 - Droop controllers can help succeed in limiting voltage deviation

The droop is an easy solution for the DSO, in order to safeguard the grid

As a result the aggregator will have problems charging some EVs in peak moments
Experiment: Distribution feeder (3)

- Uni-branched feeder
- 40 household (Linear profiles)
- 15 EVs
- Proportional controller
Experiment: Problem statement (4)

We want to learn a sequential decision policy that minimizes the cumulative cost.

- Discrete-time system whose dynamics over T stages is given by

$$x_{t+1} = f^M(x_t, u_t, w_t), x_t \in X, u_t \in U \text{ and } w_t \in P_w$$ (1)

- Cost:

$$r_t = \lambda^t_{el} u_t + \text{cost of non delivered energy}, \quad \text{where } \lambda_{el} \text{ is a electricity price}$$ (2)

- As result of the Droop controller some batteries are not fully charged at the end of their flexibility horizon
Experiment: Fitted Q-iteration (5)

- Problem:

 The functions f^M, ρ and P_w are unknown. \hfill (3)

- We have a set of sample transitions

 \[
 \mathcal{F} = \{x^l, u^l, r^l, y^l\}_{l=1}^n,
 \] \hfill (4)

 where the pairs (x^l, u^l) are chosen by the aggregator and the pairs (r^l, y^l) are determined by the f^M and ρ.

- Fitted Q-iteration

 compute from \mathcal{F} the functions $\hat{Q}_1, \hat{Q}_2, \ldots, \hat{Q}_N$, approximations of Q_1, Q_2, \ldots, Q_N

 - Regression strategy: Extremely randomized trees
Experiment: Results (6)

Results using fitted Q-iteration

▷ Still in the simulation phase

▷ Promising results after 30-40 episodes
 ▷ Using different price signals in each episode
 ▷ We were able to learn the charging plan
 ▷ That minimizes the charging cost
 ▷ The non delivered energy
 ▷ More simulation are needed to make quantitative statements

▷ Future research
 ▷ Try different scenarios
 ▷ Computation burden of storing large set of trajectories and approximating them
Problem: Making day-ahead planning

- A pool-based energy market is a short-term market place, that generally consists of a day-ahead and real-time (balancing) market.
- BRP is responsible for keeping its energy balance for each settlement period
- Many sources of uncertainty: imbalance prices, flexibility and wind generation
- Nested optimization problem
 I Day-ahead nomination
 II Real-time planning
Problem: Making day-ahead planning

\[
\begin{align*}
\text{Maximize} & \quad P_{n}, P_{EV} \\
& \quad \lambda_c \top P_n + \mathbb{E} \left\{ \lambda_p \top [P_n - P]_+ - \lambda_n \top [P - P_n]_+ \right\}, \quad (5) \\
\text{Subject to} & \quad P = P_{EV} + P_w \quad (6) \\
& \quad P_{\min,t} \leq P_{n,t} \leq P_{\max,t} \quad \forall t \in T_{24} \quad (7) \\
& \quad E_{\min,t} \leq \sum P_{EV,t} \leq E_{\max,t} \quad \forall t \in T_{96} \quad (8)
\end{align*}
\]

- **Prices**: \(\lambda_c \) day-ahead price, \(\lambda_p \) positive imbalance price, \(\lambda_n \) negative imbalance price
- **control variables**: \(P_n \) day-ahead nomination and \(P_{EV} \) the real-time planning of the EVs

I finding the day-ahead nomination \(P_n \): CE optimization method

II finding a real-time planning \(P_{EV} \): Approximate policy iteration (fitness evaluations)
Algorithm 1 CE-PI optimization method

Input: initialize CE parameters, N_{CE}, τ_{max} and ρ_{CE}

1: generate initial population of sample nominations from initial seed
2: while $\tau < \tau_{\text{max}}$ do
3: \hspace{1em} $\tau \leftarrow \tau + 1$
4: \hspace{1em} generate samples $P_{n,i}, \ldots, P_{n,N_{CE}}$ from Gaussian distribution given by $\mu_{\tau-1}$ and $\sigma_{\tau-1}$
5: \hspace{1em} for $i = 1, \ldots, N_{CE}$ do
6: \hspace{2em} run approximate policy iteration with extremely randomized trees (Algorithm 2) and calculate the score function
7: \hspace{1em} end for
8: reorder and reindex samples and recalculate μ_{τ} and σ_{τ}, save the ρ_{CE} samples with the highest score functions
9: end while

Output: sample P_n with highest score function
Thank you for listening!