ELEN0037 Microelectronics Tutorials

Pouyan Ebrahimbabaie, Vinayak Pachkawade, Thomas Schmitz

With special thanks to Vincent Pierlot

University of Liège - Montefiore Institute EMMI Unit: Electronics, Microsystems, Measurements, and Instrumentation

Tutorial 6: Data Converters (fundamentals, D/A)

Exercise 1 (1st, P11.2/2nd, P15.2)

What is the SQNR for an ideal 12-bit unipolar A/D converter with $V_{ref} = 3 V$, when a sinusoid input of $1 V_{pp}$ is applied?¹ What signal size input would result in an SQNR of 0 dB?²

$${}^{1}SQNR = 64.5 \, dB$$
$${}^{2}V_{pp,input} = 0.6 \, mV$$

Exercise 2 (1st, P11.7,8/2nd, P15.11,12)

The following measurements are found from a 3-bit unipolar D/A converter with $V_{ref} = 8 V$:

$\{-0.01,\,1.03,\,2.02,\,2.96,\,3.95,\,5.02,\,6.00,\,7.08\}\,.$

- In units of LSBs, find the offset error, gain error, maximum DNL, and maximum INL.³
- I How many bits of absolute accuracy does the converter have?⁴
- I How many bits of relative accuracy does it have?⁵
- Based on the previous results, and assuming the same process technology (or components accuracy) is used, what would be the maximum number of bits of such a converter?⁶

 ${}^{3}O_{err} = -0.01 LSB, G_{err} = 0.09 LSB, DNL_{max} = -0.073, INL_{max} = -0.091$ ${}^{4}N_{eff,abs} = 6.64 bits$ ${}^{5}N_{eff,rel} = 6.46 bits$ ${}^{6}N_{max} = 6 bits$

Exercise 2 (continued)

The following table lists the different words, with the corresponding ideal values, actual measurements, compensated values, INL, and DNL:

word	$V_{ideal}(V)$	$V_{actual}\left(V ight)$	$V_{compensated}\left(V ight)$	INL	DNL
000	0	-0.01	0	0	+0.027
001	1	1.03	1.027	-0.027	-0.023
010	2	2.02	2.004	0.004	-0.073
011	3	2.96	2.931	0.069	-0.022
100	4	3.95	3.909	0.091	-0.057
101	5	5.02	4.966	0.034	-0.033
110	6	6.00	5.933	0.067	+0.067
111	7	7.08	7	0	

Exercise 3 (1st, P11.9/2nd, P15.13)

A 10-bit A/D converter has a reference voltage $V_{ref} = 10.24 V$, calibrated at $T = 25 \,^{\circ}$ C. Find the maximum allowable temperature coefficient in terms of $\mu V/^{\circ}$ C for the reference voltage if the reference voltage is allowed to cause a maximum error of $\pm 1/2 LSB$ over the temperature range of 0 to 50 $^{\circ}$ C.⁷

Exercise 4 (1st, P11.10/2nd, P15.14)

Consider the following measured voltages for a 2-bit D/A converter with $V_{ref} = 4 V$:

$\{00 \leftrightarrow 0.01V, 01 \leftrightarrow 1.02V, 10 \leftrightarrow 1.97V, 11 \leftrightarrow 3.02V\}.$

- In units of LSBs, find the offset error, gain error, maximum DNL, and maximum INL.⁸
- I How many bits of absolute accuracy does the converter have?⁹
- I How many bits of relative accuracy does it have?¹⁰
- Based on the previous results, and assuming the same process technology (or components accuracy) is used, what would be the maximum number of bits of such a converter?¹¹

 $^{8}O_{err} = 0.01 LSB$, $G_{err} = 0.01 LSB$, $DNL_{max} = 0.05$, $INL_{max} = -0.047$ $^{9}N_{eff,abs} = 7.06 \ bits$ $^{10}N_{eff,rel} = 6.4 \ bits$ $^{11}N_{max} = 6 \ bits$

Exercise 5 (1st, P11.11/2nd, P15.15)

Find the maximum magnitude of quantization error for a 12-bit A/D converter having $V_{ref} = 5 V$ and 1/2 LSB additional absolute accuracy.¹²

$${}^{12}E_{max} = 1.22 \, mV$$

Exercise 6 (1st, P11.12/2nd, P15.16)

What sampling-time uncertainty can be tolerated for a 16-bit A/D converter operating on an input signal from 0 - 20 kHz?¹³ (We assume a full scale input sine wave, and we allow an absolute error $\Delta V = V_{LSB}$.)

Exercise 7 (1st, P12.11/2nd, P16.11)

For the 4-bit R-2R-ladder D/A converter shown hereafter, what is the output error (in LSBs) when $R_A = 2.01 R_B$?¹⁴ What is the output error (in LSBs) when $R_C = 2.01 R$?¹⁵

¹⁴*Output error* = 0.04 *LSB* ¹⁵*Output error* = 0.005 *LSB*