ELEN0037
 Microelectronics

Tutorials

Pouyan Ebrahimbabaie, Vinayak Pachkawade,Thomas Schmitz

With special thanks to Vincent Pierlot

University of Liège - Montefiore Institute
EMMI Unit: Electronics, Microsystems, Measurements, and Instrumentation

Tutorial 4: Switched-Capacitor circuits, Filters

Exercise 1 (1st, P10.5/2nd, P14.11)

Find the capacitance values needed for a first order switched-capacitor circuit such that its $3-\mathrm{dB}$ point is at 10 kHz when a clock frequency of 100 kHz is used. Use the bilinear transform. It is also required that the discrete-time zero is at $z=0$ and that the DC gain be unity. Assume $C_{A}=10 \mathrm{pF} .{ }^{12}$ What is the gain at $f=50 \mathrm{kHz} ?^{3}$ The transfer function of a first order switched-capacitor circuit is given by:

$$
H(z)=\frac{-\left(\frac{C_{1}+C_{2}}{C_{A}}\right) z+\frac{C_{1}}{C_{A}}}{\left(\frac{C_{A}+C_{3}}{C_{A}}\right) z-1}
$$

with a zero at $\frac{C_{1}}{C_{1}+C_{2}}$, and a pole at $\frac{C_{A}}{C_{A}+C_{3}}$.

$$
\begin{aligned}
& { }^{1} H(z)=\frac{0.46673}{z-0.5327} \\
& { }^{2} C_{1}=0, C_{A}=10 p F, C_{3}=8.752 \mathrm{pF}, C_{2}=-C_{3}(\Rightarrow \text { differential input }) \\
& { }^{3} G=|H(-1)|=0.304=-10.33 d B
\end{aligned}
$$

Exercise 1 (first order switched-capacitor circuit)

(a)

Exercise 2 (first order switched-capacitor circuit)

Based on the previous exercise:
(1) What is the gain at $f=10 \mathrm{kHz} ?^{4}$
(2) What would you expect, knowing that $f=f_{3-d B}$? 5
(3) Re-compute the transfer function, by using the exact transform $z=e^{j \omega T}$ in order to find the $3-\mathrm{dB}$ point exactly at $10 \mathrm{kHz} .{ }^{6}$
(4) What is the real $3-\mathrm{dB}$ frequency in the first approach? ${ }^{7}$
(3) Derive the discrete-time relationship of this first order switched-capacitor circuit and propose an implementation in a digital system (DSP, $\mu \mathrm{C}, \mathrm{FPGA}$). ${ }^{8}$

$$
\begin{aligned}
& { }^{4} G=\left|H\left(e^{j 2 \pi} \frac{10}{100}\right)\right|=0.719 \\
& { }^{5} \text { We expect } G=\frac{1}{\sqrt{2}}=0.707 \ldots \\
& { }^{6} H(z)=\frac{0.45589}{z-0.54411},\left(z_{p}=\alpha=2-\cos \left(\omega_{0} T\right)-\sqrt{\left(\cos \left(\omega_{0} T\right)-2\right)^{2}-1}\right) \\
& { }^{7} f_{0}=10.354 k H z,\left(f_{0}=\frac{1}{2 \pi} f_{s} \arccos \left(\frac{4 \alpha-\alpha^{2}-1}{2 \alpha}\right)\right) \\
& { }^{8} y[k]=\alpha y[k-1]+(1-\alpha) x[k]=y[k-1]+(1-\alpha)(x[k]-y[k-1])
\end{aligned}
$$

Exercise 3 (1st, P10.6/2nd, P14.12)

Find the capacitance values needed for the same first order switched-capacitor circuit such that its $3-\mathrm{dB}$ frequency is at 1 kHz when a clock frequency of 50 kHz is used. Use the exact transform. It is also required that the discrete-time zero is at $z=0$ and that the DC gain be unity. Assume $C_{A}=50 \mathrm{pF} .{ }^{9}$ What is the gain (in dB) at $f=25 \mathrm{kHz} ?^{10}$

$$
\begin{aligned}
& { }^{9} C_{1}=0, C_{3}=14.202 p F, C_{2}=-C_{3}(\Rightarrow \text { differential input }) \\
& { }^{10} G=|H(-1)|=0.1244=-9 d B
\end{aligned}
$$

Exercise 4 (1st, P10.7/2nd, P14.13)

Find the transfer function of the first order switched-capacitor circuit, when $C_{1}=0 p F, C_{2}=2 p F, C_{3}=2 p F$, and $C_{A}=20 p F$. ${ }^{11}$ What is the magnitude and phase of the gain at DC, $f_{5} / 4$, and $f_{5} / 2$? ${ }^{1213}$ The transfer function is given by (same as before):

$$
H(z)=\frac{-\left(\frac{C_{1}+C_{2}}{C_{A}}\right) z+\frac{C_{1}}{C_{A}}}{\left(\frac{C_{A}+C_{3}}{C_{A}}\right) z-1}
$$

$$
\begin{aligned}
& { }^{11} H(z)=\frac{-0.1 z}{1.1 z-1} \\
& { }^{12} G_{\frac{f_{5}}{4}}=\left|H\left(e^{\frac{j \pi}{2}}\right)\right|=0.0673, \angle=137.73^{\circ} \\
& { }^{13} G_{\frac{f_{5}^{2}}{2}}^{4}=\left|H\left(e^{j \pi}\right)\right|=0.0476, \angle=180^{\circ}
\end{aligned}
$$

Exercise 5 (1st, P10.8/2nd, P14.14)

Show that the transfer function of the following SC circuit

is given by:

$$
H(z)=\frac{-\left(\frac{C_{1}}{C_{A}}\right) z+\frac{C_{1}+C_{2}}{C_{A}}}{\left(\frac{C_{A}+C_{3}}{C_{A}}\right) z-1} .
$$

Use the signal-flow-graph analysis. Compare this transfer function to the one used previously.

Exercise 5 (Signal-Flow-Graph Analysis review)

(a)

Exercise 6 (1st, P10.9/2nd, P14.16)

Show that when $K_{6}=0$ in the low-Q switched-capacitor biquad circuit, if the poles are complex, they lie precisely on the unit circle (i.e. the circuit is a resonator). ${ }^{14}$ The transfer function of the low-Q SC biquad is given by:

$$
H(z)=-\frac{\left(K_{2}+K_{3}\right) z^{2}+\left(K_{1} K_{5}-K_{2}-2 K_{3}\right) z+K_{3}}{\left(1+K_{6}\right) z^{2}+\left(K_{4} K_{5}-K_{6}-2\right) z+1}
$$

$$
{ }^{14} K_{6}=0 \Rightarrow D(z)=z^{2}+\left(K_{4} K_{5}-2\right) z+1 \Rightarrow z_{1} z_{2}=1, z_{2}=z_{1}^{*} \Rightarrow\left|z_{1}\right|=1
$$

