ELEN0037
 Microelectronics Tutorials

Vincent Pierlot

University of Liège - Montefiore Institute
EMMI Unit: Electronics, Microsystems, Measurements, and Instrumentation

Tutorial 3: Sample and Holds, Switched-Capacitor circuits

Exercise 1 (1st, P8.2/2nd, P11.4)

 In the following S / H circuit, assume $V_{\text {in }}$ is a 20 MHz sinusoid with a $2 V_{p p}$ amplitude. Also assume that $\phi_{c l k}$ is a 100 MHz square wave having a peak amplitude of $\pm 2.5 \mathrm{~V}$ with rise and fall times of 1.5 ns . What is the maximum time difference between the turn-off times of the n-channel and p-channel transistors? ${ }^{1}$ Ignore the body effect $\left(V_{t n}=0.8 \mathrm{~V}, V_{t p}=-0.9 \mathrm{~V}\right)$.$$
\phi_{\mathrm{clk}}
$$

${ }^{1}|\Delta \phi|_{\max }=2.1 \mathrm{~V}, \Delta t_{\max }=0.63 \mathrm{~ns}$

Exercise 2 (1st, P8.6/2nd, P11.8)

Assume the opamp of the following S / H circuit has a finite gain of A, and offset voltage $V_{\text {offset }}$. Derive the output voltage in terms of $V_{i n}$, A, and $V_{\text {offset }}$ during hold mode (i.e., when ϕ_{2} is high). ${ }^{2}$

${ }^{2} V_{\text {out }}=\frac{A}{A+1} V_{\text {in }}+\frac{A}{(A+1)^{2}} V_{\text {offset }}$

Exercise 3 (1st, P8.7/2nd, P11.9)

Derive the frequency-domain transfer function of the following S / H circuit (use $z=e^{j \omega T}$), and find the cut-off frequency $f_{-3 d B}$. Make the assumption that $e^{j \omega T} \cong 1+i \omega T$ for $\omega T \ll 1 .^{3}$

$$
3 H(z)=\frac{z^{-1}}{1+C_{2} / C_{1}\left(1-z^{-1}\right)}, f_{-3 d B}=\frac{1}{2 \pi} \frac{C_{1}}{C_{2}} f_{S}
$$

Exercise 4 (1st, P10.2/2nd, P14.4)

Ignoring the effect of parasitic capacitances, find the discrete-time transfer function of the following switched-capacitor circuit. ${ }^{4}$

${ }^{4} H(z)=-\left(C_{1} / C_{2}\right) \frac{1}{1-z^{-1}}$ (delay-free inverting integrator)

Exercise 5 (1st, P10.4/2nd, P14.6)

Compute the transfer function of the following discrete-time integrator, when the opamp has a finite gain of $A .{ }^{5}$ Also show that this transfer function has a $D C$ gain of $-A$ and a pole that is located slightly to the left of 1 .

$$
{ }^{5} H(z)=-\left(C_{1} / C_{2}\right)(A / A+1) \frac{z^{-1}}{1-\left(1-C_{1} / C_{2}(A+1)\right) z^{-1}}, z_{p}=1-\frac{C_{1}}{C_{2}} \frac{1}{A+1} \lesssim 1
$$

