# ELEN0037 Microelectronics Tutorials

Pouyan Ebrahimbabaie, Vinayak Pachkawade, Thomas Schmitz

With special thanks to Vincent Pierlot

University of Liège - Montefiore Institute EMMI Unit: Electronics, Microsystems, Measurements, and Instrumentation

Tutorial 1: MOSFET Operation and Modelling

# Device Model Summary (Constants)

$$q = 1.602 \times 10^{-19} C$$

$$k = 1.38 \times 10^{-23} JK^{-1}$$

$$n_i = 1.1 \times 10^{16} carriers/m^3 @ T = 300 K$$

$$n_i \text{ doubles for every } 11^{\circ}\text{C increase in temperature}$$

$$n \times p = n_i^2$$

$$\varepsilon_0 = 8.854 \times 10^{-12} Fm^{-1}$$

$$K_{ox} \cong 3.9$$

$$K_a \cong 11.8$$

# Device Model Summary (Diode)

Diode equations (Forward-Biased):

$$I_{D} = I_{S} \exp\left(\frac{V_{D}}{V_{T}}\right)$$
  

$$I_{S} = A_{D}qn_{i} \left(\frac{D_{n}}{L_{n}N_{A}} + \frac{D_{p}}{L_{p}N_{D}}\right)$$
  

$$V_{T} = \frac{kT}{q} \approx 26 \, mV @ 300K$$

Diode equations (Reverse-Biased):

$$Q = 2C_{j0}\Phi_0\sqrt{1 + \frac{V_R}{\Phi_0}}$$

$$C_j = \frac{C_{j0}}{\sqrt{1 + \frac{V_R}{\Phi_0}}}$$

$$C_{j0} = \sqrt{\frac{qK_s\varepsilon_0}{2\Phi_0}\frac{N_AN_D}{N_A + N_D}}$$

$$C_{j0} = \sqrt{\frac{qK_s\varepsilon_0}{2\Phi_0}N_D} \text{ if } N_A \gg N_D$$

$$\Phi_0 = V_T \ln\left(\frac{N_AN_D}{n_i^2}\right)$$

# Device Model Summary (Diode)

Small-Signal Model of Forward-Biased Diode:



$$r_d = \frac{V_T}{I_D}$$

$$C_T = C_d + C_j$$

$$C_d = \tau_t \frac{I_D}{V_T}$$

$$C_j \cong 2C_{j0}$$



The following equations are for n-channel MOST. For p-channel MOST, put negative signs in front of all voltages. Also, the short-channel effects are not taken into account ( $L < 2L_{min}$ ).

Triode region ( $V_{GS} > V_{tn}, V_{DS} \leq V_{eff}$ ):

$$I_{D} = \mu_{n} C_{ox} \left(\frac{W}{L}\right) \left[ \left(V_{GS} - V_{tn}\right) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

$$\begin{split} V_{eff} &= V_{GS} - V_{tn} \\ V_{tn} &= V_{tn-0} + \gamma \left( \sqrt{V_{SB} + 2\Phi_F} - \sqrt{2\Phi_F} \right) \\ \Phi_F &= V_T \ln \left( \frac{N_A}{n_i} \right) \\ \gamma &= \frac{\sqrt{2qK_s \varepsilon_0 N_A}}{C_{ox}} \\ C_{ox} &= \frac{K_{ox} \varepsilon_0}{t_{ex}} \end{split}$$

Device Model Summary (MOSFET) Small-Signal Model, Triode region (for  $V_{DS} \ll V_{eff}$ ):



Active (or Pinch-Off) Region ( $V_{GS} > V_{tn}$ ,  $V_{DS} \ge V_{eff}$ ):

$$\begin{split} I_{D} &= \frac{1}{2} \mu_{n} C_{ox} \left( \frac{W}{L} \right) \left( V_{GS} - V_{tn} \right)^{2} \left[ 1 + \lambda \left( V_{DS} - V_{eff} \right) \right] \\ \lambda &= \frac{k_{ds}}{2L \sqrt{V_{DS} - V_{eff} + \Phi_{0}}} \\ k_{ds} &= \sqrt{\frac{2K_{s}\varepsilon_{0}}{qN_{A}}} \\ V_{eff} &= V_{GS} - V_{tn} = \sqrt{\frac{2I_{D}}{\mu_{n}C_{ox}W/L}} \\ V_{tn} &= V_{tn-0} + \gamma \left( \sqrt{V_{SB} + 2\Phi_{F}} - \sqrt{2\Phi_{F}} \right) \end{split}$$

Small-Signal Model, Active region ( $V_{GS} > V_{tn}$ ,  $V_{DS} \ge V_{eff}$ ):



#### Device Model Summary (MOSFET) Small-Signal Model, Active region ( $V_{GS} > V_{tn}$ , $V_{DS} \ge V_{eff}$ ):



#### Device Model Summary (MOSFET) Small-Signal Model, Active region ( $V_{GS} > V_{tn}$ , $V_{DS} \ge V_{eff}$ ):

$$\begin{split} g_m &= \frac{\partial I_D}{\partial V_{GS}} = \mu_n C_{ox} \left(\frac{W}{L}\right) V_{eff} = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right) I_D} = \frac{2I_D}{V_{eff}} \\ g_s &= \frac{\partial I_D}{\partial V_{SB}} = \frac{\gamma g_m}{2\sqrt{V_{SB} + 2\Phi_F}} \\ r_{ds} &= \frac{\partial V_{DS}}{\partial I_D} \cong \frac{1}{\lambda I_D} \\ \lambda &= \frac{k_{ds}}{2L\sqrt{V_{DS} - V_{eff} + \Phi_0}} \\ k_{ds} &= \sqrt{\frac{2K_{s}\varepsilon_0}{qN_A}} \\ C_{gs} &= \frac{2}{3}WLC_{ox} + WL_{ov}C_{ox} \\ C_{gd} &= WL_{ov}C_{ox} \\ C_{sb} &= (A_s + WL) C_{js} + P_s C_{j-sw} \\ C_{js} &= \frac{C_{j0}}{\sqrt{1 + \frac{V_{sb}}{\Phi_0}}} \\ C_{db} &= A_d C_{jd} + P_d C_{j-sw} \\ C_{jd} &= \frac{C_{j0}}{\sqrt{1 + \frac{V_{db}}{\Phi_0}}} \end{split}$$





MOSFET parameters representative of various CMOS technologies

|                                                | 0.8 µm |       | $0.35\mu m$ |       | $0.18\mu m$ |       | 45 nm |       |
|------------------------------------------------|--------|-------|-------------|-------|-------------|-------|-------|-------|
| Technology                                     | NMOS   | PMOS  | NMOS        | PMOS  | NMOS        | PMOS  | NMOS  | PMOS  |
| $\mu C_{\text{ox}} \left( \mu A / V^2 \right)$ | 92     | 30    | 190         | 55    | 270         | 70    | 280   | 70    |
| $V_{t0}$ (V)                                   | 0.80   | -0.90 | 0.57        | -0.71 | 0.45        | -0.45 | 0.45  | -0.45 |
| $\lambda L (\mu m/V)$                          | 0.12   | 0.08  | 0.16        | 0.16  | 0.08        | 0.08  | 0.10  | 0.15  |
| $C_{ox} \left( fF/\mu m^2 \right)$             | 1.8    | 1.8   | 4.5         | 4.5   | 8.5         | 8.5   | 25    | 25    |
| t <sub>ox</sub> (nm)                           | 18     | 18    | 8           | 8     | 5           | 5     | 1.2   | 1.2   |
| n                                              | 1.5    | 1.5   | 1.8         | 1.7   | 1.6         | 1.7   | 1.85  | 1.85  |
| $\theta\left(V^{-1}\right)$                    | 0.06   | 0.135 | 1.5         | 1.0   | 1.7         | 1.0   | 2.3   | 2.0   |
| т                                              | 1.0    | 1.0   | 1.8         | 1.8   | 1.6         | 2.4   | 3.0   | 3.0   |
| $C_{ox}/W = L_{ov}V_{ox}$ (fF/ $\mu$ m)        | 0.20   | 0.20  | 0.20        | 0.20  | 0.35        | 0.35  | 0.50  | 0.50  |
| $C_{db}/W \cong C_{sb}/W \ (fF/\mu m)$         | 0.50   | 0.80  | 0.75        | 1.10  | 0.50        | 0.55  | 0.45  | 0.50  |

Default parameters for n-channel MOS transistors:

$$\begin{split} T &= 300K \text{ (Room temperature)} \\ \mu_n C_{ox} &= 92\mu A/V^2 \\ V_{tn} &= 0.8V \\ \gamma &= 0.5V^{1/2} \\ r_{ds}(\Omega) &= 8000L (\mu m) / I_D (mA) \text{ in active region} \\ C_j &= 2.4 \times 10^{-4} pF / (\mu m)^2 \\ C_{j-sw} &= 2.0 \times 10^{-4} pF / \mu m \\ C_{ox} &= 1.9 \times 10^{-3} pF / (\mu m)^2 \\ C_{gs(\text{overlap})} &= C_{gd(\text{overlap})} = 2.0 \times 10^{-4} pF / \mu m \end{split}$$

Default parameters for p-channel MOS transistors:

$$\begin{split} T &= 300K \text{ (Room temperature)} \\ \mu_p C_{ox} &= 30\mu A/V^2 \\ V_{tp} &= -0.9V \\ \gamma &= 0.8V^{1/2} \\ r_{ds} (\Omega) &= 12000L (\mu m)/I_D (mA) \text{ in active region} \\ C_j &= 4.5 \times 10^{-4} pF/(\mu m)^2 \\ C_{j-sw} &= 2.5 \times 10^{-4} pF/\mu m \\ C_{ox} &= 1.9 \times 10^{-3} pF/(\mu m)^2 \\ C_{gs(\text{overlap})} &= C_{gd(\text{overlap})} = 2.0 \times 10^{-4} pF/\mu m \end{split}$$

#### Exercise 1 (1st/2nd, P1.1)

Estimate the hole and electron concentrations in silicon doped with arsenic at a concentration of  $10^{25} atoms/m^3$  at a temperature  $22^{\circ}$ C above room temperature.<sup>1</sup> Is the resulting material n-type or p-type?

 $^{1}n_{i} = 4.4 \, 10^{16} \, carriers/m^{3} \, @ T = 322 \, K$ , n-type material

#### Exercise 2 (1st/2nd, E1.2, P1.2)

A PN junction has  $N_A = 10^{25} a toms/m^3$  and  $N_D = 10^{22} a toms/m^3$ . What is the built-in junction potential  $\Phi_0$ ?<sup>2</sup> Does the built-in potential increase or decrease when the temperature is increased 11°C above room temperature?<sup>3</sup>

 ${}^{2}\Phi_{0} = 0.89 V$ <sup>3</sup>it decreases ( $\Phi_{0} = 0.88 V$ )

#### Exercise 3 (1st/2nd, P1.4)

A silicon diode has  $\tau_t = 12 \, ps$  and  $C_{j0} = 15 \, fF$ . It is reverse-biased by a 43  $k\Omega$  resistor connected between the cathode of the diode and the input signal. Initially the input is 5 V, and then at time 0 it changes to 0 V. Estimate the time it takes for the output voltage to change from 5 V to 1.5 V.<sup>4</sup> Repeat for an input voltage change from 0 V to 5 V and an output voltage change from 0 V to 3.5 V.<sup>5</sup>



$$t_{falling}^{4} = 0.37 \text{ ns}$$
  
 $t_{rising}^{5} = 0.48 \text{ ns}$ 

#### Exercise 4 (1st, P1.7)

Find  $I_D$  for an n-channel MOST having doping concentrations of  $N_A = 10^{22} atoms/m^3$  and  $N_D = 10^{25} atoms/m^3$ , with  $W = 50 \,\mu m$ ,  $L = 1.5 \,\mu m$ ,  $V_{GS} = 1.1 \,V$ , and  $V_{DS} = V_{eff}$ .<sup>6</sup> Estimate the new value of  $I_D$  if  $V_{DS}$  is increased by 0.3 V (we assume  $\lambda$  remains constant).<sup>7</sup>

 ${}^{6}I_{D} = 138 \,\mu A$  ${}^{7}I_{D} = 143 \,\mu A$ 

#### Exercise 5 (1st, P1.8)

A MOS transistor in the active region has a drain current of  $20 \,\mu A$  when  $V_{DS} = V_{eff}$ . When  $V_{DS}$  is increased by 0.5 V,  $I_D$  increases to  $23 \,\mu A$ . Estimate the output impedance  $r_{ds}$ , and the output impedance constant  $\lambda$ .<sup>8</sup>

$$^{8}r_{ds} = 167 \ k\Omega, \ \lambda = 0.3 \ V^{-1}$$

Exercise 6 (1st, P1.9)

Derive the low-frequency model parameters (i.e. find  $g_m$ ,  $g_s$ , and  $r_{ds}$ ) for an n-channel MOST having doping concentrations of  $N_A = 10^{22} atoms/m^3$  and  $N_D = 10^{25} atoms/m^3$ , with  $W = 10 \,\mu m$ ,  $L = 1.2 \,\mu m$ ,  $V_{GS} = 1.1 \,V$ , and  $V_{DS} = V_{eff}$ .<sup>9</sup>

$${}^{9}r_{ds} = 182 \,k\Omega, \; g_m = 230 \,\mu A/V, \; g_s = 44 \,\mu A/V$$

#### Exercise 7 (1st, P1.10)

Find the capacitances  $C_{gs}$ ,  $C_{gd}$ ,  $C_{sb}$ , and  $C_{db}$  for a MOST having  $W = 50 \ \mu m$  and  $L = 1.2 \ \mu m$ . Assume that the source and drain junctions extend  $4 \ \mu m$  beyond the gate, resulting in source and drain areas being  $A_s = A_d = 200 \ \mu m^2$  and the perimeter of each being  $P_s = P_d = 58 \ \mu m$ .<sup>10</sup>

 $^{10}\textit{C}_{gs}=86~\textit{fF}$  ,  $\textit{C}_{gd}=10~\textit{fF}$  ,  $\textit{C}_{sb}=74~\textit{fF}$  , and  $\textit{C}_{db}=60~\textit{fF}$ 

#### Exercise 8 (1st, P1.11)

Consider the circuit shown hereafter, where  $V_{in} = 1 V$ ,  $V_G = 5 V$ ,  $W = 10 \,\mu m$  and  $L = 0.8 \,\mu m$ . Taking into account only the channel charge storage, determine the final value of  $V_{out}$ , when the transistor is turned off, assuming half the channel charge "goes" to  $C_L$ .<sup>11</sup>



$$^{11}V_{out} = V_{out}(0) - 0.024 = 1 - 0.024 = 0.976 V$$

#### Exercise 9 (1st, P1.12, P1.13)

Consider the same circuit as before. The input voltage has a step voltage change at time 0 from 1 V to 1.2 V ( $V_G = 5 V$ ).

- Find its 99% settling time.<sup>12</sup> You may ignore the body effect and all capacitances except  $C_L$ .
- **2** Repeat the question for  $V_{in}$  changing from 3 V to 3.1 V.<sup>13</sup>
- Solution Repeat the same problem, but now take into account the body effect, and assume  $N_A = 10^{22} a toms/m^{3}$ .<sup>14</sup>



$$\begin{array}{l} {}^{12}t_{settling}(1 \rightarrow 1.2 \ V) = 1.25 \ ns \\ {}^{13}t_{settling}(3 \rightarrow 3.1 \ V) = 3.33 \ ns \\ {}^{14}t_{settling}(1 \rightarrow 1.2 \ V) = 1.35 \ ns, \ t_{settling}(3 \rightarrow 3.1 \ V) = 6.1 \ ns \end{array}$$