ELEN0037
 Microelectronics

Tutorials

Pouyan Ebrahimbabaie, Vinayak Pachkawade,Thomas Schmitz

With special thanks to Vincent Pierlot

University of Liège - Montefiore Institute
EMMI Unit: Electronics, Microsystems, Measurements, and Instrumentation

Tutorial 1: MOSFET Operation and Modelling

Device Model Summary (Constants)

$$
\begin{aligned}
& q=1.602 \times 10^{-19} \mathrm{C} \\
& k=1.38 \times 10^{-23} \mathrm{JK}^{-1} \\
& n_{i}=1.1 \times 10^{16} \text { carriers } / \mathrm{n} \\
& n_{i} \text { doubles for every } 11^{\circ} \mathrm{C} \\
& n \times p=n_{i}^{2} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{Fm}^{-1} \\
& K_{o x} \cong 3.9 \\
& K_{s} \cong 11.8
\end{aligned}
$$

$$
n_{i}=1.1 \times 10^{16} \text { carriers } / \mathrm{m}^{3} @ T=300 \mathrm{~K}
$$

$$
n_{i} \text { doubles for every } 11^{\circ} \mathrm{C} \text { increase in temperature }
$$

Device Model Summary (Diode)

Diode equations (Forward-Biased):

$$
\begin{aligned}
& I_{D}=I_{S} \exp \left(\frac{V_{D}}{V_{T}}\right) \\
& I_{S}=A_{D} q n_{i}\left(\frac{D_{n}}{L_{n} N_{A}}+\frac{D_{p}}{L_{p} N_{D}}\right) \\
& V_{T}=\frac{k T}{q} \cong 26 m V @ 300 K
\end{aligned}
$$

Diode equations (Reverse-Biased):

$$
\begin{aligned}
& Q=2 C_{j 0} \Phi_{0} \sqrt{1+\frac{V_{R}}{\Phi_{0}}} \\
& C_{j}=\frac{C_{j 0}}{\sqrt{1+\frac{V_{R}}{\Phi_{0}}}} \\
& C_{j 0}=\sqrt{\frac{q K_{5} \varepsilon_{0}}{2 \Phi_{0}} \frac{N_{A} N_{D}}{N_{A}+N_{D}}} \\
& C_{j 0}=\sqrt{\frac{q K_{S} \varepsilon_{0}}{2 \Phi_{0}} N_{D}} \text { if } N_{A} \gg N_{D} \\
& \Phi_{0}=V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)
\end{aligned}
$$

Device Model Summary (Diode)

Small-Signal Model of Forward-Biased Diode:

$$
\begin{aligned}
& r_{d}=\frac{V_{T}}{l_{D}} \\
& C_{T}=C_{d}+C_{j} \\
& C_{d}=\tau_{t} I_{D} \\
& C_{j} \cong 2 C_{j 0}
\end{aligned}
$$

Device Model Summary (MOSFET)

Device Model Summary (MOSFET)

The following equations are for n-channel MOST. For p-channel MOST, put negative signs in front of all voltages. Also, the short-channel effects are not taken into account ($L<2 L_{\text {min }}$).

Triode region ($V_{G S}>V_{t n}, V_{D S} \leq V_{\text {eff }}$):
$I_{D}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left[\left(V_{G S}-V_{t n}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right]$
$V_{\text {eff }}=V_{G S}-V_{t n}$
$V_{t n}=V_{t n-0}+\gamma\left(\sqrt{V_{S B}+2 \Phi_{F}}-\sqrt{2 \Phi_{F}}\right)$
$\Phi_{F}=V_{T} \ln \left(\frac{N_{A}}{n_{i}}\right)$
$\gamma=\frac{\sqrt{2 q K_{S} \varepsilon_{0} N_{A}}}{C_{o x}}$
$C_{o x}=\frac{K_{o x} \times 0}{t_{\text {ox }}}$

Device Model Summary (MOSFET)

Small-Signal Model, Triode region (for $V_{D S} \ll V_{\text {eff }}$):

$$
r_{d s}=\frac{\partial V_{D S}}{\partial I_{D}}=\frac{1}{\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(V_{\text {eff }}-V_{D S}\right)} \cong \frac{1}{\mu_{n} C_{o x}\left(\frac{W}{L}\right) V_{\text {eff }}}
$$

$$
C_{g d}=C_{g s} \cong \frac{1}{2} W L C_{o x}+W L_{o v} C_{o x}
$$

$$
C_{s b}=C_{d b}=\frac{C_{j 0}\left(A_{s}+W L / 2\right)}{\sqrt{1+\frac{V_{s b}}{\Phi_{0}}}}
$$

Device Model Summary (MOSFET)

Active (or Pinch-Off) Region ($V_{G S}>V_{t n}, V_{D S} \geq V_{\text {eff }}$):

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t n}\right)^{2}\left[1+\lambda\left(V_{D S}-V_{\text {eff }}\right)\right] \\
& \lambda=\frac{k_{d s}}{2 L \sqrt{V_{D S} S} V_{\text {eff }}+\Phi_{0}} \\
& k_{d s}=\sqrt{\frac{2 \frac{2 S \text { SE }}{}}{q N_{A}}} \\
& V_{\text {eff }}=V_{G S}-V_{t n}=\sqrt{\frac{2 I_{D}}{\mu_{n} C_{0 x} W / L}} \\
& V_{t n}=V_{t n-0}+\gamma\left(\sqrt{V_{S B}+2 \Phi_{F}}-\sqrt{2 \Phi_{F}}\right)
\end{aligned}
$$

Device Model Summary (MOSFET)

Small-Signal Model, Active region $\left(V_{G S}>V_{t n}, V_{D S} \geq V_{\text {eff }}\right)$:

Device Model Summary (MOSFET)

Small-Signal Model, Active region $\left(V_{G S}>V_{t n}, V_{D S} \geq V_{\text {eff }}\right)$:

Device Model Summary (MOSFET)

Small-Signal Model, Active region $\left(V_{G S}>V_{t n}, V_{D S} \geq V_{\text {eff }}\right)$:

$$
\begin{aligned}
& g_{m}=\frac{\partial I_{D}}{\partial V_{G S}}=\mu_{n} C_{o x}\left(\frac{W}{L}\right) V_{e f f}=\sqrt{2 \mu_{n} C_{o x}\left(\frac{W}{L}\right) I_{D}}=\frac{2 I_{D}}{V_{e f f}} \\
& g_{s}=\frac{\partial D_{D}}{\partial V_{S B}}=\frac{\gamma g_{m}}{2 \sqrt{V_{S B}+2 \Phi_{F}}} \\
& r_{d s}=\frac{\partial V_{D S}}{\partial I_{D}} \cong \frac{1}{\lambda I_{D}} \\
& \lambda=\frac{k_{d s}}{2 L \sqrt{V_{D S}-V_{e f f}+\Phi_{0}}} \\
& k_{d s}=\sqrt{\frac{2 K_{s} \varepsilon_{0}}{q N_{A}}} \\
& C_{g s}=\frac{2}{3} W L C_{o x}+W L_{o v} C_{o x} \\
& C_{g d}=W L_{o v} C_{o x} \\
& C_{s b}=\left(A_{s}+W L\right) C_{j s}+P_{s} C_{j-s w} \\
& C_{j s}=\frac{C_{j 0}}{\sqrt{1+\frac{V_{s b}}{\Phi_{0}}}} \\
& C_{d b}=A_{d} C_{j d}+P_{d} C_{j-s w} \\
& C_{j d}=\frac{C_{j 0}}{\sqrt{1+\frac{V_{d b}}{\Phi_{0}}}}
\end{aligned}
$$

Device Model Summary (MOSFET)

$$
\begin{gathered}
\mathrm{I}_{\mathrm{D}}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left[\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{tn}}\right) \mathrm{V}_{\mathrm{DS}}-\frac{\mathrm{V}_{\mathrm{DS}}^{2}}{2}\right] \\
\mathrm{I}_{\mathrm{D}} \cong \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{tn}}\right) \mathrm{V}_{\mathrm{DS}}
\end{gathered}
$$

Device Model Summary (MOSFET)

Device Model Summary (MOSFET)

MOSFET parameters representative of various CMOS technologies

	$0.8 \mu m$		$0.35 \mu m$		$0.18 \mu m$		45 nm	
Technology	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
$\mu C_{o x}\left(\mu A / V^{2}\right)$	92	30	190	55	270	70	280	70
$V_{t 0}(V)$	0.80	-0.90	0.57	-0.71	0.45	-0.45	0.45	-0.45
$\lambda L(\mu m / V)$	0.12	0.08	0.16	0.16	0.08	0.08	0.10	0.15
$C_{o x}\left(f F / \mu m^{2}\right)$	1.8	1.8	4.5	4.5	8.5	8.5	25	25
$t_{o x}(n m)$	18	18	8	8	5	5	1.2	1.2
n	1.5	1.5	1.8	1.7	1.6	1.7	1.85	1.85
$\theta\left(V^{-1}\right)$	0.06	0.135	1.5	1.0	1.7	1.0	2.3	2.0
m	1.0	1.0	1.8	1.8	1.6	2.4	3.0	3.0
$C_{o x} / W=L_{o v} V_{o x}(f F / \mu m)$	0.20	0.20	0.20	0.20	0.35	0.35	0.50	0.50
$C_{d b} / W \cong C_{s b} / W(f F / \mu m)$	0.50	0.80	0.75	1.10	0.50	0.55	0.45	0.50

Device Model Summary (MOSFET)

Default parameters for n-channel MOS transistors:
$T=300 \mathrm{~K}$ (Room temperature)
$\mu_{n} C_{o x}=92 \mu A / V^{2}$
$V_{t n}=0.8 \mathrm{~V}$
$\gamma=0.5 \mathrm{~V}^{1 / 2}$
$r_{d s}(\Omega)=8000 L(\mu m) / I_{D}(m A)$ in active region
$C_{j}=2.4 \times 10^{-4} \mathrm{pF} /(\mu \mathrm{m})^{2}$
$C_{j-s w}=2.0 \times 10^{-4} \mathrm{pF} / \mu \mathrm{m}$
$C_{o x}=1.9 \times 10^{-3} \mathrm{pF} /(\mu \mathrm{m})^{2}$
$C_{g s(\text { overlap })}=C_{g d(\text { overlap })}=2.0 \times 10^{-4} \mathrm{pF} / \mu \mathrm{m}$

Device Model Summary (MOSFET)

Default parameters for p-channel MOS transistors:
$T=300 \mathrm{~K}$ (Room temperature)
$\mu_{p} C_{o x}=30 \mu A / V^{2}$
$V_{t p}=-0.9 \mathrm{~V}$
$\gamma=0.8 \mathrm{~V}^{1 / 2}$
$r_{d s}(\Omega)=12000 L(\mu m) / I_{D}(m A)$ in active region
$C_{j}=4.5 \times 10^{-4} \mathrm{pF} /(\mu \mathrm{m})^{2}$
$C_{j-s w}=2.5 \times 10^{-4} \mathrm{pF} / \mu \mathrm{m}$
$C_{o x}=1.9 \times 10^{-3} \mathrm{pF} /(\mu \mathrm{m})^{2}$
$C_{g s(\text { overlap })}=C_{g d(\text { overlap })}=2.0 \times 10^{-4} \mathrm{pF} / \mu \mathrm{m}$

Exercise 1 (1st/2nd, P1.1)

Estimate the hole and electron concentrations in silicon doped with arsenic at a concentration of $10^{25} \mathrm{atoms} / \mathrm{m}^{3}$ at a temperature $22^{\circ} \mathrm{C}$ above room temperature. ${ }^{1}$ Is the resulting material n-type or p-type?
${ }^{1} n_{i}=4.410^{16}$ carriers $/ m^{3} @ T=322 K$, n-type material

Exercise 2 (1st/2nd, E1.2, P1.2)

A PN junction has $N_{A}=10^{25}$ atoms $/ \mathrm{m}^{3}$ and $N_{D}=10^{22}$ atoms $/ \mathrm{m}^{3}$. What is the built-in junction potential $\Phi_{0} ?^{2}$ Does the built-in potential increase or decrease when the temperature is increased $11^{\circ} \mathrm{C}$ above room temperature? ${ }^{3}$

[^0]
Exercise 3 (1st/2nd, P1.4)

A silicon diode has $\tau_{t}=12 \mathrm{ps}$ and $C_{j 0}=15 \mathrm{fF}$. It is reverse-biased by a $43 \mathrm{k} \Omega$ resistor connected between the cathode of the diode and the input signal. Initially the input is 5 V , and then at time 0 it changes to 0 V . Estimate the time it takes for the output voltage to change from 5 V to $1.5 \mathrm{~V} .{ }^{4}$ Repeat for an input voltage change from 0 V to 5 V and an output voltage change from 0 V to $3.5 \mathrm{~V} .{ }^{5}$

Exercise 4 (1st, P1.7)

Find I_{D} for an n-channel MOST having doping concentrations of $N_{A}=10^{22}$ atoms $/ \mathrm{m}^{3}$ and $N_{D}=10^{25}$ atoms $/ \mathrm{m}^{3}$, with $W=50 \mu \mathrm{~m}$, $L=1.5 \mu \mathrm{~m}, V_{G S}=1.1 \mathrm{~V}$, and $V_{D S}=V_{\text {eff. }}{ }^{6}$ Estimate the new value of I_{D} if $V_{D S}$ is increased by 0.3 V (we assume λ remains constant). ${ }^{7}$

$$
\begin{aligned}
& { }^{6} I_{D}=138 \mu A \\
& { }^{7} I_{D}=143 \mu A
\end{aligned}
$$

Exercise 5 (1st, P1.8)

A MOS transistor in the active region has a drain current of $20 \mu \mathrm{~A}$ when $V_{D S}=V_{\text {eff }}$. When $V_{D S}$ is increased by $0.5 \mathrm{~V}, I_{D}$ increases to 23μ A. Estimate the output impedance $r_{d s}$, and the output impedance constant $\lambda .{ }^{8}$

$$
{ }^{8_{r}}{ }_{d s}=167 \mathrm{k} \Omega, \lambda=0.3 \mathrm{~V}^{-1}
$$

Exercise 6 (1st, P1.9)

Derive the low-frequency model parameters (i.e. find g_{m}, g_{s}, and $r_{d s}$) for an n-channel MOST having doping concentrations of $N_{A}=10^{22}$ atoms $/ \mathrm{m}^{3}$ and $N_{D}=10^{25}$ atoms $/ \mathrm{m}^{3}$, with $W=10 \mu \mathrm{~m}$, $L=1.2 \mu \mathrm{~m}, V_{G S}=1.1 \mathrm{~V}$, and $V_{D S}=V_{\text {eff }} .{ }^{9}$

$$
{ }^{9} r_{d s}=182 \mathrm{k} \Omega, g_{m}=230 \mu \mathrm{~A} / \mathrm{V}, g_{s}=44 \mu \mathrm{~A} / \mathrm{V}
$$

Exercise 7 (1st, P1.10)

Find the capacitances $C_{g s}, C_{g d}, C_{s b}$, and $C_{d b}$ for a MOST having $W=50 \mu \mathrm{~m}$ and $L=1.2 \mu \mathrm{~m}$. Assume that the source and drain junctions extend $4 \mu \mathrm{~m}$ beyond the gate, resulting in source and drain areas being $A_{s}=A_{d}=200 \mu \mathrm{~m}^{2}$ and the perimeter of each being $P_{s}=P_{d}=58 \mu \mathrm{~m} .{ }^{10}$

$$
{ }^{10} C_{g s}=86 f F, C_{g d}=10 f F, C_{s b}=74 f F, \text { and } C_{d b}=60 f F
$$

Exercise 8 (1st, P1.11)

Consider the circuit shown hereafter, where $V_{i n}=1 \mathrm{~V}, V_{G}=5 \mathrm{~V}$, $W=10 \mu \mathrm{~m}$ and $L=0.8 \mu \mathrm{~m}$. Taking into account only the channel charge storage, determine the final value of $V_{\text {out }}$, when the transistor is turned off, assuming half the channel charge "goes" to C_{L}. ${ }^{11}$

$$
{ }^{11} V_{\text {out }}=V_{\text {out }}(0)-0.024=1-0.024=0.976 V
$$

Exercise 9 (1st, P1.12, P1.13)

Consider the same circuit as before. The input voltage has a step voltage change at time 0 from 1 V to $1.2 \mathrm{~V}\left(V_{G}=5 \mathrm{~V}\right)$.
(1) Find its 99% settling time. ${ }^{12}$ You may ignore the body effect and all capacitances except C_{L}.
(2) Repeat the question for $V_{i n}$ changing from 3 V to 3.1 V . ${ }^{13}$
(0) Repeat the same problem, but now take into account the body effect, and assume $N_{A}=10^{22}$ atoms $/ \mathrm{m}^{3} .{ }^{14}$

[^1]
[^0]: ${ }^{2} \Phi_{0}=0.89 \mathrm{~V}$
 3^{3} it decreases $\left(\Phi_{0}=0.88 \mathrm{~V}\right)$

[^1]: ${ }^{12} t_{\text {settling }}(1 \rightarrow 1.2 \mathrm{~V})=1.25 \mathrm{~ns}$
 ${ }^{13} t_{\text {settling }}(3 \rightarrow 3.1 \mathrm{~V})=3.33 \mathrm{~ns}$
 ${ }^{14} t_{\text {settling }}(1 \rightarrow 1.2 \mathrm{~V})=1.35 \mathrm{~ns}, t_{\text {settling }}(3 \rightarrow 3.1 \mathrm{~V})=6.1 \mathrm{~ns}$

