EXAM - June 2019
MICROELECTRONICS AND IC DESIGN
(ELEN0037)
Prof. J.M. Redouté

1 Constants

$$
\begin{aligned}
& q=1.602 \times 10^{-19} \mathrm{C} \\
& k=1.38 \times 10^{-23} \mathrm{JK}^{-1} \\
& n_{i}=1.1 \times 10^{16} \text { carriers } / \mathrm{m}^{3} @ T=300 \mathrm{~K}
\end{aligned}
$$

n_{i} doubles for every $11^{\circ} \mathrm{C}$ increase in temperature $n \times p=n_{i}^{2}$
$\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{Fm}^{-1}$
$K_{o x} \cong 3.9$
$K_{s} \cong 11.8$

2 Diode

$V_{T}=\frac{k T}{q} \cong 26 m V @ 300 K$

2.1 Reverse-Biased

$Q=2 C_{j 0} \Phi_{0} \sqrt{1+\frac{V_{R}}{\Phi_{0}}}$
$C_{j}=\frac{C_{j 0}}{\sqrt{1+\frac{V_{R}}{\Phi_{0}}}}$
$C_{j 0}=\sqrt{\frac{q K_{s} \varepsilon_{0}}{2 \Phi_{0}} \frac{N_{A} N_{D}}{N_{A}+N_{D}}}$
$C_{j 0}=\sqrt{\frac{q K_{s} \varepsilon_{0}}{2 \Phi_{0}} N_{D}}$ if $N_{A} \gg N_{D}$
$\Phi_{0}=V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)$

2.2 Forward-Biased

$I_{D}=I_{S} \exp \left(\frac{V_{D}}{V_{T}}\right)$
$I_{S}=A_{D} q n_{i}\left(\frac{D_{n}}{L_{n} N_{A}}+\frac{D_{p}}{L_{p} N_{D}}\right)$

Small-Signal Model

$r_{d}=\frac{V_{T}}{I_{D}}$
$C_{T}={ }_{C_{d}}+C_{j}$
$C_{d}=\tau_{t} \frac{I_{D}}{V_{T}}$
$C_{j} \cong 2 C_{j 0}^{T}$

3 N-channel MOSFET

For p-channel MOSFET, use the same equations as for the n-channel, with negative signs in front of all voltages.
$V_{e f f}=V_{G S}-V_{t n}$
$V_{t n}=V_{t n-0}+\gamma\left(\sqrt{V_{S B}+2 \Phi_{F}}-\sqrt{2 \Phi_{F}}\right)$
$\Phi_{F}=V_{T} \ln \left(\frac{N_{A}}{n_{i}}\right)$ (see diode equations for V_{T})
$\gamma=\frac{\sqrt{2 q K_{s} \varepsilon_{0} N_{A}}}{C_{o x}}$
$C_{o x}=\frac{K_{o x} \varepsilon_{0}}{t_{o x}}$
3.1 Triode region ($V_{G S}>V_{t n}, V_{D S} \leq V_{e f f}$)
$I_{D}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left[\left(V_{G S}-V_{t n}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right]$

Small-Signal Model $\left(V_{D S} \ll V_{e f f}\right)$
$r_{d s}=\frac{\partial V_{D S}}{\partial I_{D}}=\frac{1}{\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(V_{e f f}-V_{D S}\right)} \cong \frac{1}{\mu_{n} C_{o x}\left(\frac{W}{L}\right) V_{e f f}}$
$C_{g d}=C_{g s} \cong \frac{1}{2} W L C_{o x}+W L_{o v} C_{o x}$
$C_{s b}=C_{d b}=\frac{C_{j 0}\left(A_{s}+W L / 2\right)}{\sqrt{1+\frac{V_{s b}}{\Phi_{0}}}}$

3.2 Active (Pinch-Off) Region ($V_{G S}>V_{t n}$, $\left.V_{D S} \geq V_{e f f}\right)$

$I_{D}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t n}\right)^{2}\left[1+\lambda\left(V_{D S}-V_{e f f}\right)\right]$
$\lambda=\frac{k_{d s}}{2 L \sqrt{V_{D S}-V_{e f f}+\Phi_{0}}}$
$k_{d s}=\sqrt{\frac{2 K_{s} \varepsilon_{0}}{q N_{A}}}$
$V_{e f f}=V_{G S}-V_{t n}=\sqrt{\frac{2 I_{D}}{\mu_{n} C_{o x} W / L}}$

Small-Signal Model

$g_{m}=\frac{\partial I_{D}}{\partial V_{G S}}=\mu_{n} C_{o x}\left(\frac{W}{L}\right) V_{e f f}=\sqrt{2 \mu_{n} C_{o x}\left(\frac{W}{L}\right) I_{D}}=\frac{2 I_{D}}{V_{e f f}}$
$g_{s}=\frac{\partial I_{D}}{\partial V_{S B}}=\frac{\gamma g_{m}}{2 \sqrt{V_{S B}+2 \Phi_{F}}}$
$r_{d s}=\frac{\partial V_{D S}}{\partial I_{D}} \cong \frac{1}{\lambda I_{D}}$
$C_{g s}=\frac{2}{3} W L C_{o x}+W L_{o v} C_{o x}=\frac{2}{3} W L C_{o x}+W C_{g s-o v}$
$C_{g d}=W L_{o v} C_{o x}=W C_{g d-o v}$
$C_{s b}=\left(A_{s}+W L\right) C_{j s}+P_{s} C_{j-s w}$
$C_{j s}=\frac{C_{j 0}}{\sqrt{1+\frac{V_{s b}}{\Phi_{0}}}}$
$C_{d b}=A_{d} C_{j d}+P_{d} C_{j-s w}$
$C_{j d}=\frac{C_{j 0}}{\sqrt{1+\frac{V_{d b}}{\Phi_{0}}}}$

3.3 Default values for MOSFET ($0.8 \mu \mathrm{~m}$)

n-channel $\quad T=300 K$ (Room temperature) p-channel
$V_{t n-0}=0.8 \mathrm{~V}$
$\gamma=0.5 V^{1 / 2}$
$r_{d s}(\Omega)=8000 L(\mu m) / I_{D}(m A)$ in active region
$C_{j s}=C_{j d}\left(=C_{j}\right)=2.4 \times 10^{-4} p F /(\mu m)^{2} \quad\left(4.5 \times 10^{-4}\right)$
$C_{j-s w}=2.0 \times 10^{-4} \mathrm{pF} / \mu \mathrm{m}$
$C_{o x}=1.9 \times 10^{-3} p F /(\mu m)^{2}$
$C_{g s-o v}=C_{g d-o v}=2.0 \times 10^{-4} \mathrm{pF} / \mu m \quad\left(2.0 \times 10^{-4}\right)$

4 Design rules

The design rules are expressed in terms of a quantity, λ, where λ is $1 / 2$ the minimum permitted gate length $(L=$ $2 \lambda)$. The corresponding layout of the active, polysilicon, and contact masks of the smallest transistor that can be realized in a given process when a contact must be made to each junction is summarized hereafter

The n well surrounds the p-channel MOST, by at least 3λ. The minimum spacing between the n well and the junctions of n-channel MOST is 5λ. Therefore, the closest an n-channel MOST can be placed to a p-channel MOST is 8λ. The minimum widths of poly, metal 1 , and metal 2 are 2λ, 2λ, and $\lambda 3$, respectively.

5 Filters

5.1 First order

$$
\begin{aligned}
\text { General form } & H(s) & =\frac{k_{1} s+k_{0}}{s+\Omega_{0}} \\
\text { Low Pass } & H(s) & =\frac{\Omega_{0}}{s+\Omega_{0}} \\
\text { High Pass } & H(s) & =\frac{s}{s+\Omega_{0}}
\end{aligned}
$$

5.2 Second order (Biquad)

General form $\quad H(s)=\frac{k_{2} s^{2}+k_{1} s+k_{0}}{s^{2}+\left(\Omega_{0} / Q\right) s+\Omega_{0}^{2}}$
Low Pass

$$
H(s)=\frac{\Omega_{0}^{2}}{s^{2}+\left(\Omega_{0} / Q\right) s+\Omega_{0}^{2}}
$$

Band Pass $\quad H(s)=\frac{\left(\Omega_{0} / Q\right) s}{s^{2}+\left(\Omega_{0} / Q\right) s+\Omega_{0}^{2}}$
Band Stop $\quad H(s)=\frac{s^{2}+\Omega_{0}^{2}}{s^{2}+\left(\Omega_{0} / Q\right) s+\Omega_{0}^{2}}$
High Pass $\quad H(s)=\frac{s^{2}}{s^{2}+\left(\Omega_{0} / Q\right) s+\Omega_{0}^{2}}$

6 Z transform

Exact transform	Bilinear transform
$z=e^{j \omega T}$	$s=\frac{z-1}{z+1}, z=\frac{1+s}{1-s}$
$z \simeq 1+j \omega T$ if $\omega T \ll 1$	$\Omega_{s-\text { domain }}=\tan \left(\frac{\omega_{z-\text { domain }}}{2}\right)$

$7 \quad$ Switched-capacitor ciruits

7.1 Signal-Flow-Graph Analysis

(a)

(b)

8 Data converters

Number of bits: N, number of levels: $L=2^{N}$, quantization error: $\Delta=\frac{V_{r e f}}{L}$, RMS error: $e_{r m s}=\Delta / \sqrt{12}$, oversampling rate: $O S R=\frac{f_{s}}{2 f_{0}}$.

Converter type	Signal to noise ratio $S Q N R_{\max }$
Nyquist rate $(O S R=1)$	$6.02 N+1.76$
Oversamp., no noise shaping	$6.02 N+1.76+10 \log O S R$
Oversamp., $1^{s t}$-order noise shaping	$6.02 N+1.76-5.17+30 \log O S R$
Oversamp., $2^{\text {nd }}$-order noise shaping	$6.02 N+1.76-12.9+50 \log O S R$

These formulae are valid (1) for an input sine wave (otherwise remove the +1.76 term), and (2) when the input signal spans the full range of the converter.

8.1 first-order $\Sigma \Delta$ modulator

u(n)

The state equations of the first-order $\Sigma \Delta$ modulator are given by:

$$
\begin{aligned}
y(n) & =Q(x(n)) \\
e(n) & =y(n)-x(n) \\
x(n+1) & =x(n)+u(n)-y(n)
\end{aligned}
$$

9 Noise Analysis and Modeling

Spectral Density: $V_{n}^{2}(f) \quad\left[V^{2} / H z\right]$.
Root Spectral Density: $V_{n}(f) \quad[V / \sqrt{H z}]$.
Total noise power: $V_{n}^{2}=\int_{0}^{\infty} V_{n}^{2}(f) d f \quad\left[V^{2}\right]$.

Sum of two noise sources

$$
\begin{gathered}
V_{n}^{2}=V_{n 1}^{2}+V_{n 2}^{2}+2 C V_{n 1} V_{n 2} \\
P_{n}=P_{n 1}+P_{n 2}+2 C \sqrt{\left(P_{1} P_{2}\right)}
\end{gathered}
$$

White noise: $V_{n}^{2}(f)=k_{w}^{2}$
Pink (Flicker or $\frac{1}{f}$) noise: $V_{n}^{2}(f)=\frac{k_{f}^{2}}{f}$
Filtered noise: $V_{n o}^{2}(f)=|A(f)|^{2} V_{n i}^{2}(f)$
Voltage noise across a resistor: $V_{R}^{2}(f)=4 k T R$
Accumulated Voltage noise across a capacitor: $V_{C}^{2}=\frac{k T}{C}$
Accumulated Current noise across an inductor: $I_{L}^{2}=\frac{k T}{L}$

10 Miscellaneous

Matching accuracy for capacitors

We desire to match C_{1} and C_{2}, such that $K=\frac{C_{2}}{C_{1}} \geq 1$.
Analysis gives the condition $\frac{P_{1}}{A_{1}}=\frac{P_{2}}{A_{2}}$.
Therefore $K=\frac{C_{2}}{C_{1}}=\frac{A_{2}}{A_{1}}=\frac{P_{2}}{P_{1}}$.
If C_{1} is a square of size $x_{1} \times x_{1}$, and C_{2} has size $x_{2} \times y_{2}$, we have:

$$
\begin{gathered}
y_{2}=x_{1}\left(K \pm \sqrt{\left(K^{2}-K\right)}\right) \\
x_{2}=K \frac{x_{1}^{2}}{y_{2}}
\end{gathered}
$$

Square resistance

$R_{\square}=\frac{\rho}{H}=\frac{1}{q \mu_{n} N_{D} H}$
$R=R_{\square} \frac{L}{W}$
Signal to noise ratio (SNR), decibels
$S N R=10 \log \left(\frac{P_{\text {signal }}}{P_{\text {noise }}}\right) \quad[d B]$
Conversion from power to dB: $10 \log (P)$
Conversion from power to $\mathrm{dBm}(\mathrm{dB} \mathrm{mW}): 10 \log \left(\frac{P}{1 m W}\right)$
Conversion from voltage to dB: $20 \log (V)$
Conversion from voltage to $\mathrm{dBm}(\mathrm{dB} \mathrm{mV}): 20 \log \left(\frac{V}{1 m V}\right)$
Steady state percentage value of first order filter versus time constant τ

Time	Percentage
τ	63%
2τ	86%
3τ	95%
4τ	98%
5τ	99%

