EXAM - June 2019

MICROELECTRONICS AND IC DESIGN (ELEN0037)

Prof. J.M. Redouté

1 Constants

$$\begin{array}{l} q = 1.602 \times 10^{-19} \, C \\ k = 1.38 \times 10^{-23} \, J K^{-1} \\ n_i = 1.1 \times 10^{16} \, carriers/m^3 \, @ \, T = 300 \, K \\ n_i \, \text{doubles for every 11°C increase in temperature} \\ n \times p = n_i^2 \\ \varepsilon_0 = 8.854 \times 10^{-12} Fm^{-1} \\ K_{ox} \cong 3.9 \\ K_s \cong 11.8 \end{array}$$

2 Diode

 $V_T = \frac{kT}{g} \cong 26 \, mV @ 300K$

2.1 Reverse-Biased

$$\begin{split} Q &= 2C_{j0}\Phi_0\sqrt{1+\frac{V_R}{\Phi_0}}\\ C_j &= \frac{C_{j0}}{\sqrt{1+\frac{V_R}{\Phi_0}}}\\ C_{j0} &= \sqrt{\frac{qK_s\varepsilon_0}{2\Phi_0}}\frac{N_AN_D}{N_A+N_D}\\ C_{j0} &= \sqrt{\frac{qK_s\varepsilon_0}{2\Phi_0}}N_D \text{ if } N_A \gg N_D\\ \Phi_0 &= V_T\ln\left(\frac{N_AN_D}{n_i^2}\right) \end{split}$$

2.2 Forward-Biased

$$I_D = I_S \exp\left(\frac{V_D}{V_T}\right)$$

$$I_S = A_D q n_i \left(\frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D}\right)$$

Small-Signal Model

$$\begin{split} r_d &= \frac{V_T}{I_D} \\ C_T &= C_d + C_j \\ C_d &= \tau_t \frac{I_D}{V_T} \\ C_j &\cong 2C_{j0} \end{split}$$

3 N-channel MOSFET

For p-channel MOSFET, use the same equations as for the n-channel, with negative signs in front of all voltages.

$$V_{eff} = V_{GS} - V_{tn}$$

$$V_{tn} = V_{tn-0} + \gamma \left(\sqrt{V_{SB} + 2\Phi_F} - \sqrt{2\Phi_F} \right)$$

$$\Phi_F = V_T \ln \left(\frac{N_A}{n_i} \right) \text{ (see diode equations for } V_T \text{)}$$

$$\gamma = \frac{\sqrt{2qK_s\varepsilon_0}N_A}{C_{ox}}$$

$$C_{ox} = \frac{K_{ox}\varepsilon_0}{t_{ox}}$$

3.1 Triode region $(V_{GS} > V_{tn}, V_{DS} \leq V_{eff})$

$$I_D = \mu_n C_{ox} \left(\frac{W}{L} \right) \left[\left(V_{GS} - V_{tn} \right) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

Small-Signal Model ($V_{DS} \ll V_{eff}$)

$$\begin{split} r_{ds} &= \frac{\partial V_{DS}}{\partial I_D} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right) (V_{eff} - V_{DS})} \cong \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right) V_{eff}} \\ C_{gd} &= C_{gs} \cong \frac{1}{2} W L C_{ox} + W L_{ov} C_{ox} \\ C_{sb} &= C_{db} = \frac{C_{j0} (A_s + W L/2)}{\sqrt{1 + \frac{V_{sb}}{\Phi_0}}} \end{split}$$

$egin{aligned} extbf{3.2} & extbf{Active (Pinch-Off) Region } (V_{GS} > V_{tn}, \ V_{DS} \geq V_{eff}) \end{aligned}$

$$\begin{split} I_D &= \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) \left(V_{GS} - V_{tn} \right)^2 \left[1 + \lambda \left(V_{DS} - V_{eff} \right) \right] \\ \lambda &= \frac{k_{ds}}{2L \sqrt{V_{DS} - V_{eff} + \Phi_0}} \\ k_{ds} &= \sqrt{\frac{2K_s \varepsilon_0}{qN_A}} \\ V_{eff} &= V_{GS} - V_{tn} = \sqrt{\frac{2I_D}{\mu_n C_{ox} W/L}} \end{split}$$

Small-Signal Model

$$\begin{split} g_m &= \frac{\partial I_D}{\partial V_{GS}} = \mu_n C_{ox} \left(\frac{W}{L}\right) V_{eff} = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right) I_D} = \frac{2I_D}{V_{eff}} \\ g_s &= \frac{\partial I_D}{\partial V_{SB}} = \frac{\gamma g_m}{2\sqrt{V_{SB} + 2\Phi_F}} \\ r_{ds} &= \frac{\partial V_{DS}}{\partial I_D} \cong \frac{1}{\lambda I_D} \\ C_{gs} &= \frac{2}{3} W L C_{ox} + W L_{ov} C_{ox} = \frac{2}{3} W L C_{ox} + W C_{gs-ov} \\ C_{gd} &= W L_{ov} C_{ox} = W C_{gd-ov} \\ C_{sb} &= \left(A_s + W L\right) C_{js} + P_s C_{j-sw} \\ C_{js} &= \frac{C_{j0}}{\sqrt{1 + \frac{V_{sb}}{\Phi_0}}} \\ C_{db} &= A_d C_{jd} + P_d C_{j-sw} \\ C_{jd} &= \frac{C_{j0}}{\sqrt{1 + \frac{V_{abb}}{\Phi_0}}} \end{split}$$

3.3 Default values for MOSFET $(0.8 \mu m)$

n-channel T = 300K (Room temperature) p-channel

$$\mu_n C_{ox} = 92\mu A/V^2 \tag{30}$$

$$V_{tn-0} = 0.8V (V_{tp-0} = -0.9V)$$

$$\gamma = 0.5V^{1/2} \tag{0.8}$$

$$r_{ds}(\Omega) = 8000L(\mu m)/I_D(mA)$$
 in active region (12000)

$$C_{js} = C_{jd} (= C_j) = 2.4 \times 10^{-4} pF / (\mu m)^2$$
 (4.5 × 10⁻⁴)

$$C_{j-sw} = 2.0 \times 10^{-4} pF/\mu m$$
 (2.5 × 10⁻⁴)

$$C_{ox} = 1.9 \times 10^{-3} pF / (\mu m)^2$$
 (1.9 × 10⁻³)

$$C_{gs-ov} = C_{gd-ov} = 2.0 \times 10^{-4} pF/\mu m$$
 (2.0 × 10⁻⁴)

4 Design rules

The design rules are expressed in terms of a quantity, λ , where λ is $^{1}/_{2}$ the minimum permitted gate length ($L=2\lambda$). The corresponding layout of the active, polysilicon, and contact masks of the smallest transistor that can be realized in a given process when a contact must be made to each junction is summarized hereafter

The n well surrounds the p-channel MOST, by at least 3λ . The minimum spacing between the n well and the junctions of n-channel MOST is 5λ . Therefore, the closest an n-channel MOST can be placed to a p-channel MOST is 8λ . The minimum widths of poly, metal 1, and metal 2 are 2λ , 2λ , and $\lambda 3$, respectively.

5 Filters

5.1 First order

General form
$$H(s) = \frac{k_1 s + k_0}{s + \Omega_0}$$
 Low Pass
$$H(s) = \frac{\Omega_0}{s + \Omega_0}$$
 High Pass
$$H(s) = \frac{s}{s + \Omega_0}$$

5.2 Second order (Biquad)

$$\begin{aligned} & \text{General form} & H(s) = \frac{k_2 s^2 + k_1 s + k_0}{s^2 + (\Omega_0/Q) \, s + \Omega_0^2} \\ & \text{Low Pass} & H(s) = \frac{\Omega_0^2}{s^2 + (\Omega_0/Q) \, s + \Omega_0^2} \\ & \text{Band Pass} & H(s) = \frac{(\Omega_0/Q) \, s}{s^2 + (\Omega_0/Q) \, s + \Omega_0^2} \\ & \text{Band Stop} & H(s) = \frac{s^2 + \Omega_0^2}{s^2 + (\Omega_0/Q) \, s + \Omega_0^2} \\ & \text{High Pass} & H(s) = \frac{s^2}{s^2 + (\Omega_0/Q) \, s + \Omega_0^2} \end{aligned}$$

6 Z transform

Exact transform	Bilinear transform
$z = e^{j\omega T}$	$s = \frac{z-1}{z+1}, \ z = \frac{1+s}{1-s}$
$z \simeq 1 + j\omega T \text{ if } \omega T \ll 1$	$\Omega_{s-domain} = \tan\left(\frac{\omega_{z-domain}}{2}\right)$

7 Switched-capacitor ciruits

7.1 Signal-Flow-Graph Analysis

8 Data converters

Number of bits: N, number of levels: $L=2^N$, quantization error: $\Delta=\frac{V_{ref}}{L}$, RMS error: $e_{rms}=\Delta/\sqrt{12}$, oversampling rate: $OSR=\frac{f_s}{2f_0}$.

Converter type	Signal to noise ratio $SQNR_{max}$
Nyquist rate $(OSR = 1)$	6.02N + 1.76
Oversamp., no noise shaping	$6.02N + 1.76 + 10 \log OSR$
Oversamp., 1^{st} -order noise shaping	$6.02N + 1.76 - 5.17 + 30 \log OSR$
Oversamp., 2^{nd} -order noise shaping	$6.02N + 1.76 - 12.9 + 50 \log OSR$

These formulae are valid (1) for an input sine wave (otherwise remove the +1.76 term), and (2) when the input signal spans the full range of the converter.

8.1 first-order $\Sigma\Delta$ modulator

The state equations of the first-order $\Sigma\Delta$ modulator are given by:

$$y(n) = Q(x(n))$$

 $e(n) = y(n) - x(n)$
 $x(n+1) = x(n) + u(n) - y(n)$

9 Noise Analysis and Modeling

 $\begin{array}{ll} \text{Spectral Density: } V_n^2\left(f\right) & \left[V^2/Hz\right]. \\ \text{Root Spectral Density: } V_n\left(f\right) & \left[V/\sqrt{Hz}\right]. \\ \text{Total noise power: } V_n^2 = \int_0^\infty V_n^2\left(f\right) df & \left[V^2\right]. \end{array}$

Sum of two noise sources

$$V_n^2 = V_{n1}^2 + V_{n2}^2 + 2CV_{n1}V_{n2},$$

$$P_n = P_{n1} + P_{n2} + 2C\sqrt{(P_1P_2)}.$$

White noise: $V_n^2(f) = k_w^2$

Pink (Flicker or $\frac{1}{f}$) noise: $V_n^2(f) = \frac{k_f^2}{f}$ Filtered noise: $V_{no}^2(f) = |A(f)|^2 V_{ni}^2(f)$ Voltage noise across a resistor: $V_R^2(f) = 4kTR$ Accumulated Voltage noise across a capacitor: $V_C^2 = \frac{kT}{C}$ Accumulated Current noise across an inductor: $I_L^2 = \frac{kT}{L}$

Miscellaneous 10

Matching accuracy for capacitors

We desire to match C_1 and C_2 , such that $K = \frac{C_2}{C_1} \ge 1$.

Analysis gives the condition $\frac{P_1}{A_1} = \frac{P_2}{A_2}$.

Therefore $K=\frac{C_2}{C_1}=\frac{A_2}{A_1}=\frac{P_2}{P_1}$. If C_1 is a square of size $x_1\times x_1$, and C_2 has size $x_2\times y_2$,

we have:

$$y_2 = x_1 \left(K \pm \sqrt{(K^2 - K)} \right)$$
$$x_2 = K \frac{x_1^2}{y_2}$$

Square resistance

$$\begin{split} R_{\square} &= \frac{\rho}{H} = \frac{1}{q\mu_n N_D H} \\ R &= R_{\square} \frac{L}{W} \end{split}$$

Signal to noise ratio (SNR), decibels

$$SNR = 10 \log \left(\frac{P_{signal}}{P_{noise}} \right)$$
 [dB]

Conversion from power to dB: $10 \log (P)$

Conversion from power to dBm (dB mW): $10 \log \left(\frac{P}{1mW}\right)$

Conversion from voltage to dB: $20 \log (V)$

Conversion from voltage to dBm (dB mV): $20 \log \left(\frac{V}{1mV}\right)$

Steady state percentage value of first order filter versus time constant τ

Time	Percentage
τ	63%
2τ	86%
3τ	95%
4τ	98%
5τ	99%