Distortion of filtered signals MATLAB tutorial series (Part 3)

Pouyan Ebrahimbabaie

Laboratory for Signal and Image Exploitation (INTELSIG) Dept. of Electrical Engineering and Computer Science University of Liège Liège, Belgium

Applied digital signal processing (ELEN0071-1) 28 April 2021

A system has distortionless response if the input signal x[n] and the output signal y[n]have the same shape.

A system has distortionless response if the input signal x[n] and the output signal y[n]have the same shape.

It means:

$$y[n] = \frac{G}{G}x[n - n_d]$$

 G, n_d : constant

A system has distortionless response if the input signal x[n] and the output signal y[n]have the same shape.

It means:

$$Y(e^{j\omega}) = Ge^{-j\omega n_d}X(e^{j\omega}),$$

A system has distortionless response if the input signal x[n] and the output signal y[n]have the same shape.

It means:

$$Y(e^{j\omega}) = Ge^{-j\omega n_d}X(e^{j\omega}),$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = Ge^{-j\omega n_d}$$

A system has distortionless response if the input signal x[n] and the output signal y[n]have the same shape.

It means:

 $\left|H(e^{j\omega})\right|=\mathbf{G},$

 $\angle H(e^{j\omega}) = -n_d\omega.$

A system has distortionless response if the input signal x[n] and the output signal y[n]have the same shape.

It means:

 $\left|H(e^{j\omega})\right|=G,$

$$\angle H(e^{j\omega}) = -n_d\omega.$$

Notice: phase response passes from the origin !

$$x[n] = \cos(\omega_0 n) - \frac{1}{3}\cos(3\omega_0 n) + \frac{1}{5}\cos(5\omega_0 n),$$

$$x[n] = \cos(\omega_0 n) - \frac{1}{3}\cos(3\omega_0 n) + \frac{1}{5}\cos(5\omega_0 n),$$

 $y_i[n] = c_1 \cos(\omega_0 n + \varphi_1) + c_2 \cos(3\omega_0 n + \varphi_2)$

 $+\boldsymbol{c_3}\cos(5\omega_0n+\boldsymbol{\varphi_3}).$

$$x[n] = \cos(\omega_0 n) - \frac{1}{3}\cos(3\omega_0 n) + \frac{1}{5}\cos(5\omega_0 n),$$

 $y_0[n] = 1\cos(\omega_0 n + 0) - 1/3\cos(3\omega_0 n + 0)$

 $+1/5\cos(5\omega_0 n + 0).$

Original signal no change !

$$x[n] = \cos(\omega_0 n) - \frac{1}{3}\cos(3\omega_0 n) + \frac{1}{5}\cos(5\omega_0 n),$$

 $y_1[n] = 1/4\cos(\omega_0 n + 0) - 1/3\cos(3\omega_0 n + 0)$

 $+1/5\cos(5\omega_0 n + 0).$

High pass filter Low frequency attenuated !

$$x[n] = \cos(\omega_0 n) - \frac{1}{3}\cos(3\omega_0 n) + \frac{1}{5}\cos(5\omega_0 n),$$

 $y_2[n] = \cos(\omega_0 n + \mathbf{0}) - \frac{1}{6}\cos(3\omega_0 n + \mathbf{0})$

 $+1/10\cos(5\omega_0 n + 0).$

Low pass filter High frequencies attenuated !

$$x[n] = \cos(\omega_0 n) - \frac{1}{3}\cos(3\omega_0 n) + \frac{1}{5}\cos(5\omega_0 n),$$

 $y_3[n] = \cos(\omega_0 n + \pi/6) - 1/3\cos(3\omega_0 n + \pi/6)$

 $+1/5\cos(5\omega_0 n + \pi/6).$

Constant phase

$$x[n] = \cos(\omega_0 n) - \frac{1}{3}\cos(3\omega_0 n) + \frac{1}{5}\cos(5\omega_0 n),$$

 $y_4[n] = \cos(\omega_0 n - \pi/4) - 1/3\cos(3\omega_0 n - 3\pi/4)$

$$+1/5\cos(5\omega_0n-5\pi/4).$$

Linear phase

$$x[n] = \cos(\omega_0 n) - \frac{1}{3}\cos(3\omega_0 n) + \frac{1}{5}\cos(5\omega_0 n),$$

 $y_5[n] = \cos(\omega_0 n - \pi/3) - 1/3\cos(3\omega_0 n + \pi/4)$

 $+1/5\cos(5\omega_0 n + \pi/7).$

Nonlinear phase

FIR has one main advantage and many disadvantages rather IIR ...

FIR has linear phase response !

FIR filters are the best choice to remove the noises from signal without distortion.

Original signal

Signal plus noise v.s. Original signal

Signal plus noise v.s. Original signal

Noise source is known : 12-18 Hz

Single sided Fourier transform

Noise source is known : 12-18 Hz

Single sided Fourier transform

Noise source is known : 12-18 Hz

Filter Designer - [untitled.fda *] X File Edit Analysis Targets View Window Help 1 🔁 🔂 🖸 🐭 🙁 🗅 🗩 🖼 🚱 🚺 🖸 🔪 🛩 📢 Q K7 HQH (t) 🗅 🚅 🖬 🖨 🗋 -Magnitude Response (dB)-Current Filter Information 0 Structure: Direct-Form II, 0 Magnitude (dB) -200 Second-Order Sections Order: 68 Sections 34 Stable: Yes Source: Designed Store Filter ... 100 200 50 150 0 Frequency (Hz) Filter Manager ... Response Type_ Frequency Specifications. Magnitude Specifications-Filter Order_ Units: dB V Units: Hz V V Lowpass O Specify order: 10 Highpass V 500 Minimum order Fs: ET CO Bandpass Apass1: 1 Bandstop Bandstop Fpass1: 11 60 Astop: F Differentiator \sim Match exactly: stopband \sim Fstop1: 12 Apass2: 1 Ŧ Design Method 18 Fstop2: \sim 1 IIR Butterworth Fpass2: 19 ~ 67 ○ FIR Equiripple K-Design Filter

Filter Designer - [untitled.fda *] X File Edit Analysis Targets View Window Help 1 🔁 🔣 🖸 🔂 💥 😩 🗅 🗩 🐻 😡 🛈 🔽 💦 € 1Q1 ġ. K 71 K 31 D 🗳 🖪 🎒 🖪 -Magnitude Response (dB)-Current Filter Information 0 0 -100 -200 Structure: Direct-Form II. Second-Order Sections Order: 68 Sections 34 Stable: Yes Source: Designed Store Filter ... 100 200 50 150 0 Frequency (Hz) Filter Manager ... Response Type_ Frequency Specifications-Magnitude Specifications Filter Order_ V Units: Hz Sampling \sim Lowpass O Specify order: 10 Highpass V Fs: 500 Minimum order frequency ET CO Bandpass Bandstop Fpass1: 11 Options. F 60 Astop: Differentiator Match exactly: stopband \sim \sim 12 Fstop1: Ŧţ Apass2: 1 Design Method 18 Fstop2: 1 **I**R Butterworth V Fpass2: 19 ~ 67 ○ FIR Equiripple K-Design Filter

Filter Designer - [untitled.fda *] X File Edit Analysis Targets View Window Help 1 🔁 🔂 🖸 🐭 🙁 🗅 🗩 🖼 🚱 🚺 🖸 🔪 🛩 📢 Q K7 HQH E 🗅 🚅 🖬 🖨 🗋 -Magnitude Response (dB)-Current Filter Information 0 0 Magnitude (dB) -100 -200 Structure: Direct-Form II, Second-Order Sections Order: 68 Sections 34 Stable: Yes Source: Designed Store Filter ... 100 200 50 150 0 Frequency (Hz) Filter Manager ... Response Type_ Frequency Specifications. Magnitude Specifications-Filter Order_ Units: dB V Units: Hz V V Lowpass O Specify order: 10 Highpass V ()500 Minimum order FS: E d Bandpass Apass1: 1 Bandstop Fpass1: 11 Options. F 60 Astop: Differentiator 2-18 Apassz: Match exactly: stopband \sim \sim Fstop1: 12 Ŧţ Design Method. 18 Fstop2: \sim 1 IIR Butterworth Fpass2: 19 ~ 6**,**] ○ FIR Equiripple **K**-Design Filter

Filtered signal using IIR Butterworth filter

Filtered signal v.s. Original signal

Filtered signal v.s. Original signal

IIR filters have nonlinear phase response => Distortion

Persevering the shape of the signals not important in most of the applications

For example in audio applications, because human hearing system is not sensitive to distortion.

\star Filter Designer - [untitled.fda *] — 🗌				\times	
File Edit Analysis Targets View Window Help					
🗅 🖆 🖬 🚭 🔃 🔍 🔍 🖄		D 🖵 🌐 😡 🛈 🔽 🗗 🕅			
Current Filter Information Structure: Direct-Form FIR Order: 1814 Stable: Yes Source: Designed	Magnitude Response (dB)				
Store Filter Filter Manager	0 50	100 150 Frequency (Hz)	200	_	
Response Type Lowpass Highpass Bandpass Bandstop Differentiator Design Method IR Butterworth FIR Window	Filter Order Specify order: 10 Minimum order Options Scale Passband Window: Kaiser FIR View Des	Frequency Specifications Units: Hz Fs: 500 Fpass1: 11 Fstop1: 12 Fstop2: 18 Fpass2: 19 ign Filter	Magnitude Specific Units: dB Apass1: 1 Astop: 60 Apass2: 1	ations	
Designing Filter Done					

承 Filter Designer - [untitled.fda *]			2 <u>1-</u> 21		\times
File Edit Analysis Targets View Window Help					
다 🚅 🖬 🚳 🔃 🔍 🔍 🔄 🛅 🛅 🔜 💽 🐼 😒 🛣 👙 🏠 🖵 🚟 😡 🗊 🐼 🐼					
Current Filter Information Structure: Direct-Form FIR Order: 1814 Stable: Yes Source: Designed	Magnitude Response (dB)				
Store Filter Filter Manager	-6060	100 150 Frequency (Hz)	200 —Magnitude Specific		
Image: Low pass Image: Low pass	Specify order: 10 Unit Minimum order F	s: Hz ~ s: 500	Units: dB		~
 Bandstop Differentiator Design Method IIR Butterworth FIR Window 	Window: Kaiser F View	stop1: 12 stop2: 18 bass2: 19	Astop: 60 Apass2: 1		
Design Filter Done					

承 Filter Designer - [untitled.fda *]		<u></u> -		\times		
File Edit Analysis Targets View Window	ile Edit Analysis Targets View Window Help					
다 🖆 🖬 🚳 🔃 🔍 🗠 🔛 🎦 🖬 🔽 💀 🔂 💀 😒 🏦 💭 🖙 🎆 😡 🛈 💽 🖅 🌾						
Current Filter Information Magni Structure: Direct-Form FIP Order: 1814 Stable: Yes Source: Designed	0 0 0 0 0 0 0 0 0 0 0 0 0 0		-			
Store Filter Filter Manager	0 50 100 150 Frequency (Hz)	200				
Response Type Lowpass Highpass Bandpass Bandstop Differentiator Design Method IIR Butterworth FIR FIR	Order becify order: 10 nimum order ns ale Passband w: Kaiser View Prequency Specifications Units: Hz Fs: 500 Fpass1: 11 Fstop1: 12 Fstop2: 18 Fpass2: 19 Decime Either	-Magnitude Specific Units: dB Apass1: 1 Astop: 60 Apass2: 1	ations			
Designing Filter Done						

承 Filter Designer - [untitled.fda *]	- 🗆 X				
File Edit Analysis Targets View Window Help					
다 🖆 🖬 🚳 🔃 🔍 🗠 🔛 🎦 🔛 💽 💀 😒 î 🖵 🛞 😡 🕄 🐨 🕺					
Current Filter Information Structure: Direct-Form FIR Order: 588 Stable: Yes Source: Designed 60 60 60 60 60 60 60 60 60 60					
Store Filter 0 50 1 Filter Manager I I I	00 150 200 Frequency (Hz)				
Response Type Filter Order Freq Lowpass Specify order: 10 Highpass Minimum order Fs Bandpass Options Fp Differentiator Scale Passband Fs Image: Specify Method Window: Kaiser	uency Specifications . Hz . 500 ass1: 11 Apass1: 12 top2: 18 Magnitude Specifications				
Image: Second and the second and t	ass2: 19				

Filtered signal using FIR

Filtered signal v.s. Original signal

FIR filters have linear phase response !

Persevering the shape of the signals is important in bio-signals applications

%% Producing the oregingal signal

% Sampling period Fs = 500;% Sampling interval Ts=1/Fs;% Length of the signal N=2000; % Maximum time Tmax=(N-1)*Ts; % Time vector t=0:Ts:Tmax;

% Main frequencies & phase of the oreginal signal

- F1=10; F2=20; phi1=1.4; % Oreginal signal x=cos(2*pi*F1*t)+0.5*cos(2*pi*F2*t+phi1); % Plot range plot range =(N/2-100:N/2+100);
- % Plot signal in the range

figure(1)

plot(t(plot_range),x(plot_range),'LineWidth',2.5);
axis tight

%% Generate noise in a specific frequency band (12-18 Hz)

% Generate white Gaussian noise ns = randn(1, length(x))*3;% Design and load pass band filter: 12 to 18 Hz load PB 12 18; fvtool(PB 12 18) % Construct in-band noise ns filtered=filter(PB 12 18,ns); % Signal + Noise x ns=x+ns filtered;

% Plot oreginal signal and signal plus noise figure(3) plot(t(plot_range),x(plot_range),'LineWidth',2.5); hold on plot(t(plot_range),x_ns(plot_range),'LineWidth',2.5); axis tight

%% single-sided frequency spectrum of the signal plus noise

% Compute fft X=fft(x ns); % Take abs and scale it X2=abs(X/N);% Pick the first half X1=X2(1:N/2+1); % Multiply by 2 (except the DC part), to compenseate % the removed side from the spectrum. X1(2:end-1) = 2*X1(2:end-1);

% Frequency range F = Fs*(0:(N/2))/N; % Plot single-sided spectrum figure(4) plot(F,X1,'LineWidth',2.5) title('Single-Sided Amplitude Spectrum') xlabel('f (Hz)');

%% Remove noise usin band-stop IIR filter

% Design and load IIR band stop filter: 12 to 18 Hz load SB_12_18 fvtool(SB_12_18) % Filter the noise out x_clean_IIR=filter(SB_12_18,x_ns);

% Single sided spectrum of cleaned signal % Compute fft X=fft(x clean IIR); % Take abs and scale it X2=abs(X/N);% Pick the first half X1=X2(1:N/2+1);% Multiply by 2 (except the DC part), to compenseate % the removed side from the spectrum. X1(2:end-1) = 2*X1(2:end-1);

```
% Plot single-sided spectrum
figure(6)
plot(F,X1,'LineWidth',2.5)
title('Single-Sided Amplitude Spectrum')
xlabel('f (Hz)');
figure(7)
plot(t(plot_range),x(plot_range),'LineWidth',2.5);
hold on
plot(t(plot range), x clean IIR(plot range), 'LineWidth',
2.5);
axis tight
```

%% Remove noise usin band-stop FIR filter % Design and load FIR band stop filter: 12 to 18 Hz load SB 12 18 FIR fvtool(SB 12 18 FIR) % Filter the noise out x clean FIR=filter(SB 12 18 FIR, x ns); % Single sided spectrum of cleaned signal % Compute fft X=fft(x clean FIR); % Take abs and scale it X2=abs(X/N);% Pick the first half X1=X2(1:N/2+1);

% Multiply by 2 (except the DC part), to compenseate % the removed side from the spectrum. X1(2:end-1) = 2*X1(2:end-1);% Frequency range $F = Fs^{*}(0:(N/2))/N;$ % Plot single-sided spectrum figure(9) plot(F,X1,'LineWidth',2.5) title('Single-Sided Amplitude Spectrum') xlabel('f (Hz)');

figure(10)
plot(t(plot_range),x(plot_range),'LineWidth',2.5);
hold on
plot(t(plot_range),x_clean_FIR(plot_range),'LineWidth'
,2.5);
axis tight

Useful links

 <u>http://www.montefiore.ulg.ac.be/~ebrahimb</u> <u>abaie/applieddigtial.htm</u>