Computation structures

Support for problem-solving lesson #9

Exercise 1

Reminder

Message queues are communication mechanisms that allow the
passing of messages between processes

Two operations can be performed on message queues : read (g?)
and write (q!).

g!x will send the message x into the queue g when there's room
left.

q?<x> will:
— Read the message x (and remove it from the queue) until it can be found;
— Read the oldest message (and remove it from the queue) if x is a variable.

q!x and gq?<x> are (generally) blocking and atomic operations.

Exercise 1

The dining philosopher's problem ®

Three philosophers are seated at a round table. A plate is placed in front of
them and there are three forks on the table (one to the left and one to the
right of each philosopher).

A philosopher can think (without any constraint) or eat (and requires two
forks to do so). After eating, a philosopher will put back his forks on the table
so that other philosophers (or possibly, the same one) can eat.

Use the C language to implement the code of the philosophers processes
using only message queues to protect the resources (the forks).

Exercise 1

Things to pay attention to:

* A philosopher can only eat if he has two forks in hand.

* We must ensure that no deadlock (nor livelock) will ever happen.

— Each philosopher first takes the fork to his left, then the fork to his right
(whenever available).

— Worst case : Each philosopher takes the fork to his left, nobody can eat and
there's no available forks left (deadlock).

— Each philosopher first takes the fork to his left (blocking mode), then tries to
get the fork to his right (non-blocking mode) and, if that's not possible, it
drops the left fork and tries again after some time.

— Worst case : Each philosopher takes the fork to his left, notices that the right
fork is not available, then drops the left fork and tries again indefinetely
without succeeding (live lock).

Exercise 1

* Understanding live locks

s RRENET o) 81
lseeoisosdl M BE;
ARERSUERY [i

S EEERERREREERR. -

W

Img src : www.aussiebrokers.com.au, thumb10.shutterstock.com, webitou.com

http://www.aussiebrokers.com.au/
thumb10.shutterstock.com
http://webitou.com/index.php?page=search/images&search=old+lady+comic+image&type=images

Exercise 1

* Understanding live locks

22538874 B,
) g i

ISEZEEERERERERERE. <
- T

!

Img src : www.aussiebrokers.com.au, thumb10.shutterstock.com, webitou.com

http://www.aussiebrokers.com.au/
thumb10.shutterstock.com
http://webitou.com/index.php?page=search/images&search=old+lady+comic+image&type=images

Exercise 1

How to get out of a live-lock?

 Let the processes decide for themselves who should get

the resource.
* Talk to the lady in the supermarket and decide together who
should go first.
e (Network) Try again after a random period of time.

(livelock still possible in theory, but works in practice).

* Decide, in advance, who should get the resource first in

case of "conflict".

* e.g. "Elders always go first".
* In our case : Assign a number to each philosopher.

Exercise 1

 What if | want to use IPCs in blocking mode only?

* Make the order for the processes implicit by
imposing an order on the resources (semaphores)
themselves.

* Always take the resource with the lowest number
first.

Exercise 1

Things to pay attention to:

* A philosopher can only eat if he has two forks in hand.

* We must ensure that no deadlock (nor livelock) will ever happen.
— Each philosopher first takes the fork to his left, then the fork to his right
(whenever available).

— Worst case : Each philosopher takes the fork to his left, nobody can eat and
there's no available forks left (deadlock).

— Each philosopher first takes the fork to his left (blocking mode), then tries to
get the fork to his right (non-blocking mode) and, if that's not possible, it
drops the left fork and tries again after some time.

— Worst case : Each philosopher takes the fork to his left, notices that the right
fork is not available, then drops the left fork and tries again indefinetely
without succeeding (live lock).

* Solution : One of the philosophers takes the right fork and
then the left fork.

£0.0.0}.{1.1.1}

Exercise 1

{1.0.03.{0.1.1} £0.1.03.{1.0.1}

l {0.2.0}.{1.0,0}

{0,2,1},{0,0,0}

{2.0.0}.{0.0.1} {1.1.0}.{0.0.1}

{1,2,03,{0,0,0}

{0.0.1},{0.1.1}

{0.1.1}.{0.0.1} £0.0.2}.{0.1.0}

* You can't find any state that doesn't lead to
another state (no deadlock)

Y
{0.1.2}.{0.0,0}

* You can't find any loop where no philosophers
eat (no livelock)

* |[n general, order your mutex resources and use
that order in wait() operations

Exercise 1

Now that we solved the (dead or live) lock problem, the rest is

straightforward.

shared chan q[3] = {1,2,3};

IIThe first two philosophers
intid; /lequals 1 or 2
while(true) {

q?id;

q?(id+1);

/[Critical section

qlid;

q!(id+1);

/INon critical section

IIThe last philosopher
while(true) {

q?1;

q?3;

/[Critical section
q!3;

q!1;

/INon critical section

Exercise 1

To stop the program in a clean way, we can use a semaphore and an
integer in shared memory.

shared semaphore NbStop = 0;
shared int finished = 0;
shared chan q[3] = {1,2,3};

IIThe first two philosophers
int id; //lequals 1 or 2
while(finished == 0) {

q?id;

q?(id+1);

/[Critical section

qlid;

q!(id+1);

/INon critical section

}
signal(NbStop);

/IThe control process

getchar();

finished = 1;

for(inti=0, i<3; i++) {
wait(NbStop);

}

/IDelete NbStop;

/IDelete finished;

/IDelete q;

IIThe last philosopher
while(finished == 0) {

}

q?1;

q?3;

/[Critical section
q!3;

q!1;

/INon critical section

signal(NbStop);

Exercise 1 (solution

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <sys/msg.h>
#include <string.h>

#define MAX_SEND_SIZE 2

union semun {

int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */

b

struct mymsgbuf {
long mtype;
char mtext[MAX_SEND_SIZE];

b

void send_message(int qid, struct mymsgbuf *gbuf, long type, char
*text)

/* Send a message to the queue */
gbuf->mtype = type;
strcpy(gbuf->mtext, text);

if((msgsnd(qid, (struct msgbuf *)gbuf, strlen(qbuf->mtext)+1, 0))
==-1){
perror("msgsnd");
exit(1);

void read_message(int qid, struct mymsgbuf *qbuf, long type)
{

/* Read a message from the queue */

gbuf->mtype = type;

msgrcv(qid, (struct msgbuf *)gbuf, MAX_SEND_SIZE, type, 0);

void locksem(int sid, int member)

{

struct sembuf sem_lock={ 0, -1, 0};
if(member<0 | | member>0) {

fprintf(stderr, "semaphore member %d out of range\n", member);

return;

}

sem_lock.sem_num = member;

if((semop(sid, &sem_lock, 1)) == -1) {
fprintf(stderr, "Wait failed\n");
exit(1);

}

void unlocksem(int sid, int member)

{
struct sembuf sem_unlock={ member, 1, 0};
int semval;
if(member<0 | | member>0) {

fprintf(stderr, "semaphore member %d out of range\n", member);

return;

}

sem_unlock.sem_num = member;

/* Attempt to unlock the semaphore set */

if((semop(sid, &sem_unlock, 1)) == -1) {
fprintf(stderr, "Signal failed\n");
exit(1);

Exercise 1 (solution; cont'd)

}erteshm(mt segptr, int index, int value) philosopher(int msgqueue_id, int phil_id, int* segptr, int semid)
segptr[index] = value; {
printf("(Controler) Wrote %d\n", value);

} fflush(stdout); while(readshm(segptr,phil_id,0) == 0) //While not stopped
{

int readshm(int* segptr, int id, int index)

struct mymsgbuf gbuf;

read_message(msgqueue_id, &qbuf, (phil_id+1));

{ if(segptrlindex] > 0) printf("'(Philosopher %d) Taking left fork\n",(phil_id+1));
printf("(Philosopher %d) Read %d\n", (id+1), fflush(stdout);
segptrimdex]); tr[index]; read_message(msgqueue_id, &qgbuf, (phil_id+2));
} return segptriindexy; printf("(Philosopher %d) Taking right fork\n",(phil_id+1));
. . printf("(Philosopher %d) Eating\n",(phil_id+1));
Eemove_sem(lnt semid) fflush(stdout);
semctl(semid, 0, IPC_RMID, 0); . - nqn
P P = r . . send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, (phil_id+1), "1");
} printf("Semaphore set marked for deletion\n"); printf("(Philosopher %d) Dropping left fork\n",(phil_id+1));
fflush(stdout);
Eemove_shm(int shmid) send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, (phil_id+2), "1");
. printf("(Philosopher %d) Dropping right fork\n",(phil_id+1));
shmctl(shmid, IPC_RMID, 0); R T PP
NPT T = ' . ", printf("(Philosopher %d) Thinking\n",(phil_id+1));
} printf("Shared memory segment marked for deletion\n"); fflush(stdout);
}
}IOid remove_queue(int qid) unlocksem(semid,0);
}

/* Remove the queue */
msgctl(qid, IPC_RMID, 0);
printf("Message queue marked for deletion\n");

Exercise 1 (solution; cont'd

last_philosopher(int msgqueue_id, int*segptr, int semid)

struct mymsgbuf gbuf;

while(readshm(segptr,2,0) == 0) //While not stopped

{

}

read_message(msgqueue_id, &qbuf, 1);
printf("(Philosopher %d) Taking right fork\n",3);
fflush(stdout);

read_message(msgqueue_id, &qgbuf, 3);
printf("(Philosopher %d) Taking left fork\n",3);

printf("(Philosopher %d) Eating\n",3);
fflush(stdout);

send_message(msgqueue_id, (struct mymsgbuf *)&qgbuf, 3, "3");
printf("(Philosopher %d) Dropping left fork\n",3);
fflush(stdout);

send_message(msgqueue_id, (struct mymsgbuf *)&qgbuf, 1, "1");
printf("(Philosopher %d) Dropping right fork\n",3);
printf("(Philosopher %d) Thinking\n",3);

fflush(stdout);

unlocksem(semid,0);

controler(int msgqueue_id, int*segptr, int semid, int shmid)

{

}

getchar();
writeshm(segptr,0,1);
locksem(semid,0);
locksem(semid,0);
locksem(semid,0);
remove_queue(msgqueue_id);
remove_shm(shmid);
remove_sem(semid);

int main(int argc, char *argv[])

{

key_t key_q, key_mem, key_sem;
int msgqueue_id;

struct mymsgbuf gbuf;

int id, cntr;

pid_t pid;

int shmid, semid;

int *segptr;

union semun semopts;

/* Create unique key via call to ftok() */
key_q = ftok(".", 'q');

key_mem = ftok(".", ‘'m');
key_sem = ftok(".", 's');

/* Open the queue - create if necessary */
if((msgqueue_id = msgget(key_gq, IPC_CREAT|0660))
perror("'msgget");
exit(1);

-1){

Exercise 1 (solution; cont'd

//Filling the message queue

send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 1, "1");
send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 2, "2");
send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 3, "3");

/* Open the shared memory segment - create if necessary */
if((shmid = shmget(key_mem, sizeof(int), IPC_CREAT | IPC_EXCL| 0666)) ==
{

printf("Shared memory segment exists - opening as client\n");

/* Segment probably already exists - try as a client */
if((shmid = shmget(key_mem, sizeof(int), 0)) == -1)

{
perror("shmget");
exit(1);
}
}
else
{
printf("Creating new shared memory segment\n");
}

/* Attach (map) the shared memory segment into the current process */
if((segptr = (int *)shmat(shmid, 0, 0)) == (int *)-1)
{

perror("shmat");
exit(1);
}
writeshm(segptr,0,0);

//Creating the semaphore array
printf(" Attempting to create new semaphore set with 1 member\n");

-1)

if((semid = semget(key_sem, 1, IPC_CREAT |IPC_EXCL|0666)) == -1)
fprintf(stderr, "Semaphore set already exists!\n");
exit(1);

}

semopts.val = 0;
semctl(semid, 0, SETVAL, semopts);

//Creating the philosopher processes
id=0;
for(cntr = 0; cntr < 3; cntr++)

pid = fork();
if(pid < 0) {
perror("Process creation failed");
exit(1);
}
if(pid == 0) {
//This is a son
if(cntr < 2)
philosopher(msgqueue_id,id, segptr, semid);
else
last_philosopher(msgqueue_id, segptr, semid);
cntr = 3;
}
else {
//This is the father
id++;
}
}
if(pid !=0)

controler(msgqueue_id, segptr, semid, shmid);

return(0);

Exercise 1 (execution)

ms805:~/cpp/test$./R5_ex3
Creating new shared memory segment
(Controler) wWrote 0

Attempting to create new semaphore set with 1 members
)} Taking left fork

(Philosopher

(Philosopher 1

(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher

Taking right fork
Eating

Dropping left fork
DropEing right fork
Thin in?

Taking left fork
Taking right fork
Eating

Dropping left fork
Drngjng right fork
Thin 1n?

Taking left fork
Taking right fork
Eating

Dropping left fork
DropEing right fork
Thinking

Taking right fork
Taking left fork
Taking right fork
Eating

Dropping left fork
Droppin? right fork
Taking left fork
Eating

Think1n?

Taking lTeft fork
Dropping left fork
Dropping right fork
Taking right fork
Taking left fork
Eating

Thinking

Dropping left fork
Taking right fork
Eating

Dropping left fork

(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher

(Philosopher
(Philosopher

Thinking

Taking right fork
DFDpp1H? right fork
Taking left fork
Eating

Thinking

Droppin? left fork
Taking left fork
Taking right fork
DFUDD1H? right fork
Taking left fork
Eating

Thinking

Dropping left fork
Taking right fork
Eating

Dropping left fork
Dropﬂing right fork
Thinking

Taking right fork

) Dropping right fork

(Controler) Wrote 1

(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher
(Philosopher

Taking left fork
Eating

Thinking

Read 1

Dropping left fork
Druppin? right fork
Taking left fork
Taking right fork
Eating

Dropping left fork
Dropﬂing right fork
Thinking

Read 1

Thinking

) Read 1

Wessage gueue marked for deletion

share

memory segment marked for deletion

Semaphore set marked for deletion
ms805:~/cpp/test§ |

