
Computation structures
Support for problem-solving lesson #9

Exercise 1

Reminder

• Message queues are communication mechanisms that allow the
passing of messages between processes

• Two operations can be performed on message queues : read (q?)
and write (q!).

• q!x will send the message x into the queue q when there's room
left.

• q?<x> will:
− Read the message x (and remove it from the queue) until it can be found;
− Read the oldest message (and remove it from the queue) if x is a variable.

• q!x and q?<x> are (generally) blocking and atomic operations.

Exercise 1

The dining philosopher's problem

Three philosophers are seated at a round table. A plate is placed in front of
them and there are three forks on the table (one to the left and one to the
right of each philosopher).

A philosopher can think (without any constraint) or eat (and requires two
forks to do so). After eating, a philosopher will put back his forks on the table
so that other philosophers (or possibly, the same one) can eat.

Use the C language to implement the code of the philosophers processes
using only message queues to protect the resources (the forks).

Exercise 1

Things to pay attention to:

• A philosopher can only eat if he has two forks in hand.

• We must ensure that no deadlock (nor livelock) will ever happen.
− Each philosopher first takes the fork to his left, then the fork to his right

(whenever available).
− Worst case : Each philosopher takes the fork to his left, nobody can eat and

there's no available forks left (deadlock).
− Each philosopher first takes the fork to his left (blocking mode), then tries to

get the fork to his right (non-blocking mode) and, if that's not possible, it
drops the left fork and tries again after some time.

− Worst case : Each philosopher takes the fork to his left, notices that the right
fork is not available, then drops the left fork and tries again indefinetely
without succeeding (live lock).

• Solution : One of the philosophers takes the right fork and
then the left fork.

Exercise 1

• Understanding live locks

Img src : www.aussiebrokers.com.au, thumb10.shutterstock.com, webitou.com

http://www.aussiebrokers.com.au/
thumb10.shutterstock.com
http://webitou.com/index.php?page=search/images&search=old+lady+comic+image&type=images

Exercise 1

• Understanding live locks

Img src : www.aussiebrokers.com.au, thumb10.shutterstock.com, webitou.com

http://www.aussiebrokers.com.au/
thumb10.shutterstock.com
http://webitou.com/index.php?page=search/images&search=old+lady+comic+image&type=images

Exercise 1

How to get out of a live-lock?

• Let the processes decide for themselves who should get
the resource.
• Talk to the lady in the supermarket and decide together who

should go first.
• (Network) Try again after a random period of time.

(livelock still possible in theory, but works in practice).

• Decide, in advance, who should get the resource first in
case of "conflict".
• e.g. "Elders always go first".
• In our case : Assign a number to each philosopher.

Exercise 1

• What if I want to use IPCs in blocking mode only?

• Make the order for the processes implicit by
imposing an order on the resources (semaphores)
themselves.

• Always take the resource with the lowest number
first.

Exercise 1

Things to pay attention to:

• A philosopher can only eat if he has two forks in hand.

• We must ensure that no deadlock (nor livelock) will ever happen.
− Each philosopher first takes the fork to his left, then the fork to his right

(whenever available).
− Worst case : Each philosopher takes the fork to his left, nobody can eat and

there's no available forks left (deadlock).
− Each philosopher first takes the fork to his left (blocking mode), then tries to

get the fork to his right (non-blocking mode) and, if that's not possible, it
drops the left fork and tries again after some time.

− Worst case : Each philosopher takes the fork to his left, notices that the right
fork is not available, then drops the left fork and tries again indefinetely
without succeeding (live lock).

• Solution : One of the philosophers takes the right fork and
then the left fork.

Exercise 1

• You can't find any state that doesn't lead to
another state (no deadlock)

• You can't find any loop where no philosophers
eat (no livelock)

• In general, order your mutex resources and use
that order in wait() operations

Exercise 1
Now that we solved the (dead or live) lock problem, the rest is
straightforward.

shared chan q[3] = {1,2,3};

//The last philosopher

while(true) {

q?1;

q?3;

//Critical section

q!3;

q!1;

//Non critical section

}

//The first two philosophers

int id; //equals 1 or 2

while(true) {

q?id;

q?(id+1);

//Critical section

q!id;

q!(id+1);

//Non critical section

}

Exercise 1
To stop the program in a clean way, we can use a semaphore and an
integer in shared memory.

shared semaphore NbStop = 0;

shared int finished = 0;

shared chan q[3] = {1,2,3};

//The last philosopher

while(finished == 0) {

q?1;

q?3;

//Critical section

q!3;

q!1;

//Non critical section

}

signal(NbStop);

//The first two philosophers

int id; //equals 1 or 2

while(finished == 0) {

q?id;

q?(id+1);

//Critical section

q!id;

q!(id+1);

//Non critical section

}

signal(NbStop);

//The control process

getchar();

finished = 1;

for(int i=0, i<3; i++) {

wait(NbStop);

}

//Delete NbStop;

//Delete finished;

//Delete q;

Exercise 1 (solution)
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <sys/msg.h>
#include <string.h>

#define MAX_SEND_SIZE 2

union semun {
int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */

};

struct mymsgbuf {
long mtype;
char mtext[MAX_SEND_SIZE];

};

void send_message(int qid, struct mymsgbuf *qbuf, long type, char
*text)
{

/* Send a message to the queue */
qbuf->mtype = type;
strcpy(qbuf->mtext, text);

if((msgsnd(qid, (struct msgbuf *)qbuf, strlen(qbuf->mtext)+1, 0))
==-1) {

perror("msgsnd");
exit(1);

}
}

void read_message(int qid, struct mymsgbuf *qbuf, long type)
{

/* Read a message from the queue */
qbuf->mtype = type;
msgrcv(qid, (struct msgbuf *)qbuf, MAX_SEND_SIZE, type, 0);

}

void locksem(int sid, int member)
{

struct sembuf sem_lock={ 0, -1, 0};
if(member<0 || member>0) {

fprintf(stderr, "semaphore member %d out of range\n", member);
return;

}
sem_lock.sem_num = member;
if((semop(sid, &sem_lock, 1)) == -1) {

fprintf(stderr, "Wait failed\n");
exit(1);

}
}

void unlocksem(int sid, int member)
{

struct sembuf sem_unlock={ member, 1, 0};
int semval;
if(member<0 || member>0) {

fprintf(stderr, "semaphore member %d out of range\n", member);
return;

}
sem_unlock.sem_num = member;
/* Attempt to unlock the semaphore set */
if((semop(sid, &sem_unlock, 1)) == -1) {

fprintf(stderr, "Signal failed\n");
exit(1);

}
}

Exercise 1 (solution; cont'd)
writeshm(int* segptr, int index, int value)
{

segptr[index] = value;
printf("(Controler) Wrote %d\n", value);
fflush(stdout);

}

int readshm(int* segptr, int id, int index)
{

if(segptr[index] > 0)
printf("(Philosopher %d) Read %d\n", (id+1),

segptr[index]);
return segptr[index];

}

remove_sem(int semid)
{

semctl(semid, 0, IPC_RMID, 0);
printf("Semaphore set marked for deletion\n");

}

remove_shm(int shmid)
{

shmctl(shmid, IPC_RMID, 0);
printf("Shared memory segment marked for deletion\n");

}

void remove_queue(int qid)
{

/* Remove the queue */
msgctl(qid, IPC_RMID, 0);
printf("Message queue marked for deletion\n");

}

philosopher(int msgqueue_id, int phil_id, int* segptr, int semid)
{

struct mymsgbuf qbuf;

while(readshm(segptr,phil_id,0) == 0) //While not stopped
{

read_message(msgqueue_id, &qbuf, (phil_id+1));
printf("(Philosopher %d) Taking left fork\n",(phil_id+1));
fflush(stdout);

read_message(msgqueue_id, &qbuf, (phil_id+2));
printf("(Philosopher %d) Taking right fork\n",(phil_id+1));

printf("(Philosopher %d) Eating\n",(phil_id+1));
fflush(stdout);

send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, (phil_id+1), "1");
printf("(Philosopher %d) Dropping left fork\n",(phil_id+1));
fflush(stdout);

send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, (phil_id+2), "1");
printf("(Philosopher %d) Dropping right fork\n",(phil_id+1));
printf("(Philosopher %d) Thinking\n",(phil_id+1));
fflush(stdout);

}

unlocksem(semid,0);
}

Exercise 1 (solution; cont'd)
last_philosopher(int msgqueue_id, int*segptr, int semid)
{

struct mymsgbuf qbuf;

while(readshm(segptr,2,0) == 0) //While not stopped
{

read_message(msgqueue_id, &qbuf, 1);
printf("(Philosopher %d) Taking right fork\n",3);
fflush(stdout);

read_message(msgqueue_id, &qbuf, 3);
printf("(Philosopher %d) Taking left fork\n",3);

printf("(Philosopher %d) Eating\n",3);
fflush(stdout);

send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 3, "3");
printf("(Philosopher %d) Dropping left fork\n",3);
fflush(stdout);

send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 1, "1");
printf("(Philosopher %d) Dropping right fork\n",3);
printf("(Philosopher %d) Thinking\n",3);
fflush(stdout);

}

unlocksem(semid,0);
}

controler(int msgqueue_id, int*segptr, int semid, int shmid)
{

getchar();
writeshm(segptr,0,1);
locksem(semid,0);
locksem(semid,0);
locksem(semid,0);
remove_queue(msgqueue_id);
remove_shm(shmid);
remove_sem(semid);

}

int main(int argc, char *argv[])
{

key_t key_q, key_mem, key_sem;
int msgqueue_id;
struct mymsgbuf qbuf;
int id, cntr;
pid_t pid;
int shmid, semid;
int *segptr;
union semun semopts;

/* Create unique key via call to ftok() */
key_q = ftok(".", 'q');
key_mem = ftok(".", 'm');
key_sem = ftok(".", 's');

/* Open the queue - create if necessary */
if((msgqueue_id = msgget(key_q, IPC_CREAT|0660)) == -1) {

perror("msgget");
exit(1);

}

Exercise 1 (solution; cont'd)
//Filling the message queue
send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 1, "1");
send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 2, "2");
send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 3, "3");

/* Open the shared memory segment - create if necessary */
if((shmid = shmget(key_mem, sizeof(int), IPC_CREAT|IPC_EXCL|0666)) == -1)
{

printf("Shared memory segment exists - opening as client\n");

/* Segment probably already exists - try as a client */
if((shmid = shmget(key_mem, sizeof(int), 0)) == -1)
{

perror("shmget");
exit(1);

}
}
else
{

printf("Creating new shared memory segment\n");
}

/* Attach (map) the shared memory segment into the current process */
if((segptr = (int *)shmat(shmid, 0, 0)) == (int *)-1)
{

perror("shmat");
exit(1);

}

writeshm(segptr,0,0);

//Creating the semaphore array
printf("Attempting to create new semaphore set with 1 member\n");

if((semid = semget(key_sem, 1, IPC_CREAT|IPC_EXCL|0666)) == -1) {
fprintf(stderr, "Semaphore set already exists!\n");
exit(1);

}

semopts.val = 0;
semctl(semid, 0, SETVAL, semopts);

//Creating the philosopher processes
id = 0;
for(cntr = 0; cntr < 3; cntr++)
{

pid = fork();
if(pid < 0) {

perror("Process creation failed");
exit(1);

}
if(pid == 0) {

//This is a son
if(cntr < 2)

philosopher(msgqueue_id,id, segptr, semid);
else

last_philosopher(msgqueue_id, segptr, semid);
cntr = 3;

}
else {

//This is the father
id++;

}
}

if(pid != 0)
controler(msgqueue_id, segptr, semid, shmid);

return(0);
}

Exercise 1 (execution)

