Computation structures

Support for problem-solving lesson #9



Exercise 1

Reminder

Message queues are communication mechanisms that allow the
passing of messages between processes

Two operations can be performed on message queues : read (g?)
and write (q!).

g!x will send the message x into the queue g when there's room
left.

q?<x> will:
— Read the message x (and remove it from the queue) until it can be found;
— Read the oldest message (and remove it from the queue) if x is a variable.

q!x and gq?<x> are (generally) blocking and atomic operations.



Exercise 1

The dining philosopher's problem ®

Three philosophers are seated at a round table. A plate is placed in front of
them and there are three forks on the table (one to the left and one to the
right of each philosopher).

A philosopher can think (without any constraint) or eat (and requires two
forks to do so). After eating, a philosopher will put back his forks on the table
so that other philosophers (or possibly, the same one) can eat.

Use the C language to implement the code of the philosophers processes
using only message queues to protect the resources (the forks).



Exercise 1

Things to pay attention to:

* A philosopher can only eat if he has two forks in hand.

* We must ensure that no deadlock (nor livelock) will ever happen.

— Each philosopher first takes the fork to his left, then the fork to his right
(whenever available).

— Worst case : Each philosopher takes the fork to his left, nobody can eat and
there's no available forks left (deadlock).

— Each philosopher first takes the fork to his left (blocking mode), then tries to
get the fork to his right (non-blocking mode) and, if that's not possible, it
drops the left fork and tries again after some time.

— Worst case : Each philosopher takes the fork to his left, notices that the right
fork is not available, then drops the left fork and tries again indefinetely
without succeeding (live lock).



Exercise 1

* Understanding live locks
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Exercise 1

How to get out of a live-lock?

 Let the processes decide for themselves who should get

the resource.
* Talk to the lady in the supermarket and decide together who
should go first.
e (Network) Try again after a random period of time.

(livelock still possible in theory, but works in practice).

* Decide, in advance, who should get the resource first in

case of "conflict".

* e.g. "Elders always go first".
* In our case : Assign a number to each philosopher.



Exercise 1

 What if | want to use IPCs in blocking mode only?

* Make the order for the processes implicit by
imposing an order on the resources (semaphores)
themselves.

* Always take the resource with the lowest number
first.



Exercise 1

Things to pay attention to:

* A philosopher can only eat if he has two forks in hand.

* We must ensure that no deadlock (nor livelock) will ever happen.
— Each philosopher first takes the fork to his left, then the fork to his right
(whenever available).

— Worst case : Each philosopher takes the fork to his left, nobody can eat and
there's no available forks left (deadlock).

— Each philosopher first takes the fork to his left (blocking mode), then tries to
get the fork to his right (non-blocking mode) and, if that's not possible, it
drops the left fork and tries again after some time.

— Worst case : Each philosopher takes the fork to his left, notices that the right
fork is not available, then drops the left fork and tries again indefinetely
without succeeding (live lock).

* Solution : One of the philosophers takes the right fork and
then the left fork.
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* You can't find any state that doesn't lead to
another state (no deadlock)

Y
{0.1.2}.{0.0,0}

* You can't find any loop where no philosophers
eat (no livelock)

* |[n general, order your mutex resources and use
that order in wait() operations



Exercise 1

Now that we solved the (dead or live) lock problem, the rest is

straightforward.

shared chan q[3] = {1,2,3};

IIThe first two philosophers
intid; /lequals 1 or 2
while(true) {

q?id;

q?(id+1);

/[Critical section

qlid;

q!(id+1);

/INon critical section

IIThe last philosopher
while(true) {

q?1;

q?3;

/[Critical section
q!3;

q!1;

/INon critical section



Exercise 1

To stop the program in a clean way, we can use a semaphore and an
integer in shared memory.

shared semaphore NbStop = 0;
shared int finished = 0;
shared chan q[3] = {1,2,3};

IIThe first two philosophers
int id; //lequals 1 or 2
while(finished == 0) {

q?id;

q?(id+1);

/[Critical section

qlid;

q!(id+1);

/INon critical section

}
signal(NbStop);

/IThe control process

getchar();

finished = 1;

for(inti=0, i<3; i++) {
wait(NbStop);

}

/IDelete NbStop;

/IDelete finished;

/IDelete q;

IIThe last philosopher
while(finished == 0) {

}

q?1;

q?3;

/[Critical section
q!3;

q!1;

/INon critical section

signal(NbStop);



Exercise 1 (solution

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <sys/msg.h>
#include <string.h>

#define MAX_SEND_SIZE 2

union semun {

int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */

b

struct mymsgbuf {
long mtype;
char mtext[MAX_SEND_SIZE];

b

void send_message(int qid, struct mymsgbuf *gbuf, long type, char
*text)

/* Send a message to the queue */
gbuf->mtype = type;
strcpy(gbuf->mtext, text);

if((msgsnd(qid, (struct msgbuf *)gbuf, strlen(qbuf->mtext)+1, 0))
==-1){
perror("msgsnd");
exit(1);

void read_message(int qid, struct mymsgbuf *qbuf, long type)
{

/* Read a message from the queue */

gbuf->mtype = type;

msgrcv(qid, (struct msgbuf *)gbuf, MAX_SEND_SIZE, type, 0);

void locksem(int sid, int member)

{

struct sembuf sem_lock={ 0, -1, 0};
if( member<0 | | member>0) {

fprintf(stderr, "semaphore member %d out of range\n", member);

return;

}

sem_lock.sem_num = member;

if((semop(sid, &sem_lock, 1)) == -1) {
fprintf(stderr, "Wait failed\n");
exit(1);

}

void unlocksem(int sid, int member)

{
struct sembuf sem_unlock={ member, 1, 0};
int semval;
if( member<0 | | member>0) {

fprintf(stderr, "semaphore member %d out of range\n", member);

return;

}

sem_unlock.sem_num = member;

/* Attempt to unlock the semaphore set */

if((semop(sid, &sem_unlock, 1)) == -1) {
fprintf(stderr, "Signal failed\n");
exit(1);



Exercise 1 (solution; cont'd)

}erteshm(mt segptr, int index, int value) philosopher(int msgqueue_id, int phil_id, int* segptr, int semid)
segptr[index] = value; {
printf("(Controler) Wrote %d\n", value);

} fflush(stdout); while(readshm(segptr,phil_id,0) == 0) //While not stopped
{

int readshm(int* segptr, int id, int index)

struct mymsgbuf gbuf;

read_message(msgqueue_id, &qbuf, (phil_id+1));

{ if(segptrlindex] > 0) printf("'(Philosopher %d) Taking left fork\n",(phil_id+1));
printf("(Philosopher %d) Read %d\n", (id+1), fflush(stdout);
segptrimdex]); tr[index]; read_message(msgqueue_id, &qgbuf, (phil_id+2));
} return segptriindexy; printf("(Philosopher %d) Taking right fork\n",(phil_id+1));
. . printf("(Philosopher %d) Eating\n",(phil_id+1));
Eemove_sem(lnt semid) fflush(stdout);
semctl(semid, 0, IPC_RMID, 0); . - nqn
P P = r . . send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, (phil_id+1), "1");
} printf("Semaphore set marked for deletion\n"); printf("(Philosopher %d) Dropping left fork\n",(phil_id+1));
fflush(stdout);
Eemove_shm(int shmid) send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, (phil_id+2), "1");
. printf("(Philosopher %d) Dropping right fork\n",(phil_id+1));
shmctl(shmid, IPC_RMID, 0); R T PP
NPT T = ' . ", printf("(Philosopher %d) Thinking\n",(phil_id+1));
} printf("Shared memory segment marked for deletion\n"); fflush(stdout);
}
}IOid remove_queue(int qid) unlocksem(semid,0);
}

/* Remove the queue */
msgctl(qid, IPC_RMID, 0);
printf("Message queue marked for deletion\n");



Exercise 1 (solution; cont'd

last_philosopher(int msgqueue_id, int*segptr, int semid)

struct mymsgbuf gbuf;

while(readshm(segptr,2,0) == 0) //While not stopped

{

}

read_message(msgqueue_id, &qbuf, 1);
printf("(Philosopher %d) Taking right fork\n",3);
fflush(stdout);

read_message(msgqueue_id, &qgbuf, 3);
printf("(Philosopher %d) Taking left fork\n",3);

printf("(Philosopher %d) Eating\n",3);
fflush(stdout);

send_message(msgqueue_id, (struct mymsgbuf *)&qgbuf, 3, "3");
printf("(Philosopher %d) Dropping left fork\n",3);
fflush(stdout);

send_message(msgqueue_id, (struct mymsgbuf *)&qgbuf, 1, "1");
printf("(Philosopher %d) Dropping right fork\n",3);
printf("(Philosopher %d) Thinking\n",3);

fflush(stdout);

unlocksem(semid,0);

controler(int msgqueue_id, int*segptr, int semid, int shmid)

{

}

getchar();
writeshm(segptr,0,1);
locksem(semid,0);
locksem(semid,0);
locksem(semid,0);
remove_queue(msgqueue_id);
remove_shm(shmid);
remove_sem(semid);

int main(int argc, char *argv[])

{

key_t key_q, key_mem, key_sem;
int msgqueue_id;

struct mymsgbuf gbuf;

int id, cntr;

pid_t pid;

int shmid, semid;

int *segptr;

union semun semopts;

/* Create unique key via call to ftok() */
key_q = ftok(".", 'q');

key_mem = ftok(".", ‘'m');
key_sem = ftok(".", 's');

/* Open the queue - create if necessary */
if((msgqueue_id = msgget(key_gq, IPC_CREAT|0660))
perror("'msgget");
exit(1);

-1){



Exercise 1 (solution; cont'd

//Filling the message queue

send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 1, "1");
send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 2, "2");
send_message(msgqueue_id, (struct mymsgbuf *)&qbuf, 3, "3");

/* Open the shared memory segment - create if necessary */
if((shmid = shmget(key_mem, sizeof(int), IPC_CREAT | IPC_EXCL| 0666)) ==
{

printf("Shared memory segment exists - opening as client\n");

/* Segment probably already exists - try as a client */
if((shmid = shmget(key_mem, sizeof(int), 0)) == -1)

{
perror("shmget");
exit(1);
}
}
else
{
printf("Creating new shared memory segment\n");
}

/* Attach (map) the shared memory segment into the current process */
if((segptr = (int *)shmat(shmid, 0, 0)) == (int *)-1)
{

perror("shmat");
exit(1);
}
writeshm(segptr,0,0);

//Creating the semaphore array
printf(" Attempting to create new semaphore set with 1 member\n");

-1)

if((semid = semget(key_sem, 1, IPC_CREAT |IPC_EXCL|0666)) == -1)
fprintf(stderr, "Semaphore set already exists!\n");
exit(1);

}

semopts.val = 0;
semctl(semid, 0, SETVAL, semopts);

//Creating the philosopher processes
id=0;
for(cntr = 0; cntr < 3; cntr++)

pid = fork();
if(pid < 0) {
perror("Process creation failed");
exit(1);
}
if(pid == 0) {
//This is a son
if(cntr < 2)
philosopher(msgqueue_id,id, segptr, semid);
else
last_philosopher(msgqueue_id, segptr, semid);
cntr = 3;
}
else {
//This is the father
id++;
}
}
if(pid !=0)

controler(msgqueue_id, segptr, semid, shmid);

return(0);



Exercise 1 (execution)

ms805:~/cpp/test$ ./R5_ex3
Creating new shared memory segment
(Controler) wWrote 0

Attempting to create new semaphore set with 1 members
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(Controler) Wrote 1
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