INFO0012-2/3 : Project 2 (Parallel programming)

Deadline December 7th, 2015

| X1 X101 X|

lXxl1olol |
lXl1olol |
ol 101l XI

Figure 1: Sample display

For this project, you are asked to develop a program that will let the user
play tic-tac-toe against the computer. We will use the following terminology:

e Grid: The representation of the play-board. It is a square of N x N
tiles on which players can write 'X’s and 'O’s.

e Tile: A space on the grid that can hold an "X’ or an ’O’.

e Player: A human or a computer program playing the game.

1 Commands

Commands are taken from the console (keyboard) and are of three types.
The user can:

1. Select, at the beginning of a game, whether he wants to play 'X’s or
’O’S;

2. During the game, select a tile (described by its coordinates on the
grid) on which to write his symbol;

3. At the end of the game, restart a new game or exit the program.

2 Game rules

e There are two players : the (human) user and the automated player.
e The player writing ’O’s always starts first.

e The players move alternatively.

e A player can only write on an empty tile.

e On a grid of size N x N, the first player that fills a horizontal, vertical
or diagonal line of size N wins.

e If all tiles have been used and no player has been able to fill a line of
size N, the game ends in a draw.

e A win is preferable to a draw, which is preferable to a loss.

3 The automated player

The automated player is organized as set of processes: one master process
and a set of worker processes. It proceeds according to the algorithm de-
scribed below (for the game to be fun to play, we don’t want it to be too
smart).

e The master process creates P worker processes (the number P being
a parameter of the program). This is done only once.

e At each round, the automated player selects its move as follows.

— For each free tile, the master process assigns it to one of the
worker processes by sending a message to that process;

— When receiving a move to be examined, a worker process does T
(T is another parameter of the program) random simulations of
the rest of the game, i.e. it chooses each of its opponent’s and of
its own moves using a uniform distribution until the game ends
(by a win, a draw or a loss) and records that result;

— The worker process then computes a value for its assigned posi-
tion by adding twice the number of wins to the number of draws
and sends this result to the master process;

— it then waits for another request from the master process, or for
a signal to quit (when the program is being stopped)

— The master process then selects the move with the highest score
(if several moves has the same score, it can choose any of these).

4 Implementation

You are asked to write in C a parallel program that plays the game as
described above.

e The size N € [3,6] of the grid, the number P € [1,10] of processes
and the number T € [1,100] of loops should be parameters of your
program.

e The grid is displayed on the console and represented with ’-’, |, "X’
and 'O’ characters, as in the example given in Figure 1.

e The grid is stored in shared memory; an additional “game manager”
process is used to handle the console inputs and outputs. All processes
have access to the data stored in the shared memory.

e Access to the shared memory will be controlled with semaphores, if
needed. You are not allowed to use active waits (i.e., repeatedly testing
a condition in a loop).

e The user commands (selecting 'X’s or ’O’s, selecting a move, game
restart) are transmitted to “game manager” using terminal I/0.

e Communication between the “game manager” and the “master pro-
cess” of the automated player is handled using only shared memory
and semaphores for synchronization.

e Communication between the master process and the worker processes
is handled using blocking message queues.

5 Submission procedure

e This project must be coded in C using the System V IPCs for the
shared memory, the semaphores and the message queues. The display
will be performed on the console.

e You must write a report describing how you implemented your pro-
gram, and in particular how the synchronization is performed.

e The project has to be done in teams of 2 students and completed
before before December Tth at 23h59. The completed program and
report (PDF only) will be included in a ZIP archive named
SXXXXXX_NAME1 sYYYYYY NAME2.zip where sXXXXXX, NAME1, sYYYYYY,
and NAME2, are the student IDs and uppercase surnames of the team
members.

Submit your archive to the Montefiore Submission Platform!',
after having created an account if necessary. If you encounter any
problem with the platform, let me know (S.Hiard@ulg.ac.be). How-
ever problems that unexpectedly and mysteriously appear five minutes
before the deadline will not be considered. Do not send your work
by E-mail; it will not be read.

Good programming...

"http://submit.run.montefiore.ulg.ac.be/

mailto:S.Hiard@ulg.ac.be
http://submit.run.montefiore.ulg.ac.be/

	1 Commands
	2 Game rules
	3 The automated player
	4 Implementation
	5 Submission procedure

