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New opportunities requiring new methods

A new generation of industrial quality robotic manipula-
tors is currently being released on the international market.
State of the art over-actuated manipulators are now starting
to be flanked with a significant proprioceptive capacity (i.e.
force/torque sensing at each joint). Joint proprioception can
be further extended by force/torque sensing at the robot’s
wrist and multi-fingered robotic hands provided with torque
and tactile sensing. Therefore, although still fulfilling the
key properties of traditional industrial robots in their motor
actuation (i.e. accuracy, high performance, control, reliability
and durability), a new class of commercial robots can now
receive significant sensory feedback, enhancing their poten-
tial for adaptive dexterous manipulation. Against a relatively
limited financial investment (starting from approximately
20.000 US dollars), manufacturers can now easily deploy
this novel option in their workshops. The manufacturing
process can integrate unprecedented possibilities in form
of low cost, flexible, industrial quality manipulators under
extended proprioceptive monitoring.

However, in contemporary robotics, major hardware im-
provements require the balanced coupling with comparably
efficient soft methods. Unfortunately, when trying to exploit
the full potential of the new robots for a broad range of
industrial applications, the current unbalance between hard
and soft methods emerges. Nowadays, the deployment of
true, skillful and flexible manipulation can only be achieved
in front of significant costs due to the rather delicate and
complex process of dedicated software development.

Nevertheless, the current generation of robotic manipula-
tors seems ready for major advancement in the field of HRI,
in particular for the transfer of physical skills from humans
to robots. Over the last decade, a significant body of work
has focused on the generation of trajectories, reproducing at
the level of the robot’s end effector the ones demonstrated
by a human instructor, and on the system’s capacity to
generalize these trajectories to novel situations (e.g. coping
with obstacles or other constraints). This approach, namely
programming by demonstration (hereafter PbD [1]), can be
implemented as a general architecture for flexible use. In
kinesthetic approaches, the end effector is physically grabbed
by the human demonstrator, and moved in space to directly
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offer one or multiple examples of the required behavior.
Practical methods can be deployed in order to minimize
the mechanical interference due to the robot’s inertia during
the demonstration [2]. Obviously, the kinesthetic form of
PbD is more natural to human instructors than explicit
programming of complex movements in partially uncertain
scenarios. Recent work has integrated the reproduction of the
trajectory with the associated force profile of the interaction
between the robot’s tool and its environment for simple tasks
such as ironing [3].

Transferring in-contact skills from humans to robots

We believe that robotic systems with enhanced proprio-
ceptive capacities can be effectively used for the transfer of
physical skills from humans to robots, particularly for skills
requiring non trivial sensorimotor coordination.

Kinesthetic teaching for in-contact tasks is a promising
way to capture the actual dynamics of mechanical interac-
tion between an expert human demonstrator and a material
substrate. By in-contact tasks we mean tasks for which the
ability to skillfully distribute a spatial and temporal profile
of mechanical forces at the interface between the arm and
the material plays a crucial role. Kinesthetic teaching can
be combined with multi-modal sensory inputs (e.g. tactile,
visual, auditory) in order to facilitate more natural and
effective human robot interactions. For example the auditory
modality can carry vocal information used by the instruc-
tor to modulate the intensity or amplitude of the robot’s
movement. Furthermore, sound produced by the interaction
between the robot’s tool and the manipulated material can
carry useful information.

As mentioned above, most recent studies in PbD aimed
for the reproduction of demonstrated trajectories (e.g. [4],
[5], [6]). During dynamic interaction, trajectory is directly
accessible to our visual senses and its salience to human
observers can be easily predicted. Nevertheless, in order
to actually encode human skills for in-contact tasks we
are mostly interested in capturing the actual dynamics of
mechanical interaction between the human agent and the
object under manipulation, as in the spirit of [7]. Such an
interaction is physically characterized by a partly uncertain
scenario, due to several parameters that cannot be directly
controlled, and requires continuous adaptation to the current
factual conditions. From this point of view, the generation
of trajectories might be considered merely functional to the
establishment of the proper agent-material dynamics, while
respecting physical and geometrical constraints (i.e. desired
shapes, geometrical boundaries, etc.). Once the constraints
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Fig. 1. In a PbD scenario, proprioception and multimodal sensing feed
the adaptive mechanism, facilitating the transfer of skills for in-contact
tasks from humans to robots. The material, rather than being an accessory
entity, acts as the substrate that makes this transfer possible. Reinforcement
learning, coupled to the capacity for action, completes the transfer by
adapting the acquired skill to the robot’s specific embodiment.

are relaxed, the trajectory only traces the necessary move-
ment as a result of maintaining appropriate agent-material
dynamics.

Interweaving perception and action via the material

The new class of robots, endowed with enhanced proprio-
ception, also seems ready to reduce the ability gap between
human craftspersons and technological manufacturing. In
traditional robotics, the robot is the active agent. It typically
injects relatively high levels of mechanical power at the
mechanical interface between its tool and the processed ma-
terial, often with little regard for the intrinsic mechanical re-
sponse of the material itself. In this sense, the manufacturing
process could be qualitatively described as a static (although
non stationary) chain of unidirectional events. However,
robotic manipulators with increased levels of proprioceptive
capacities, while maintaining their traditional role as an
active agent (thus acting in the same direction as before),
would also be able to assess the material’s response to the
given mechanical stimulation (in the opposite direction). In
other words, the proprioceptive robot would at once evoke
and listen to the specific material’s response, interweaving
perception and action through the material as they occur. This
might open an opportunity for groundbreaking development
in the field of robotic manufacturing, advancing it by means
of robots that could physically operate in ways more similar
to human artisans, shaping and revealing at the same time
the hidden mechanical properties of the materials, and thus
broadening the traditional scope of industrial robotics.

High sensitivity in the proprioceptive capacity is a key
factor in the broad range of applications that can be foreseen
for the methods here described. For example, a current
socially critical problem is the insufficient availability of ex-
perts in physical rehabilitation for several classes of patients
(e.g. orthopedic, post-strokes, etc.). We can easily imagine
scenarios where the human expert offers the robot kinesthetic
instruction. The robot can then execute similar manipulations

on the patient, and focus on the passive response of the
manipulated tissues and on the active response of the patient.

Conclusions

Of course, this position paper is increasingly venturing
toward the realm of open research questions and specu-
lations. Nevertheless, we are convinced that such specula-
tions and questions can now start to be addressed with the
necessary technical resources in hand. The above does not
imply that the answer will be trivial or even feasible. For
example, transferring skills for in-contact tasks from a human
instructor to a robot opens an obvious problem regarding the
different embodiment. Humans are characterized by strong
lower limbs, that can provide relatively high levels of force
at low frequency. Upper limbs are more suitable to deliver
lower forces at higher frequency and with increased accuracy
with respect to our lower limbs. The magnitude of propri-
oceptive sensitivity, limited in our lower limbs, increases
dramatically from shoulder to fingertips. Our trunk seems
to mechanically couple and modulate these two components
for skillful physical action. Can a skill that is encoded in
the human-like kind of embodiment be directly ported, for
example, to a robotic arm with seven degrees of freedom
(and therefore to some extent representative of the human
arm in isolation)? Is there a limit to this kind of porting?
Can it be quantitatively or qualitatively characterized? The
introduction of more sophisticated adaptive strategies in
parallel with the traditional methods of PbD could facilitate
this mapping. For example, recent work has highlighted the
beneficial effects of reinforcement learning in PbD [8], [9].
After initial training, the robotic system could autonomously
search for more efficient solutions according to its specific
embodiment.

The territory briefly sketched in this paper covers a sig-
nificant part of the research space that we intend to explore
in our future work.
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