Systems and models in chronobiology

A delay model for the circadian rhythm

M. Dechesne
R. Sepulchre

Department of Electrical Engineering and Computer Science
Montefiore Institute
University of Liège

24th Benelux Meeting on Systems and Control
Houffalize, 22-24 March 2005
Outline

Introduction

State of the art in mathematical modeling of the circadian rhythm
 Biological modeling for the circadian oscillator
Results

Systems viewpoint: Why is it useful?

Application to the analysis of the circadian rhythm

Conclusion
Systems and models in chronobiology

Introduction

Outline

Introduction

State of the art in mathematical modeling of the circadian rhythm
Biological modeling for the circadian oscillator
Results

Systems viewpoint: Why is it useful?

Application to the analysis of the circadian rhythm

Conclusion
Circadian rhythms (1)
Definition and roles

Definition
Biological rhythms with a period $\tau \sim 24$h

Roles
Circadian rhythms control

- Sleep
- Muscular activity and metabolism
- Food ingestion
- ...

Moreover, there are possible links with various pathologies
Circadian rhythms (2)

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubiquitous</td>
<td>All eukaryotes and some prokaryotes</td>
</tr>
<tr>
<td>Entrainment</td>
<td>Zeitgeber=light/temperature cycles</td>
</tr>
<tr>
<td>Genetic mechanisms</td>
<td>Single-gene clock mutants isolated</td>
</tr>
<tr>
<td>Precision</td>
<td>$\Delta \tau < 0.1%$</td>
</tr>
<tr>
<td>Robustness</td>
<td>$T^\circ, IC...$</td>
</tr>
<tr>
<td>Cellular nature</td>
<td>A cell-autonomous circadian oscillator mechanism exists and appears to be a fundamental unit even among multicellular organisms</td>
</tr>
</tbody>
</table>
Outline

Introduction

State of the art in mathematical modeling of the circadian rhythm
 Biological modeling for the circadian oscillator
Results

Systems viewpoint: Why is it useful?

Application to the analysis of the circadian rhythm

Conclusion
Simple model
Biochemical principle

Simple model
Equations

\[
\begin{align*}
\dot{M} &= v_s \frac{K^n}{K^n + P_n^N} - v_m \frac{M}{k_m + M} \\
\dot{P}_0 &= k_s M - V_1 \frac{P_0}{K_1 + P_0} + V_2 \frac{P_1}{K_2 + P_1} \\
\dot{P}_1 &= V_1 \frac{P_0}{K_1 + P_0} - V_2 \frac{P_1}{K_2 + P_1} - V_3 \frac{P_1}{K_3 + P_1} + V_4 \frac{P_2}{K_4 + P_2} \\
\dot{P}_2 &= V_3 \frac{P_1}{K_3 + P_1} - V_4 \frac{P_2}{K_4 + P_2} - k_1 P_2 + k_2 P_N - v_d \frac{P_2}{k_d + P_2} \\
\dot{P}_N &= k_1 P_2 - k_2 P_N
\end{align*}
\]

- 5 nonlinear ODEs
- 17 parameters
Evolutions of the model

Drosophila

- 10 nonlinear ODEs
- 34 parameters
Evolutions of the model

Drosophila
- 10 nonlinear ODEs
- 34 parameters

Mammals
- 19 nonlinear ODEs
- 59 parameters
Results (1)
Oscillations and limit cycle

Oscillations

Limit Cycle
Results (2)

Entrainment
Results (3)
Bifurcation diagram
Outline

Introduction

State of the art in mathematical modeling of the circadian rhythm
 Biological modeling for the circadian oscillator

Results

Systems viewpoint: Why is it useful?

Application to the analysis of the circadian rhythm

Conclusion
Limitations of current mathematical modeling

- Very complicated systems (strongly nonlinear, several variables and parameters)
 → restricted to numerical simulations
- Impossible to test all parameter combinations
- Mathematically (and computationally) difficult to study interconnections
- Exhibit some properties, but NOT explain them
System approach
Principle

Developing or using system models and tools for the analysis of biological system (and particularly oscillatory systems)
By nature, cells are open systems, i.e. with inputs and outputs. Many unexplained properties are related to fundamental systems questions:

- Why is there an entrainment?
- Why is the system robust to certain parameters variation (T°, initial conditions...)? Why is it robust to molecular noise? And to external disturbance?
- How can we guess from observed properties, the values of unknown parameters?
- Why is there a synchronization in networks of oscillators? What kind of synchronized behaviour may we expect given a particular network configuration?
Outline

Introduction

State of the art in mathematical modeling of the circadian rhythm
 Biological modeling for the circadian oscillator
Results

Systems viewpoint: Why is it useful?

Application to the analysis of the circadian rhythm

Conclusion
Recent approaches

Classical methods for the analysis of limit cycles

Limitations: either useless in high dimension (and so for interconnections) or unable to handle global treatment

Abstract models

Limitations: Acts more as a “black box” i.e. it is possible to obtain qualitative information, but no quantitative one.

Development of new methods

- Monotone Systems (P. de Leenheer, D. Angeli, E. Sontag)
- Piecewise Linear Systems - PLS (J. Goncalves)
- Dissipative Systems (R. Sepulchre, G.B. Stan)

= dedicated I/O approaches
Recent approaches

Classical methods for the analysis of limit cycles

Limitations: either useless in high dimension (and so for interconnections) or unable to handle global treatment

Abstract models

Limitations: Acts more as a “black box” i.e. it is possible to obtain qualitative information, but no quantitative one.

Development of new methods

- Monotone Systems (P. de Leenheer, D. Angeli, E. Sontag)
- Piecewise Linear Systems - PLS (J. Goncalves)
- Dissipative Systems (R. Sepulchre, G.B. Stan)

= dedicated I/O approaches
Recent approaches

Classical methods for the analysis of limit cycles
Limitations: either useless in high dimension (and so for interconnections) or unable to handle global treatment

Abstract models
Limitations: Acts more as a “black box” i.e. it is possible to obtain qualitative information, but no quantitative one.

Development of new methods

- Monotone Systems (P. de Leenheer, D. Angeli, E. Sontag)
- Piecewise Linear Systems - PLS (J. Goncalves)
- Dissipative Systems (R. Sepulchre, G.B. Stan)

= dedicated I/O approaches
A delay model for the circadian rhythm
Variation on Goldbeter’s model: 2 variables

\[
\dot{M} = v_s \frac{K_l^n}{K_l^n + P^n} - v_m M
\]
\[
\dot{P} = v_P M(t - \tau)^m - v_d P
\]

from T. olde Scheper and al., A Mathematical Model for the Intracellular Circadian Rhythm Generator, J. of Neuroscience, 1999
A delay model for the circadian rhythm
Further simplification: 1 variable

This model is equivalent to the famous Mackey and Glass’ model for Red Blood Cell regulation.
Outline

Introduction

State of the art in mathematical modeling of the circadian rhythm
 Biological modeling for the circadian oscillator
Results

Systems viewpoint: Why is it useful?

Application to the analysis of the circadian rhythm

Conclusion
Conclusion and perspectives

There remains many **unsolved questions** in the exploding field of mathematical biology. Most of these are **natural** in the framework of **systems modeling**: synchronization, robustness, entrainment...

Our research group currently develops methods based on an input/output approach to answer (some of) those questions and **classify** basic oscillatory mechanisms.

We are tempted to analyze a new mechanism based on a **delay** and a specific **regulatory nonlinearity** in the feedback loop.
Thank you

Thank you for your attention... :-)