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Sources and recommended readings

0 The following paper is part of the course material as case study :

» Ontology Based Data Access in Statoil (Kharlamov et al. 2017).

O Sources and useful additional readings :
» RDF Database Systems, (Curé and Blin 2015) : comprehensive review of the state of the art on RDF stores.

OBDA is a recent discipline led by a few scientific teams. Its presentation here is mostly based on :

» Ontology-based Data Access: Theory and Practice, (Xiao and Kontchakov), IJCAI 2018 tutorial.

m  Query Answering and Rewriting in Ontology-Based Data Access, (Rosati), KR 2014 tutorial.

» Ontology-Based Data Access: From Theory to Practice (Calvanese 2012).

0 University courses having partially inspired ideas and examples for this chapter :
s Grundlagen von Ontologien und Datenbanken fiir Informationssysteme (CS§5130), Oz;ep, Universitat Liibeck.

»  Ontology languages (COMP321), Wolter, University of Liverpool.


http://www.dbai.tuwien.ac.at/kr2014/downloads/Rosati.pdf
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Background questions

1.  Why not use a relational database (why NoSQL) ?

2. To cope with change, why can’t we just change the RDBMS schema ?
3. Why is data integration so difficult ?

4. What is a triple store — or a graph database ?



The IT environments

In a normal I'T environment, Application
Delivery is not allowed to push directly
programs or data in production !

YA YA

Application delivery Infrastructure
department |:> |:: > department

Development  Integration Test Production

Q Development : hosts the development of applications.
a Integr ation : hosts integration testing of all components of a solution.
0 Test : hosts final tests of functional and non-functional aspects of applications. Ideally a mirror of production.

0 Production : runs business applications, servers, databases. Must “keep the lights on”.



What do we find in production?

0 Hardware :

= Servers, networking, storage.

O Software :

Business applications.

Databases (usually large, relational DBs).

Job scripts and other small programs.

IT management applications :

schedulers, load balancers, monitoring, help desk, security systems...

Production

0 Data.



Operational complexity

Multiple live applications Multiple old applications
Sharing the same RDBMS, but No longer used but not retired.
different optimization needs. Still having links to data.

All must be tested in case of significant

RDBMS data changes.

Live data Dead data

Only accessed by applications no longer used.
What application is accessing them may be unknown.

0 Potentially thousands of applications to consider.

0 Cleaning that situation is very expensive and does not bring new business benefits.



Performance and velocity challenges in production

0 Objective 1 : fast, reliable, integrated access to data.

0 Objective 2 : fast velocity to cope with data changes.

Constant fight to optimize :
0 Overall infrastructure performance.

0 Database performance.

= Optimized for transactional performance (OLTP).

m Hardware / database / network setup and parameters.
s Data schema, indexes.

= Size of tables and queries.

= Query complexity optimization...

Constraint : production must be on for business !
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A reality check :

X

X

X

SQLs may reach thousands of lines !
Developing SQLs / interfaces may take weeks.
Many SQL developers cannot optimize queries.
Old data is locked in legacy systems.

Dead data accumulate without archiving.
Overgrown tables threaten database limits.

Large changes only made during technical week-ends.



RDBMS challenges summary

0 The RDBMS is the de facto standard for all large I'T" organizations :

m Clear and precise formal models.
= Mature technology with efficient optimizations (query execution planning ...)
= Rigorous management of transactions (Atomicity, Coherence, Isolation, Durability)

= Capable to serve multiple applications.

Q It has however several drawbacks :
= Cost : maintaining stability and performance of a large RDBMS system is very costly.
= Rigidity : significant data schema changes require heavy work and are only allowed at specific times.
= Scaling up : big data now requires extremely large quantities of data (exabytes, zettabytes ...).

= Not very good at handling relationships between multiple data.

0 Big data needs :

m Huge amount of data, evolving data schema, capability to replicate in large parallel clusters ...

=> Adoption of NoSQL models.
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Data integration and system interoperability

Billions of dollars lost every year in integration and interoperability costs !
Many domains impacted : biomedical sciences, energy, engineering, aerospace...
0 Genetics. “We have these giant piles of data and no way to connect them” said H. Steven Wiley, a biologist at the

Pacific Northwest National Laboratory. “I'm sitting in front of a pile of data that we've been trying to analyze for
the last year and a half.” (DNA Sequencing Caught in Deluge of Data, Pollack 2011).

0 Automotive. Concurrent design and engineering in the supply chain are vital ... However, these innovative ...
processes are hampered if product data cannot be exchanged seamlessly across the supply chain... imperfect
interoperability costs the US automotive industry about $1 billion per year (Brunnermeier and Martin 2002).

0 Construction. $15.8 billion in annual interoperability costs were quantified for the capital facilities (construction)

industry in 2002 (Gallaher et al. 2004).

0 Pharmacy. The increased generation of data in the R&D process has failed to generate the expected returns in
terms of enhanced productivity and pipelines ... The big business challenges ... all rely heavily on integrating a
broad range of information in a more meaningful way than the current industry norm (Gardner 2005).


https://www.nytimes.com/2011/12/01/business/dna-sequencing-caught-in-deluge-of-data.html
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Data integration ?

Data integration (one definition among many) :

the process of combining data from different sources into a single, unified view. Integration begins
with the ingestion process, and includes steps such as cleansing, ETL mapping, and transformation.
Data integration ultimately enables analytics tools to produce effective, actionable business

intelli gernce. (https.//www.talend.com/resources/what-is-data-integration/).

0 ETL (Extract Transform Load) ?

0 Business intelligence ?


https://www.talend.com/resources/what-is-data-integration/

Is OLAP the solution for data integration ?

-

Flat files
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Operational Extract Data

database Transform warehouse Business Inteﬂigence

Load Data Mining
Data analytics
Data visualization

Other application
data
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0 OLAP: Online Analytical Processing.

= Data is moved into a data warehouse through an Extract,

Transform, Load (ETL) process.
= Data organization in the data warehouse is optimized for
analytics (e.g., data cubes).
0 OLAP is a support for Business Intelligence.

= Data analysis of business information (historical, current and
predictive views of business operations, KPIs).

= Normally performed by business users, with powerful tools.

0 Another reality check :

x ETL development takes time (days or weeks).
% Business intelligence is not always a business priority (!).

% OLAP encourages end user computing (data is sitting on a user
PC, in Excel, somewhere...)



Integration challenges : data silos

Data silo: situation where only one group in an
organization can access specific data.

Causes ?

0 Technical.

i i w200 0 Structural (organizational).
T : . . .
HH i = Each business unit wants its own data(bases).
| i m Who is ready to pay for interfaces ?
{l

% Proliferation of projects and databases.
% Broken end to end processes.

% Manual re-encoding of data; low data quality.

(source of image https.//www.protegrity.com/silos-causes-overcome/) .
) image biip profgry 0 Cultural (knowledge is power).

14
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Silo issues summary

% Silos defeat data integration and collaboration.

¥ When data is in silos, no one has the big picture.
% No single source of truth.

% Data quality issues.

x Huge interoperability costs (interfaces, manual re-encoding...).
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Data integration optlon 1:SOA + ESB

Example : state of the art nationwide service

\ Partners : architecture for health insurance (2016).

HIFs (« Muts »)

O Service oriented architecture.
External PC user

Monitoring and logging
Tracking and tracing
Statistics

Error mapping

fldentity and access managemer%

i : 0 Enterprise service bus (XML, EDI, web
Web site (Mymu) ‘ services ...).
Coseeeoooooooooo- L 0 Encapsulation of legacy.

SOA Gateway

A

. Data isolation layer
> % (cache database)

ESB (Enterprise Service Bus) .

kTransactionaI state management / ‘

- reduce costs (IT)
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A
{ ) ] ) \
= — - Challenges
Denerits: | | - Project size (>5ME; 5 “Muts”, several 100K users)
- increase time to market (revenues) - Data accuracy and confidentiality
- Performance and availability (8000 t/m peak)

AS/400 Linux  AIX/DB2 - at front end (caching, optimization)
Legacy RPG systems - at backend (DB, ESB, network, server ...)
- Data consistency between cache and backend




Data integration and system interoperability

Three types of interoperability (from the EU eHealth Governance Initiative (eHGI, 2012))

Q Technical interoperability : the ability of information and communication technology applications to accept data
from each other and perform a given task in an appropriate manner without the need for extra operator intervention.

Q Legal interoperability : refers to the environment of laws, policies, procedures and cooperation agreements needed to
allow the seamless exchange of information.

0O Semantic interoperability : refers to the ability to ensure that the precise meaning of exchanged information is
unambiguously interpretable by any other system, service or user.

Book ) Biography
Semantic
author knowledge creator

Biographies are books (but there are other books).

Authors are creators (but there are other creators).




Data integration option 2 : adding semantics

SPARQL, R Adding a semantic layer can solve a number of data

, integration problems.
queries

A configuration :

Refelrence Gr aph database Structured and unstructured data.
ontology Semantic model

Data marked with semantic annotations.

= Data imported into a graph database (schema easy to extend)
Semantic Annotation Layer with semantic linkage.

3 = Queries through semantic web standards (SPARQL.).

A 4

Data communication (e.g., XML)

Structured  Unstructured External
data data data feeds

= Interfaces to programs and analytical tools (R).

This is illustrated by the Norwegian oil & gas example.



Data integration option 3 : data lakes

AS THEY ARE ENVISIONED TODAY...

\

HOW DO DATA LAKES WORK?

The concept can be compared to a water body, a lake, where water flows in, filling up a resewvoir and flows out,

The incoming fiow represents

muitiple raw data archives ranging

from emails, spreadsheets,
STRUCTURED DATA sockal media content, etc.

asYFf
1. Information & rows and columns ¥ I’%
2. Easdy ordered and processed Trt 3 ‘ — ‘
with data mining toos : é =/
UNSTRUCTURED DATA

1. Raw, usorganized dats
2, Emalls

3. POF Nles

4. mages, video and audio
5. Socdld media lools

The resereoir of water is 2 dataset,
where you run analytics on all the data.

e The outflow of water is the analyzed data,

Through this process, you are
able to “sift* through all the
data quickly to gain key

business insights.

Source: http:/fwww. rine.co.th/taghow-do-data-lake-work/

Intended for Knowledge Sharing only

Still needs semantics ! To be discussed in ch. 11

Main principles:
0 Data is gathered from various sources
m Both structured and unstructured.
0 Distributed file system architecture.
= Typically, Hadoop / Spark.
m Cloud services: Amazon S3, Microsoft Azure...
0 There is no effort to structure the data at the
time of capture (schema on read approach):

m Data is stored in its initial raw format.

m Data consumers will set up their analysis applications
to perform specific data exploration.

m Less up-front costs, more flexibility, less optimization.

m The data lake can feed a data warehouse.
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O1l and Gaz data context

0 Many actors (operators, vendors, authorities).

0 Multiple applications (reporting, logistics, environmental data mgt ... )
evolving over time.

0 Many sources of data (downhole sensors, surface facilities, logistics ...).
0 Data analysis is a bottleneck; reporting is expensive.
0 30-70% of time is spent looking for and assessing the quality of the data found.

Ct. a.o0. Keynote address to semantic web in Oil & Gaz workshop (Crompton 2008).



A data integration example : EPIM

Information Strategy

Norsk olje&qass
Intelligent systems

and components

Virtual model of
reservoirs, wells,
production process &
facilities

Distributed control &
surveillance
systems

4D and 4C
seismic

(sea bottom or
conventional)

Fiber cable W

—

Down hole sensors
and processing
equipment

Operators Vendors
Oil and Gas Ontology
based on GIM,

. Semantic Web and
» Web services

Integrated, onshore-based
operation centers

(Source for image : Langeland 2013).
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0 Realization reported in several sources :
= Presentation by T. Langeland (2013).
s Case study sheet (TopQuadrant 2013).

0 Exploration and Production Information
Management (EPIM) :
Non-profit association of oil and gas operators and

partners on the Norwegian Continental Shelf (now
absorbed in the Norwegian Oil and Gas Association).
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Solution : RDF database for data integration

TopQuadrant™

0:0 Integration Example :EPIM ReportingHub

Data
Exchange

®:FRH

EPIM ReportingHub

Operators
on the NCS

— g |

RDF Database :

Semantic |
Reporting |
\

© Copyright 2013 TopQuadrant

(Source for image : Top Quadrant fact sheet)

Solution provider point of view : RDF
facilitates integration through :

Easy import/export through XML
compatibility.

Flexible database schema (NoSQL triple

store).

SPARQL queries (W3C standard) allowing

querying in a compact intuitive way.

Semantic data model (light ontology)
allowing semantic tagging of data and
discovery of implicit facts (inferences).



Solution : RDF database for data integration

Semantic Web Technology and GIM is the way forward

Evolution:

> Web 1.0 - Pages and documents
> Web 2.0 - Social networking

> Web 3.0 - Semantic Web

Resource Description Framework (RDF) is a
distributed data model on the Semantic Web
consisting of a triple

| Subi'ect I Prodicate ‘{ Object I
Table Predicate
Subject Object

Any table of data might be expressed as RDF
triples where

v' Subject is the row number
v Predicate is the content of column
v' Object is the cell value

User Interface & Applications I
Trust I
Ontology:
Query: OWL Rule: e
SPARQL RIF o
RDFS | 5

Data interchange:
RDF

XML |

A database for RDF triples is called a triplestore.

Easy to merge/add new data, put meaning to
data, transfer data between triplestores, query
many triplestores as one data base.

URI/IRI

» GIM can be expressed in RDF
statements and Semantic Web
Technology can be deployed

Why ontology?

The real world is complex and changing,
we need a solution that can cope with
the complexity and adapt to the changes.
That's what ontology does for us

24 (Source : Langeland 2013).

Customer point of view: key points :

1. A Generic Information Modeling (GIM)

standard for data integration.

» International standard ISO15926 for lifecycle data
integration and interoperability (cf. chapter 10).

2. Semantic web technologies.
3. An ontology.

4. A triple store.

Cost savings estimated at several billions euro per year.
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NoSQL databases

0 NoSQL databases are usually divided in the following categories :
= Key-value stores.
= Document stores.

s Wide column stores (also called column family stores).

= Graph stores.
0 A triple store is a special kind of graph database dedicated to storing RDF triples.
0 NoSQL transactions typically focus less on ACID requirements, but rather on BASE

Basically Available, Soft state, Eventual consistency.



Aggregate NoSQL databases

Aggregate NoSQL databases are all based on key-value associations :

s They differ on what they use as values.

s They are sometimes referred as distributed hash tables.

0 Key value stores :

= A key is mapped to a value through a hashing function.
The value can be complex (list, [SON object, image, video...).

0 Column family stores :

= A row index allows to access a column family (group of columns
where each cell can have a name and value).

0 Document stores :
= The database is organized as a collection of documents, each
accessible by an ID.

= Each document is represented in a specific format (e.g., JSON) and
27 can embed subdocuments, forming a hierarchy.

key

hash
function
00
01 Value
l——>
key 02
03
R column| value column| value
cell cell




Aggregate NoSQL databases

The DB-Engines Ranking ranks DBMSs
according to their popularity.
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Key value stores

Colum family stores

Document stores

Rank
Feb Jan Feb
2021 2021 2020
1. 1. 1.
2. 2. 2.
3. 3. 3.
4. 4, 4,
5. A6, A6,
Rank
Feb Jan Feb
2021 2021 2020
1. 1. 1.
2. 2. 2
3. 3. 3
4, 4, 4,
5. 5. 5
Rank
Feb Jan Feb
2021 2021 2020
1. 1. 1.
2. 2. 2.
3. 3. A4
4, 4, 3.
5. A4N6. ANG.

DBEMS

Redis E3

Amazon DynamoDB £
Microsoft Azure Cosmos DB
Memcached

etcd

DBMS

Cassandra [

HBase 3

Microsoft Azure Cosmos DB )
Datastax Enterprise £
Microsoft Azure Table Storage

DEMS

MongoDB £

Amazon DynamoDB EJ
Microsoft Azure Cosmos DB
Couchbase [

Firebase Realtime Database


https://db-engines.com/en/ranking
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Graph databases

0 Aggregate NoSQL databases :

m Can represent links, but those are typically unidirectional, and may require processing steps to be identified.

= Are not optimized for fast graph traversal.
0 Graph databases focus on storing and accessing graphs.

They are part of the NOSQL famﬂy but not Trend 10: Relationships form the foundation of data and analytics

aggregate databases. value

By 2023, graph technologies will facilitate rapid contextualization for decision making
Advantages : in 30% of organizations worldwide. Graph analytics is a set of analytic techniques that

allows for the exploration of relationships between entities of interest such as

= Efficient data retrieval as graph
traversal through connected data.

organizations, people and transactions.

It helps data and analytics leaders find unknown relationships in data and review data

u Flelelhty (NOS(lL aPPfoaCh)- not easily analyzed with traditional analytics.
[ Handling relations as first-class https.//www.gartner.com/smarterwithgartner/gartner-top-
citizens. 10-trends-in-data-and-analytics-for-2020/



Property graph databases versus RDF triple stores

NId:1
Name : Alice

»
>

foaf:knows

Age : 18 Eld: 5 :
Label: knows foaf-age l l foaf-name
Since: 2001 19 «Bob"
0 Property graph databases 0 RDF stores or triple stores :
= Data model : labelled property graphs (both nodes and links » Data model : RDF triples — quads if we add RDF graph
have properties). names : <s, p, 0> Or <s, p, 0, g>.

= A link may have e.g. a timestamp and/or a weight. m Relations can only have properties through reification.

30



Property graph databases versus RDF triple stores

Id:1 NId: 2
Name : Alice >
Name: Bob
Age : 18 Eld: 5

Label: knows
Since: 2001

0 Property graph databases

= Are typically node centric.

= Will typically have their own proprietary query language
= Have ad-hoc proprietary semantics.

= May store more conveniently varied types of graphs

31

(e.g. Neo4] Cypher).

(hypergraphs, weighted graphs ...).

oaf-knows

foafage l l foafname

18 « Bob"

0 RDF stores or triple stores :

Are typically edge-centric.

Support the standards of the semantic web (RDE, possibly
RDEFS, OWL), and SPARQL as query language.

Have clear logical formal semantics and may support logical

inferences (depending on the DBMS engine).
Well suited for integration with XML, for web-based data

integration, large scale knowledge graphs.
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Implementation of RDF stores

0 Simplest implementation : a relational table

= No restructuring required

if the ontologv changes. dftyp “know
o ° @ i Alice oo :®
m Inserts are easy.

. . foaf-age foaf:name
[ | ]Olns arc CXPCI]SIVC.
18 « Bob"
Subject Predicate Object
<http://www.example.org/Alice> <http://xmlns.com/foat/0.1/knows> _:blanknode001

<http://www.example.org/Alice> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://www.example.org/Person>

_:blanknode001 <http://xmlns.com/foaf/0.1/name> Bob

<http://www.example.org/Alice> <http://xmlns.com/foat/0.1/age> 18MM<http://www.w3.0rg/2001/XMLSchema#int>
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Implementation of RDF stores ./.

0 Improvements

Id

String

<http://www.example.org/Alice>

<http://xmlns.com/foaf/0.1/knows>

<http://www.example.org/Person>

<http://xmlns.com/foaf/0.1/name>

Bob

_:blanknode001

N N L] A WL N e

<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

string-to-id : efficient search structure (e.g. B+trees) sometimes
combined with string compression techniques.
id-to-string : constant time direct access (e.g. array).

Dictionary

Z Prefix URI

<http://www.example.org/>

foaf: <http://xmlns.com/foaf/0.1/>

Prefix table

id-to-string .
Small simple data structure.

Subject Predicate Object
1 2 6
. . 1 7 3
string-to-id
6 4 5
Triple store

Short identifiers (integers) — gain of space.
Native (Jena) or non-native (Marklogic
uses an underlying document store).
Specific indexing techniques.



Rank
Feb Jan Feb
2021 2021 2020
1. 1. 1.
2. 2. 2.
3. 3. 3.
4. 4, 4.
5. 5. AT
6. 4n7. 5.
7. B, S
8. 6. Y6
9. 9. A 10.
10, AN11. AN 12,
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A ranking of graph databases and RDF stores

DBMS

Neodj &3

Microsoft Azure Cosmos DB 3
OrientDB

ArangoDB E3

JanusGraph

Virtuoso E3

GraphDB 3

Amazon Neptune

FaunaDB 3

Stardog (2

Database Model

Graph

Multi-model
Multi-model
Multi-model
Graph

Multi-model g
Multi-model
Multi-model
Multi-model
Multi-model

Rank

Feb Jan Feb
2021 2021 2020
1. 1. 1.
2. 2. A3
3. A4 Y2
4. A5, AD.
5. 3. Y4
6. 6. 6.
/. 7. 7.
8. 8. 8.
9. 9. A 11
10. A 11, 10.

DBMS

MarkLogic E3
Apache Jena - TDB
Virtuoso 53
GraphDB 3
Amazon Neptune
Stardog E3
AllegroGraph E3
Blazegraph

RDF4]

dstore

(source DB-Engines Ranking : not including secondary database models)

Database Model

Multi-model
RDF

Multi-model gl
Multi-model
Multi-model gl
Multi-model g
Multi-model &
Multi-model gl
RDF

RDF


https://db-engines.com/en/

The main commercial systems are also active

The top 5 commercial systems, February 2021

Rank  System Score Overall Rank Spatial and Graph features in Oracle Database
G ra Cl e 1 3 1 ? j— . In keeping with Oracle's mission to help people see data in new ways, discover insights, unlock endless possibilities, Oracle Database now includes the
. Machine Learning, Spatial and Graph features. If you have an Oracle Database license, you can use all the industry-leading Machine Learning, Spatial and
2. Microsoft S Q L Server 1023 3. Graph capabilities for development and deployment purposes on-premise and in Oracle Cloud Database Services.
3. IBM Db2 158 6.
4. Microsoft Access 114 11.
5. Splunk 39 13. EES IBM Graph
Fully managed graph database-as-a-service that enables enterprise applications and is
built on open source database technologies
IBM Graph
The top 5 open source systems, February 2021
Rank System Score Overall Rank
MysQL 1243 2 Azure Cosmos DB
2. PostgreSQL 551 4. =. Microsoft _
3. MongoDB 450 5 Fast NoSQL database with open APIs for any scale
4. Redis 153 7.
5. Elasticsearch 151 8.

35
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Reasoning with RDF stores

0 Entailment regimes :

= RDF can support multiple entailment regimes (RDF, RDFS; OWL) (cf. chapter 7).

0 Materialization or saturation :

= The entailment rules are applied to generate tuples until the graph is saturated (cf. chapter 3).

This speeds queries up, but updates are more costly (saturation needs to be redone to maintain truth).

Some DMBSs use saturation as a basic approach with various optimization techniques.

For large scale knowledge graphs, link prediction (triple materialization) is typically achieved through statistical
relational learning approaches (cf. chapter 10).

0 Query rewriting :
s The query is transformed until it can be executed against the DBMS without entailment rules.

= Ontology-based data access, seen in this chapter, is a good example.
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What do we mean by a case study ?

O Social Sciences : a method of analysis and a specific research design for examining a problem ... in most
circumstances to generalize across populations (University South California).

0O Business : a documented study of a specific real-life situation or imagined scenario, used as a training tool in
business schools and firms (business dictionary.com,).

0 I'T : demonstrates the effective use of information technology resources. Illustrates information technology

related experiences in organizations, with background information, project implementation successes and failures
and lessons learned (casestudyinc.com).

0 We will use the I'T definition. Analysis grid :

Quality of the sources (scientific papers, news, industry fact sheets ...).

Business problem that the users / organisation is trying to solve.

Existing situation (“before”, “as-is”).

» «

Solution proposed (“after”, “to be”).

Results (evaluation, deployment status, business benefits).




Recent.

Scientific
journal.

Many
authors.
Results paper
from a
european
project
(Optique).

Customer is
signing the
paper.
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Statoil: case study paper

Weh Semantics: Soence, Services and Agenits on the World Wide Wep d4 [2007] 3-36

Contents lists available at Sciencelirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www elsavier.com/locatawebsem

Ontology Based Data Access in 5tatoil

Evegeny Kharlamov ?, Dag Hovland *, I'-."[arl:m G. Sk]ﬂeland ¢ Dimitris Bilidas®,

Ernesto Jiménez-Ruiz ©, Guohui Xiao®*, Ahmet Sn'_-.flu Davide Lanti? Martin Rezk?,
Dmitriy Zhelezny akov *, Martin Giese °, Hallstein Lie ©, Yannis [Dﬂl‘ll‘li-ljifrh, Yannis Kotidis®,
Manolis Koubarakis ", Arild Waaler

! lnivernty g aglord, Depontment of Computer 5o e, Wolfson Buld dmg, Porks Road) OX1 3080 Ohford, LK
b Wzhonal o d K epadisrien [niversty g Athens, Ponepistimiopolis, Bisxin, | 5784, Athens, Greece
ﬂrpré:l:um! |:!||'J:l:|_,|'w'.l:l:||:ﬂ1|:"., Umiversity of Odo, Bndem, 0316 O=lg Morway
3 1 ¥ o Bjeen-Bolnzno, Frzo Domeniconi 3, 390 0 Rokang kaly
B 5&:1 :d.‘li"l E-Lm'mg;r:l; Morway
! I||'|"'||Lf 'ulm'rg;lm Ll:un E':E].'u:f e ol T echmnlogy, Tekmologiveien 22 281 5 Gjewik, Norway
ics ot Buomess, TG Potission Sreet, 104 34, Athens, Greere




Looking at the abstract

OBDA : use ontology to
abstract from schema details.
Ontology connected to DB

via mappings.

Present a real industrial
experience (Statoil).

Key achievements:

- semi-automatic ontology and
mappings creation.

- optimized translation in data
queries over federated DBs.

- query interface for non IT users.

Deployed and evaluated.
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Abstract summarizes the content (not just a table of content) !

ABSTRACT

Ontology Based Data Access (OBDA) is a prominent approach to query databases which uses an ontology
to expose data in a conceptually clear manner by abstracting away from the technical schema-level details
of the underlying data. The ontology is ‘connected’ to the data via mappings that allow to automatically
translate queries posed over the ontology into data-level queries that can be executed by the underlying
database management system. Despite a lot of attention from the research community, there are still few
instances of real world industrial use of OBDA systems. In this work we present data access challenges
in the data-intensive petroleum company Statoil and our experience in addressing these challenges
with OBDA technology. In particular, we have developed a deployment module to create ontologies and
mappings from relational databases in a semi-automatic fashion; a query processing module to perform
and optimise the process of translating ontological queries into data queries and their execution over
either a single DB of federated DBs; and a query formulation module to support query construction
for engineers with a limited IT backeground. Our modules have been integrated in one OBDA system,
deployed at Statoil, integrated with Statoil’s infrastructure, and evaluated with Statoil's engineers and
data.



The problem

0 Problem : find in a timely manner new exploitable
¥ o accumulations of oil or gas in given areas by
' analyzing data about these areas.

O Data:

= Seismic investigations.

- Analyzing information from small explosive charges to estimate
rock composition.

——— Rock

5—- layers
B a

T~

va - Rock samples taken during drilling;

- Measurements from sensors along wellbore.

ﬁ » Rock samples / log curves from driller wellbores :
Wellbores —___

m General geological knowledge.
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Business needs

0 Steps involved are :

1. Find relevant wellbore, seismic, and other data in Statoil
databases,

2. Analyze these data with specialized analytical tools.

0 Step 1 is too time-consuming :
= Too complex for end-users, too lengthy with IT.

= 30% - 70% of time spent on finding and analyzing the right
Wellbores data (Crompron 2008) .

0 Background information : potential savings: €70,000,000
per year (Source : Calvanese 2012).

42
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Existing situation: architecture and data

EPDS CeoChemDB Recall CoreDB ow Compass
Overview
Tables 1595 920 22 15 78 895
Mat. views 27 4
Views 1703 41 12 1026 1004
Columns 8378 3396 430 63 16668 30638
Tables by no. rows
0 rows 1130 3 2 15 512
1 row 1152 9 2 4 34
1 = rows < 10 135 9 1 4 15 117
10 < rows = 100 83 20 3 2 17 80
100 < rows = 1000 58 30 3 4 12 87
1000 < rows = 10 000 63 10 5 1 11 42
10 000 = rows < 100 000 57 4 2 1 2 19
100 000 < rows = 1000 000 35 3 4 2 4
1000000 < TOWS 12 3 2 1
Tables by no. columns
1 ol 4 5 6
1 < cols = 10 586 68 7 11 47 527
10 = cols = 100 1032 23 13 4 26 353
100 = cols = 1000 3 2 9
1000 < cols
Mat. views by no. columns
1 «col
1 < cols = 10 23 1
10 = cools = 100 4 3
100 < cols
Views by no. columns
1 col 3 2 3 2
1 = cols = 10 526 12 555 509
10 = cols = 100 1174 14 9 461 471
100 < cols = 1000 13 3 7 22
1000 < cols

0 6 internal databases + 1 external.

= Relational databases from multiple vendors

(Oracle for main DB).

= Analytical tools from multiple vendors.

0 Difficulty 1 : size of database.
= Large (700 GB, 3000 tables, 57000 columns).

m Complex schemas poorly or not documented.

0 Difficulty 2 : SQL queries.

= Queries for data extraction are typically large.

Queries over main database EPDS may contain

thousands of words and have 50-200 joins.

m If predefined queries are not adequate, need to
build new ones.



ask an IT expert to franslafe the information need info SQL

SELECT
WELLBORE.IDENTIFIER,
PTY_PRESSURE.PTY_PRESSURE_S,
STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER,
STRATIGRAPHIC_ZONE.STRAT_UNIT_IDENTIFIER
FROM WELLBORE,
PTY_PRESSURE,
ACTIVITY FP_DEPTH_DATA
LEFT JOIN (PTY_LOCATION_1D FP_DEPTH_PT1_LOC
INNER JOIN PICKED_STRATIGRAPHIC_ZONES ZS
ON ZS.STRAT_ZONE_ENTRY_MD < = FP_DEPTH_PT1_LOC.DATA_VALUE_1_.O AND
ZS.STRAT ZONE_EXITMD >= FP_DEPTH_PT1_LOC.DATA_VALUE_1_O AND
ZS.STRAT ZONE_DEPTH_UOM = FP_DEPTH_PT1_LOC.DATA_VALUE_1_OU
INNER JOIN STRATIGRAPHIC_ZONE
ON ZS.WELLBORE = STRATIGRAPHIC_ZONE.WELLBORE AND
ZS.STRAT_COLUMNL_IDENTIFIER = STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER AND
ZS.STRAT_INTERP_VERSION = STRATIGRAPHIC_ZONE.STRAT_INTERP_VERSION AND
ZS.STRAT ZONE_IDENTIFIER = STRATIGRAPHIC _ZONE.STRAT_ZONE_IDENTIFIER)
ON FP_DEPTH_DATA.FACILITY_S = ZS.WELLBORE AND
FP_DEPTH_DATA.ACTIVITY_S = FP_DEPTH_PT1_LOC.ACTIVITY S,
ACTIVITY_CLASS FORM_PRESSURE_CLASS
WHERE WELLBORE.WELLBORE_S = FP_DEPTH_DATA.FACILITY_S AND
FP_DEPTH_DATA.ACTIVITY_S = PTY_PRESSURE.ACTIVITY_S AND
FP_DEPTH_DATA.KIND_S = FORM_PRESSURE_CLASS.ACTIVITY_CLASS_S AND
WELLBORE.REF_EXISTENCE KIND = “actual” AND
FORM_PRESSURE_CLASS.NAME = "formation pressure depth data’

44
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Existing situation : process + business objective

O Process :

1. Data access points fed by an ETL process (Extract, Transform, LLoad).

= Transform: may steps involving projections, filtering, joins.

m Setting up a new access point involves “a myriad of” data accesses and process steps !

2. Data access bottleneck :
= 900 geologists and geophysicists.
= Data analysis with existing access points is fast (hours).
= But setting up of new access points may take up to 4 days.

s T must be involved and experienced I'T personnel for theses tasks is scarce.

0O Business objective : reduce setup time for new access points from days to hours.

= If possible, without intervention of I'T staff (!).



Solution architecture : ontology-based data access

‘ I Users Applications ‘“‘s

RDF Semantic
Data Data
Export Access

IHEI
e % SiTE K
‘ I ' ! I
. LY | -
4 \ i35 B
.
44 1

Class(f,(x)) — SQL(x), Property(f,(x), fo(¥)) — SQL(x. y),
Property(f,(x), fu(¥)) — SQL(x, y),

Ontology Mappings

Fig. 5. Query processing in OBDA.

Data

Consumers

Domain
Ontology

Mappings

Metadata,
Database
Schemata

Data
Sources

l Q' l QL B
) —| rewrite = unfold —— DB Answers
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0 A domain ontology mediates between users and data sources.
= Export data in semantic format (RDF) or
= Access database through ontology queries.

0 Declarative mappings relate ontology to database schema.

m Used to populate classes and properties.

0 SPARQL is used for ontology queries.
= Queries are handled in two steps : rewrite (query enriched on basis of
axioms) and unfold into SQL.
0 Advantages:

= Declarative, smaller building blocks (map one class or 1 property), easier
to maintain, reusable by any query.

s OLTP and not OLAP.

= Significantly reduced time to write queries.
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Solution implemented: innovative aspects

g} Data models
Std. ontologles

IT-expert

N7

Ontology
central | repository

|

|

-

temporal data

A}

M

appings
!

I

€

|

|

-

static data

0 Challenges and solutions

2.

w

Generating ontologies and mappings for large databases.

Semi-automatic bootstrapper extracting ontologies and mappings from relational

schemas. Target is profile OLW 2 QL.
Ontology alignment techniques are used to complement bootstrapping.

A manually developed ontology covers general domain information.

Capacity to process semantic queries over massive amounts of data.

Optimized techniques for query rewriting, unfolding and execution.
Federated query over all the sources connected to the platform.

Results are fed back to visualization and analysis tools.

Difficulty for end users to use SPARQL.

Implemented a user-friendly query formulation tool.
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Evaluation

0 Coverage :

m Full catalogue of queries covered; results ok with manual addition of the general domain ontology.
m Queries easier to formulate.

= Wide range of vocabulary in the domain not fully achieved.

0 Performance :

= Execution time as good as before, even for federated queries; much better for distinct queries.

0 Convenience :

= Support broad range of users, task types, and interaction routines.

0 Deployment :

= Not deployed in production yet but tested in realistic Statoil environment with multiple servers.
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Agenda

RDBMS challenges (why NoSQL) I

Data integration challenges I

RDF based data integration

Graph DBs and triple stores

i[[[bt

Case Study in Oil & Gaz

Ontology based data access




OBDA main ideas

ey l [ facts 0 The ontology provides :
= A high-level global schema of multiple data sources;
[ Ontology } = A vocabulary for user queries.
I 0 The OBDA system :
| m transforms queries into the vocabulary of the data sources
{ Mappings \ through mappings. | |
m delegates the actual query evaluation to a query answering
I quety I query I query system.

0 Classical OBDA: relational DB, SQL, static data.

0 Extensions :
NoSQL data, temporal data, data streams...

DB1

DB3

50



OBDA main ideas ./.

query l [ facts

Ontology
TBox ABox
\ 3 J/
{ f facts \
Mappings
Iquery I query I query
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We consider description logics ontologies.

0 Facts (assertions) should be in the ABox, however :
= The ABox is virtual (too much data to populate it fully).

m The relevant part of the ABox is materialized by executing
queries over the data sources.

0 The TBox captures the intensional information :

m Concept descriptions; inclusion/equivalence axioms.

0 The transformation of ontological queries into database
queries uses the reasoning services of the ontology.



Differences between OBDA and databases

{x a Product} query l [ facts

Ontology

TBox

ABox

-

DairyProduct © Product  DairyProduct(Cheddar)

A

!

Mappings
query I
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facts

Dairmedua‘ table

Id

Name

323

Cheddar

1.

OBDA bridges two worlds :

m The database world is based on the Closed World
Assumption (CWA).

If Cheddar is not stated as a Product, that is false.

= The ontology world is based on the Open World
Assumption (OWA).

If Cheddar is not stated as a Product, that is unknown.

OBDA supports reasoning based on the intensional
information in the TBox.

The fact that Cheddar is a Product can be derived from the

TBox by using the reasoning services.

(example from Optique project training material: http://optique-
project.eu/training-programme/)
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A quiz

0 TBox
BelgianUniv € University

NonBelgianUniv € University M -BelgianUniv
JstudentAt. T € Student
Student € IstudentAt. T

0 Database
» BelgianUniv(ULiege), NonBelgianUniv(Oxford), Student(Jean), studentAt(André, ULiege), Institution(KUL).

NonBelgianUniv(Oxford) Yes Yes Yes
Student(Andre) No Don’t Know Yes
University(ULiege) No Don’t Know Yes

Institution 1 =University(KUL) Yes Don’t Know Don’t Know



Questions to be adressed

Query (L1) 1 [ facts

Ontology (L.2) \ 1. What language L1 for querying the ontology ?
TBox ABox 2. What language L2 (DL) for representing the ontology ?
- 3. What language L3 for querying the database ?
\ / The relationships between these languages influence the possibility
! facts and complexity of rewriting queries and solving them against the DB.
Mappings

Query (L.3) ! 4. How do we define and compute the answers ?

54
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Choices of languages for OBDA 1 : ontology querying

1. To query the ontology, classical OBDA uses conjunctive queries :
a fragment of FOL using only existential quantification and conjunction®).

Example: q(x,y) = 3z (Person(z) A name(z, x) A homepage(z, y))

a In DL a conjunctive query CQ is of the form: q(x) = 3(y) @(x, y) where
m (%, Y)is a conjunction of atoms such as 4(z) or 7(z,, z,);
A being a concept name,  a role name, and z, z,, 2, individual names of variables from x or y.
s The free variables X are called distinguished variables, the bound variables § non-distinguished variables.

s A solution is any assignment of values to the variables X, part of an interpretation making the query 77ruze.

0 Conjunctive queries can be expressed as SPARQL basic graph patterns.

If x is renamed as *name and y as site, the above example corresponds to the SPARQL query :

SELECT 2?name, 2site WHERE [ 2person a :Person . 2person :name Zname . 2person :homepage Zsite. }

*: full FOL queries with ontologies are incomputable in the presence of incomplete information.
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Choices of languages for OBDA 2 : database querying

2. The language for querying the database is SQL or ...
FOL, which is equally expressive as relational algebra, the core of SQLO.

0 An SQL engine can be used for the evaluation step.

* . at least the so-called “safe-range” fragment of FOL.
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Choices of languages for OBDA 3 : ontology representation

3. The ontology representation language is typically the OLW 2 QL profile.

0 OLW 2 QL :

Covers the main features necessary to express conceptual models (UML, ER);

Is designed so that data stored in a database system can be queried through an ontology via a rewriting
process, without any changes to the data;

Query answering is sound and complete in LOGSPACE® w.r.t. the size of the data.
LOGSPACE € NLOGSPACE € P € NP € PSPACE € EXPTIME < EXPSPACE

This level of complexity is good for querying potentially large databases.

0 OLW 2 QL is based on the DL Lite family of description logics. (Calvanese 2012).

* : actually, in ACO, a class from circuit complexity theory which is € LOGSPACE
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Certain answers

0 Databases handle a simple form of uncertain knowledge with NULL values.

The semantics of NULL is however unclear :
m A NULL can indicate that the value does not exist;

m Or that the value is unknown at the time the database tuple was created.

0 A certain answer denotes an answer which does not depend on uncertain data.

a At the ontology level, the certain answers cert(q, @) to a query q(x) for an ontology O contain
those answers that hold for all models of O.

An assignment X, = {a, ... a_} to the variables of X is a certain answer to q(x) for O iff :
OF q(f1)

Or, for all interpretations 7 : 7T EO—-TEqX)
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Dealing with the TBox

0 Reminder

= A database defines relations extensionally (listing the set of tuples which make the relation hold).

= An ontology TBox defines concepts intensionally, through its concept definition axioms.

0 Query answering requires to derive all extensional information from the TBox.

= Example :
With A = {Person(John), hasFather(John, Fred)} and 7 = {Person € VhasFather.Person}

a FOL query Person(x) must yield as certain answers : { John, Fred}.

0 One could try to first compute all the extensional consequences of TBox + ABox.

0 Unfortunately, for many DLs this is too expensive and can even be impossible.



Classical approach for dealing with the TBox: query rewrite

l Query g
4 Ontolégy N
[ Rewriting } - TBox ABox
Queryq,7  \_ —
\ 4 I facts
{ Unfolding } ------------------------ Mappings

P

Query q,
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Aim : eliminate the TBox by transforming the query
into another one which can be evaluated without the
TBox with the same answers (perfect rewrite).

Given an ontology O = <7, A> and a conjunctive
query q, there are three steps :

0 Rewrite : produce from q a union of conjunctive
queries q, ; being the perfect rewrite of q w.r.t. 7.

0 Unfold : using the mappings, transform the query
into a query q, which can be executed against the

data source (SQL for RDBMS).

0 Evaluate : execute the query ¢, directly over the
database, without considering 7.



61

Example of query rewriting from the case study

Database :

Location: Furpose:

ID Name ID Name

L1|Norway Pl|(Shallow

L2|UK P2|Injection

Wellbore: ExpWBore:

ID PurplD|Content|LocID ID|Type
W1llP1 Dr],r L1 EllActive
W2|P2 0il L2 E2|Discovery

TBox T (in DL-Lite) :
ExplorationWellBore © WellBore

ShallowWellBore € WellBore
WellBore € FhasContent

0 Query q(x) (in SPARQL)
SELECT ?x WHERE { ?x hasContent ?y}

0 Query rewriten q,:

SELECT > WHERE { ?x hasContent ?y}
UNION { >x a WellBore}
UNION { >xa ShallowWellBore}
UNION { ?xa ExplorationWellBore}
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Example of query rewriting from the case study

0 Mappings : 0 Query rewritten q,

> ExplorationWellBore(f(ID)) SELECT #x WHERE { >x hasContent 2y}
o >
SELECT ID UNION { ?’x a VYellBore}
FROM ExpWBore NION {>x a ShallowWellBore | }

UNION{>x a ExplorationWellBore

> ShallowWellBore(f{W.ID))
SELECT WID 0 Query unfolded q, :
FROM WellBore W, Purpose P

WHERE W.PurpID = PID SELECT {(ID) AS x FROM ExpWBore

: . UNION
AND P.Name = “Shall
e e SELECT f(W.ID) AS x FROM WellBore W, Purpose P
> Haslocation(f(ID),f(LocID)) WHERE W.PurpID = P.ID AND P.Name = "Shallow*
SELECT ID, LocID a Result : f(E1), f(E2), f(W1)

FROM WellBore

f'is a constructor function which translates data instantiations to ontology instances.
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OBDA status

0 State of the art OBDA system from university research : Ontop (Protégé plugin).

m Resulting from work of EU project Optique.
s Compliant with RDFS, OWL 2 QL, R2ZRML®, and SPARQL..

= Supports major RDBMSs : Oracle, DB2, MS SQL Server, Postgres, MySQL.

0 Emerging industrial solutions (Stardog, Data.World, Oracle Spatial and Graph...).

0 Ongoing research: Ontology based data integration (OBDI).

m Heterogenous data sources and formats, including streaming and real-time data.

= Continued optimizations of query processing and reasoning + explanation generation.

*: language for mapping from RDBs into RDF data sets



Example of product solution

STARDOG Product Solutions Resources Company Learn Stardog

Enterprise Knowledge Graph platform

Create a flexible, reusable data layer for answering complex queries across data silos. Stardog unifies data based on

its meaning, creating a connected network of knowledge to power your business.

Based on open standards

Stardog offers first class support of the SPARQL, SPARQL*, and GraphQL query languages for
interacting with your Knowledge Graph. At its core, Stardoqg is built on the RDF open
standards of knowledge representation created by W3C, the same standards body that
created the Web. This platform of open standards is designed to represent information —

Stardog's Enterprise Knowledge Graph platform is underpinned by a graph database that
offers state-of-the-art performance for both storing RDF data and executing SPARGL
queries. Stardog collects detailed statistics from the graph structure to compute accurate

64 (from company site https://www.stardog.com/)

Connect and query data of any structure

A Knowledge Graph connects to data sources within your company, enriches the data by
finding connections across all sources, and creates a human- and machine-understandable
output. Stardog accesses data with Connectors to all major SQL systems and the most
popular NoSQL databases. In addition, our BITES pipeline extracts concepts from

unstructured data like research papers, resumes, and regulatory documents, further
enriching the Knowledge Graph. Access unified data via APl or connect to analytics
platforms using our BI/SQL Server. Continue reading —
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Summary

0 Relational DMBSs have limitations in coping with changes, both for OLTP and OLAP.

0 NoSQL databases offer alternative approaches. Graph databases and RDF triple stores are (related)
types of NoSQL databases.

0 Data integration through RDF stores offers many advantages (natural fit with XML, semantic
models, industrial level databases) and has seen significant life industrial applications.

0 Reasoning with RDF stores is typically done by using saturation or query rewriting techniques.

0 OBDA consists in querying databases at the ontology (knowledge) level, taking into account
inferences and the intensional concept definitions from the TBox.

0 Classical OBDA uses query rewriting techniques to handle the TBox, and is typically based on
conjunctive queries, for ontologies of the OLW 2 QL profile.

0 The industrial use of OBDA is less advanced than RDF integration. However real-life industry
projects or pilots, as well as industrial product and service offerings are emerging.
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