Semantic Data

Chapter 8 : Reasoning with description logics

Jean-Louis Binot

Semantic Data 24/03/2021

Sources and recommended readings

0 There are no additional required references for this chapter.

0 Sources and useful additional readings :
= A good description of the tableau algorithm for ALC is found in Basic description logic (Baader and Nutt 2003),
and also in An introduction to description logic (Baader et al. 2017).
0 University courses having partially inspired ideas and examples for this chapter :

» Ontology Engineering for The Semantic Web (COMP62342), Bechhofer and Sattler, University of Manchester.
m Description Logic, Penaloza, Technische Universitit Dresden.

» Ontology languages (COMP321), Wolter, University of Liverpool.

» Grundlagen von Ontologien und Datenbanken fiir Informationssysteme (C85130), Ozcep, Universitit Liibeck.

Agenda

How good are reasoners ? I
Reasoning services I
‘ Structural subsumption I
Pages 39 to 41 are not in the
) material for the exam
Tableau algorithm for ALC I except for the basic fact that
GCls require a special rule with
« blocking » to avoid infinite loops
Observations on complexity I

L

How large are ontologies ?

0 Small ontologies

m Foaf:
s Dublin Core :

m Music Ontology :

0 Large ontologies
= SNOMED CT :

= GO (Gene Ontology) :

[| NCIT
s DBpedia:

0 Very large ontologies

m Yago:
n (CIO)

13 classes, ~ 60 properties.

DC elements : 15 properties. DC terms : 22 classes and 55 properties.
~ 50 classes and 150 properties.

> 350000 classes, > 50 properties

> 50000 terms, few properties; very large number of annotations.

> 160000 classes, 97 properties.
~ 680 classes, 2,800 properties, > 5,000,000 instances.

350,000 classes, 10 million entities, 120 million facts about these entities.

> 500000 classes, 17000 properties, 7 million assertions

http://xmlns.com/foaf/spec/
http://dublincore.org/
http://musicontology.com/
http://snomedinside.org/
http://www.geneontology.org/
https://bioportal.bioontology.org/ontologies/NCIT
http://wiki.dbpedia.org/services-resources/ontology
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/#c10444

How good are the reasoners ?

Home / OWL: Experiences... /4th OWL Reasoner...

Q 14 reasoners evaluated.
4th OWL Reasoner Evaluation (ORE) workshop B h k . . .
6th June 2015 (Saturday), Athens, Greece J cnchmar contammg)

Home | Call for Papers | Competition | Programme | Organization | Attending

= A wide range of ontologies from the web, selected
from a web crawler and from the BioPortal
repository for biomedical ontologies.

= Some user-designed ontologies with special
difficult test cases.

Spomored ty

OWL Reasoner Evaluation [pBonto B2i

by Birte Glimm. “View of the Acropolis Athens (pixinn.net)” by Christophe Meneboeuf.

Results

http://dl.kr.org/ore2015/vip.cs.man.ac.uk_8008/live.html

Results for discipline OWL DL Realisation

How good are the reasoners

9

/.

Final Ranking:

A~
)
3
2]
c
S
o

FaCT++
HermiT
HermiT-OA4
TrOWL
Pellet-OA4
JFact
PAGOdA
Chainsaw
Racer

Results for discipline OWL DL Consistency

Final Ranking:

X
)
3
.
c
o
o

HermiT
HermiT-OA4
Chainsaw
Pellet-OA4
FaCT++
TrOWL
MOReHermiT
Racer

JFact

Final Ranking:

m
r
-

Konclude
ELepHant
MOReHermiT
Pellet-OA4
HermiT
HermiT-OA4
Chainsaw
TrOWL
FaCT++

jcel

Racer

JFact

Results for discipline OWL EL Consistency

Results for discipline OWL DL Classification

Final Ranking:

~
)
3
13
c
o
o

MOReHermiT
HermiT-OA4
HermiT
TrOWL
FaCT++
Pellet-OA4
Racer

JFact
Chainsaw

Results for discipline OWL EL Realisation

T
=
o
el
1h]
S
=
S
(=]

=X
°)
3
Q
c
o
o

The competition covered two types of ontologies (why ?) and several reasoning problems.

ELK
TrOWL
PAGOdA
ELepHant
FaCT++
JFact
Pellet-OA4
HermiT
HermiT-OA4
Chainsaw
Racer

jcel

How good are the reasoners ? ./.

Rank
1

2
3
4
5
6
=
8
9

—
]

n
12
13

Ra

nk

cooo--.lmr_npmm_x‘

TN N
[

=
()

Reasoner Proqress

Konclude

ELK

TrowWL

PAGOdA

ELepHant

FaCT++

JFact

Pellet-0x+ (I
HermiT (N
HermiT- (S
0A4

chainsaw (I
Racer (I
icel e

Score
1047109
1027109

86 /109
867109
8347109
791109
637109
60/109
571109
571109

437109
327109
07109

1

1

AT17s

15438

Time
2299s
2778s

2423s

4248 s
35425
2807 s

905.1s
934458

(finished)

Konciude (R
FacTe (s
HermiT (e
permiT- (e
OAd
ron. e
e ——————————————————————
Fad
ey —
Chainsaw (I

Racer

Score
247 1264
1721264
163 1264
1621264

150 1264
13261264
109 /264
104 1264
791264
461264

17
92
101
102

114
128
155
160
185
218

=
E
&

MRS D
0w W
wowowmowm

o

[N .
[=R - RN
P

PR N [e)
L= R O L IR S S |
W W o
SRR o
oM
w w o

]

o
=~
=+
1]

J

2048s

Reasoner Progress

ELK -
Konciude (e
uoReHermiT (I
Eleprant (e
TrOWL ——————————
HemiT (.
Herm-04+ (S
Peletors (I
FacT (.
Racer (I .
Chainsaw (I
JFact T ——
icel T ———

Score
2981298
2941298
2941298
2911298
2751298
721298
721298
61/298
2441298
2371298
1917298
189/298
1337298

[T LS T IR

-]

61
107
109
165

-

6851s

Time
6741s

6223s

957.0s
76745
0Mz29s
D6B.6s
1695s
6719s

32223
587 4ds

ification

Rank Reasoner Progress

1 Koncude (S
2 woReHermiT (M
3 Hemit-or (T
4 HemiT T ——
s tow.
6 FacT (I S
7 peletors (S
5 Racer (I
o JFact
10 Chainsaw (T

Score
288 /306
247 1 306
237 1306
236 1306
201 /306
2007306
187 1306
164 1306
128 1306
119 /306

18
59

70
105
106
119
142
178
187

13613s
21793s
1,1038s

8895s
1,7090s

/ number of benchmarks

errors + timeouts + unexpected

Time:

Running: Finished:

(time in seconds)

Konclude

Interfaces (Command Line Interface \ (OWLink Interface \
I Command Parser l
Parsi
Stagr: [Query Parser {
Command Processor l‘-ﬁ
Ontology Parser
Loadi Builder H Build Manager k— -
:a ing Ontology Repository <> gP
tage : e
Preprocessor Preprocessing Manager
eprocess | g Manager _|—— 3
o
c
Precomputing Manager g
E
Reasoni 8
e H ‘ Classification Manager Reasoning Manager il
Stage It . E
K/P Set Classifier
Realisation Manager
Z .
/ Task Calculation Manager l
V4
—————
M Task Calculation Unit 1 g : Saturation Cache |
. Tableau Algorithm ‘
Kernel Task Calculation Unit 2 A Completion Graph Cache

Scheduler

Task Calculation

Tableau Saturatioq Algorithm
AN

Algorithm Handler

2.
Task Calcula;ié\ Unit N

AN

Satisfiability Cache l

Cache Handler

Unsatisfiability Cache '

/

Complex reasoning services

\

Heart of the reasoner.

Products

GraphScale
N

N : T\\\\ '
.

o

Konclude

SemSpect

N .
.
~

~

Knowledge Involves Conclusions

0 Parallel high-performance reasoner for

OLW 2/ DL SROIQ(D).

0 Implemented in C++.

0 Uses highly optimized tableau algorithm
assisted by saturation procedures.

0 Offers GNU free software license and
interface to OWL API.

0 http://derivo.de/en/products/konclude/

http://derivo.de/en/products/konclude/

Agenda

How good are reasoners ? I
‘ Structural subsumption I
Tableau algorithm for ALC I
Observations on complexity I

L

10

Reminder

0 A reasoning service is an algorithm providing a decision procedure to a logical problem.
0 An algorithm is a decision procedure for a problem if it solves the problem with a yes/no
answer.

m It is sound : when the algorithm answers yes, this answer is always correct.
m It terminates : it stops after a finite number of steps with some answer.

m It is complete : for any problem which has a positive answer, the algorithm will find it.

0 For a logic, the basic decision problem is to determine if a well-formed formula is valid.
There are however other interesting questions (entailment, satisfiability ...).

0 Consider a procedure p deciding entailment in a knowledge base KB :

= p is sound if it does not make wrong inferences : if KBp = o then KB E a.

= p is complete if it does make all the correct inferences : if KB & o then KBID E .

11

Useful reasoning services for a description logic ?

0 Checking a description logic KB is not as easy as checking links in a semantic network.
Reasoning services are useful for inferences, but also for knowledge validation.

TBox 7 = {Course € -Person,

) T
UnivCourse € Course,

Teacher = Person M Jteaches.Course, /\

dteaches.T € Person, Course Person
Student = Person M Jattends.Course, / /\
Jattends. T S Person} UnivCourse Teacher Student

ABOX A = {Mary : Person; Logic : Course; (Mary, Logic) : teaches}.

0 Can we check the subsumption hierarchy ? So far, easily.

= Ifwe add Professor = Jteaches.UnivCourse ? Less easy but we can see that Professor € Person (why ?).
m If we add LazyStudent € Vattends.-Course, is a Lazy Student a Student ?
No, 7 does not entail LazyStudent S Student !

0 Can we check individual instances ? Is Mary a Teacher ? (Yes).
(after Baader et al. 2017)

12

Useful reasoning services for a description logic ?

Given an ontology O (or a knowledge base A) = <7, A>, the main reasoning services check :

0 For aTBox
« Concept Satisfiability : C is satisfiable wir.t. O (check if knowledge is meaningful).
= Subsumption : OCcD (check if knowledge is correct; build classification).
« Equivalence : OEC=D (check if knowledge is minimally redundant).

0 For an ABox

m Instance of aconcept: O kFa:C (check instantiation).

m Instance of a role : O E(ab):r (check if a role holds between individuals).

0 For an Ontology / KB
= Ontology consistency : O has at least one model.

= Ontology coherence : all named concepts in O are satisfiable.

13

Semantics for reasoning services

Given an ontology O (or a knowledge base A) = <7, A> :

0 For a TBox

m Concept Satisfiability : C is satisfiable w.r.t. O

m Subsumption :

m Equivalence :

O For an ABox

m Instance of a COIlCCpt .

m Instance of a role :

OeCcbD
OeC=D

OkFa:C
O E(ab):r

ift
ift
ift

ift
ift

there is a model Z of O such as C% = Q.
CZ < D? holds for all models 7 of O.
CZ = D? holds for all models 7 of O.

a’ € C7 holds for all models 7 of O.
(aZ, b%) € r’ holds for all models 7 of O.

14

Complex reasoning services

0 Classification : classifying an ontology O is a reasoning service consisting of :

1. Testing whether O is consistent; if yes, then:
2. Checking, for each pair A, B of class names in O plus Thing, Nothing,if O F A € B
3. Checking, for each individual name b and class name A in O, whether O £ b : A

and returning the result in a suitable form : s inferred class hierarchy.

0 Instance retrieval : given a concept C, finds in the ontology all individuals a such as:

O Ea:C.

0 Realization : given an individual a, finds the most specific concept C such as

O kEa:C.

15

Example of classification

Heroine = Hero M Female
MaleHero = Hero M - Female
MutantHeroine = Heroine M Mutant
Elite = Rich M - Human

Superhero = Hero M Elite

OWLViz: owl:Thing

o A YVIE

O|db| ¥ ks

|Asserted hierﬂr:hl |

Inferred hierarchy |

NS

P

16

Reduction of reasoning services to ontology consistency

For any ALC ontology O = (7, A), concepts C, D and individual name a, the following holds :

0 The reasoning tasks for concepts can be answered by a decision procedure for concept satisfiability :
1. Cissubsumed by D w.r.t. O, 0r O = C € D, iftf C M =D is unsatisfiable w.r.t. O,
2. Cand D are equivalent w.r.t. O, or O & C = D, iff both C M =D and -C M D are unsatisfiable w.r.t. O.

0 Concept satisfiability, instance checking, ontology coherence can be reduced to ontology consistency :

3. Cissatisfiable w.r.t. O iff {7, (a: C)} is consistent.

4. aisaninstance of Cw.rt. O,or O Ea:Ciff O U {- (a:C)}is inconsistent’.

5. O is coherent iff, for each concept name A, O U {a : A} is consistent(),

A decision procedure for ontology consistency will decide all standard ALC inference problems.

*: O u{(a:C)}isashorthand for {7, A U {(a: C)}

17

Agenda

How good are reasoners ? I
Reasoning services I
Tableau algorithm for ALC I

K| 21

Observations on complexity I

18

Structural subsumption algorithms

0O Some description logics do not support negation.

0 For such DLs, concept subsumption can usually be computed by structural subsumption
algorithms.

structural : comparing the syntactic structure of normalized concept descriptions.

0 They are very efficient but only complete for simple languages with little expressivity.

19

Structural subsumption algorithm

0 We consider as example the small language /2, :

s Limitedto A | C11 D | veC.

= For this presentation, considered without a TBox (cf. next section for TBox elimination).

0 The structural subsumption algorithm has two phases :

1. Normalization of concept expressions.

s A L concept expression is in normal form iff itis in the form A, M ..M A NV, C, 1 ... Vr, C,

Ai are distinct concept names, 1j distinct role names and Ck concept expressions in normal form.

m To reduce to normal form :

a) Flatten all embedded conjunctions: AN (BN C)=AnBnC

b) Factorize all conjunctions of universal quantifiers over the same role : Vr.C M Vr.D => Vr.(C N D)

20

Structural subsumption algorithm

2. Recursive comparison of expressions :

LetC=C;n...1C and D =D; n...M D, be two concepts in normal form :

Subsumes?(C, D) tests D < C and returns true iff for all Ci € C :

If Ci is an atomic concept name, there exists a Dj such as Dj = Cj;

If Ci is of the form Vr.C’, there exists a Dj of the form Vr.ID’such as Subsumes?(C’, ID’) is true.

0 Time complexity : O(|C|x|D|).
0 Soundness : whenever the algorithm answers “yes”, then D € C (shown by induction).

0 Completeness : whenever D € C, the algorithm answers “yes”.

21

Example

0 Check if the following subsumption is valid :

Vchild.Adult N Vchild.Male € Vchild.Adult

1. Normalisation

Vchild.(Adult N Male) € Vchild.Adult

2. Subsumption check

Second rule: check if Adult M Male € Adult

First rule: Adult is present on both sides of

=> SUCCESS

22

Limits of structural subsumption

0 Algorithms based on syntactic analysis cannot handle more complex logics.

In particular, DLs with negation and disjunction cannot be handled by structural
subsumption algorithms.

= For instance, A LI =A subsumes any concept C even if C is not mentioned in A LI -=A.

0 Without negation, the relationship between the # reasoning services is lost.

23

Agenda

How good are reasoners ? I

Reasoning services I
‘ Structural subsumption I
Tableau algorithm for ALC I

| 3 |

Observations on complexity I

24

Tableau algorithm for ALC : basic ideas

0 The basic algorithm works on ABoxes only (without TBoxes).

= It is easier to formulate algorithms of this kind by assuming that the TBox is empty.

= We can eliminate the TBox for acyclic terminologies.

0 All concept descriptions must be in negative normal form.

0 The algorithm tries to decide ontology consistency by trying to construct a model :
= If successful, a model exists => the ontology is consistent.

m If not successful, the algorithm will terminate with failure.

0 The algorithm can be initiated in different ways to deal with different decision problems.

Wiarning : the algorithm is not tractable (does not execute in polynomial time). We will discuss its
complexity later.

25

Eliminating the TBox

0 We can eliminate the TBox for acyclic terminologies.

0 To expand an acyclic terminology :

m Replace each occurrence of a name on the right-hand side of a definition with its definition,

until no named concept remains on the right-hand side of the terminology.

m For a finite acyclic terminology that process will always terminate.

= As the process uses equivalent substitutions, the TBox and its expansion have the same models.

TBox

Woman = Person M Female

Man = Person N “Woman

Mother = Woman M 3FhasChild.Person
Father = Man M 3hasChild.Person

Expanded TBox

Woman = Person M Female

Man = Person M - (Person M Female)

Mother = (Person M Female) M JhasChild.Person

Father = (Person M - (Person M Female)) M 3hasChild.Person

26

Eliminating the TBox ./.

0 The concept expansion process preserves all logical inferences, and thus allows to
eliminate the TBox in reasoning problems for acyclic terminologies.

0 Let us consider any concept C in an acyclic terminology and its expansion C’:

Q Cis satisfiable w.r.t. the TBOX (7") iff €’ is satisfiable :

= By construction C =, C.

m (’does not contain any defined names in its definition, so does no longer depends on 7.

m Hence C’is satisfiable w.r.t. 7 iff it is satisfiable.

0 With similar arguments we can show that
s 7ECCDifFeCCD;
m 7EC=Diff EC=D’;
= Cand D are disjoint w.r.t. 7 iff C’and D’ are disjoint.

Reduction to negation normal form

0 A concept is in Negation Normal Form (NNF) if all occurrences of negations are pushed
inwards in front of the concept names.

Example : (3r.A) 1 (3e.B) M =(3r.(A 1 B)) becomes (3r.A) M (Ir.B) N vVr.(-A U -B)

0 Every ALC concept can be transformed in NNF using the following rules:

m o =1
m oL =T
.—|—|CEC

» -(CnND)=-Cu-D (De Morgan’s laws)

n -(CuD)=-Cn-D (De Morgan’s laws)

m -Vr.C=3r-C (Generalized De Morgan’s laws)
m -3r.C=Vvr-C (Generalized De Morgan’s laws)
cCcDbh=-CubD

Tableau decision — example 1

0 Is the concept (VhasChild.Male) M (FhasChild.-Male) satisfiable ?

0 We create the ABox A = {x: ((vhasChild.Male) 1 (3hasChild.-Male))} and check if it is consistent.

i il A5 A x : ((VhasChild.Male) M (3hasChild.~Male))
2. From (1), we add the axiom(s) x : (VhasChild. Male)

3. From (1), we add x : (3hasChild.~Male)

4. From (3), we add (x,y) : hasChild and y : ~-Male for a newy
5. From (2) and (4), we add y : Male

6. From (4) and (5) contradiction : y : Male and y : ~Male

0 The ABox is not consistent. Hence the concept is not satisfiable.

29

Tableau decision — example 2

0 Is the concept Vr.(-C L D) M 3r.(C 1 D) satisfiable ?

1. Initial ABox A,
2. From (1), we add the axiom(s)
3. From (1), we add

4. From (3), we add
5. From (4), we add

6. From (4), we add
7. From (2),we add

a) From (7),we add
b) From (7),we add

x: (Vr.(-C u D) n3r.(C n D))

x: Vr.(-C U D)

x :3r.(C N D)

(x,y):randy:Cn D for a new y
y:C

y:D

y:-CuD

8. 'Two possibilities : we create a branching

y : -C contradiction: y : =C (8.a) and y : C (5)

y:D no new axiom can be generated.

0 8.b yields a satisfying model : AZ= {x,y} ; C'= {y}; D?={y}; v’ = {(x, y)}.

The ontology is consistent and the concept satisfiable.

30

The tableau decision algorithm

0 Works on an ABox (set of assertion axioms) ‘A.

= For checking the satisfiability of a concept C, it starts with { x: C }.

0 Applies decision rules (in arbitrary order) to infer new constraints on the axioms :

= These constraints are expressed as new assertion axioms of the form y : C or (x,y) : 1.

= The new axioms are added to A, yielding one or two (in case of branching) derived ABox(es).

The algorithm is applied on each derived ABox.

Its stops when no rule can be further applied.

Optimization : the algorithm can stop applying rules to any branch containing a clash.

0 Will answer that .A is consistent iff rule application leads to one ABox that is :

m Complete : no more rule can be applied to it, and

m Clash-free : it does not contain any pairs of assertions of the form {a : C a : -C}.

0 Will answer that A is inconsistent if that is not possible.

31

The tableau decision rules

Q M-rule —:
m ifx:C1NC2€Aand{x:Cl,x: C2} € A then replace A with A U {x: C1,x: C2}

Q U-rule - :
m ifx:C1luC2eAdand {x:C1,x:C2}NnA=0
then create two branches replacing A with A U {x : C1} and with A U {x : C2} respectively
Q J-rule —5:
m ifx:3r.C € Aand thereisno zsuchas {(x,2) :r,z: C} € A
then create a new individual name y and replace A with A U {(x,y) : 5,y : C}

Q V-rule -, :
m if x:VrC, (x,y) i1} € Aand y: C € A then replace A with A U {y : C}

A tableau derivation

A, [{a:3rAn3arBnvr(-Au-B)}

- twice |
A, |Agufa:3arA a:3arB,a: vr(-AuU -B)}

—, twice v
A, 1A, U{(a,b):r,b:A (ac):r,c:B}

-, twice
As A, U{b:(-AuU-B),c:(-Au-B)}

e/_)uN
"44.1 A3U{b:_'A} A4.2 A3U{b !_IB}
clash ———, o
As, | AsU{c oA} As, |AsU{c:-B}
clash

32

5.1 yields a satisfying model : A’= {a, b, c} ; AL={b} ; B’={c}; r’ ={(a, b), (a, c)}.

33

The tableau decision algorithm — formal version

function consistent (A) returns 77rue or False
Input: a normalized ALC ABox A
if expand(.A) # O then return 77ue

else return Fulse

function expand (A) returns an expanded ABox or 0

Input: a normalized ALC ABox A
{R, a} = selectRule(A)
// the function selectsRule selects a rule R applicable to a (pair of) assertion(s) a of A . If A is complete, R = 0.
if R # 0 then

// the function applyRule applies R to a and the ABox A and returns the set of resulting ABoxes.

if there is an ABox .A’ € applyRule(R, o, .A) such that expand(A’) = 0 then

return expand(A’)

else return 0

else if A contains a clash then return 0

else return A

34

Tableau algorithm properties : local correctness

0 Local correctness property : any derivation of an ABox by applying the rules preserves
consistency.

This is easy to verify :

0 If a set of axioms .4’ has been produced from A by applying a rule — > —,, or —»5> A is
obviously satisfiable iff .A’is satisfiable;

0 If a set of axioms .4’ has been produced from .A by applying — > A is satisfiable iff one of
the two branches is satisfiable.

35

Tableau algorithm: soundness

If the algorithm concludes that a set of axioms A is consistent, it is consistent.

High level proof :

0 If the algorithm concludes positively there is a clash-free ABox A, derived from A for
which no rule is applicable.

0 We can use A to construct an interpretation 7 = (A4, %) :
m A7 contains all individuals in A4 ;
s forx € A7and a concept name C,x € CZiff x: Cisin A ;

s forx,y € AZand a role name 1, (x,y) € L iff (x,y) :risin A,.

0 By construction 7 satisfies all role assertions of .A . One can prove by induction on the
structure of the concepts that 7 satisfies all concept assertions of A too.

0 As all axioms of A are in .A_, 7 also satisfies .A.

36

Tableau algorithm: termination

For any initial ABox (set of axioms) .4, the algorithm will never generate an infinite

sequence Ay, A, ... A, A, such as each A, is obtained from A; by application of the rules :

0 All rules but —,, are never applied twice to the same constraint.

0 —, is never applied to an individual x more times than the number of direct successors of
x (i.e., y such that (x,y) : r) present in A,

This process is bounded by the size of .A..

0 Each rule application to a constraint y : C adds axioms of type z : D such that D is a
subconcept of C. This process is bounded by the size of C.

37

Completeness

Any consistent ABox A will receive a positive answer through the algorithm.
This is easy to verify as :
0 As the algorithm terminates, it will always give a positive or negative answer.

0 If the input A is complete (cannot be expanded further), the answer is immediate.

0 If A can be expanded further, the answer follows from the local correctness property : any
application of the rules will preserve consistency.

Starting with a consistent ABox, the expansion process will terminate with a consistent and
complete ABox.

38

Using the algorithm for various inference problems

In order to check :

0 Consistency of an ABox A, check if {.A} is consistent.

0 Satisfiability of a concept C, check if { a : C } is consistent;

0 Satisfiability of a concept C w.r.t. ontology O, check if O U { a : C } is consistent;

0 Subsumption C € D, checkif { a: C 1 =D } is not consistent;

0 Subsumption C € D w.r.t. ontology O check if O U { a: C 1 =D } is not consistent;

0 Whether b is an instance of C w.r.t. ontology O, check if O U { b : ~C } is not consistent.

39

Extending the algorithm to TBoxes

0 We cannot fully eliminate the TBox if it contains general inclusion axioms of the form
C € D where both C and D can be complex concept descriptions.
0 To cover this case, we add a rule for general inclusions.

m Basicapproach: 7 ECE Dift 7 = TS - C U D, hence for any x in .4, x must belong to - C LI D.

m If C is an atomic concept name, it is easier to check if C is satisfied by checking x: C € A.
In that case we only need to check that D will be satisfied as well without introducing branches.

s If Cisaconcept name and x: C € Abutx: D & A, then replace A with AU {x:D }
s Elseifxoccursin Aandx:-C U D & A, replace Awith AU {x:-CULD}

0 However, the algorithm with this rule no longer terminates !
= Example : apply the algorithm to O = (7, A) with 7= {A E 3r. A} and A = {a: A}.
m {a:A} > {a:IrA} ->5{b: A} > {b:3rA} ...

40

Blocking rules

0 To avoid cycles, we will introduce blocking rules. Basic intuition:

m If we have introduced before an individual x belonging to a concept C, we should not introduce a new
individual y belonging to a concept description which is a subpart of the same concept C.

0 Blocking rule : in the case when :
= One of the rules introduces a new individual y;
= And there is in the ABox .4 an older individual x (introduced before y);
a And{C|y:CeA}c{D]|x:De A}
We will say that x blocks y : no rule can be applied to y.

0 It can be verified that with appropriate blocking the tableau algorithm will always
terminate with general inclusions.

41

The tableau decision rules with GCls

Q M-rule =
= ifx:C1 M C2€ A, xnotblocked and {x: C1,x: C2} € A then replace A with A U {x: C1,x: C2}

Q U-rule =,
m ifx:C1UC2E€A, xnotblockedand {x:C1,x:C2} N A=0
= then create two branches replacing A with A U {x : C1} and with A U {x : C2} respectively

Q J-rule -,
s ifx:3r.C € A, x not blocked and there is no zsuch as {(x,z) :r,z: C} € A
= then create a new individual name y and replace A with A U {(x,y) : 5,y : C}

Q V-rule -,
m if (x:Vr.C, (x,y) : 1} € A, x not blocked and y : C € A then replace A with A U {y : C}

a GCl-rule — ¢ [if CE D € Tand x is not blocked
= If Cisaconcept name,x: C € Abutx: D & A, then replace A with A U {x: D}
s Elseifx:-C U D €A forxin A, replace A with AU {x:-CUD}

42

Agenda

How good are reasoners ? I

Reasoning services I

‘ Structural subsumption I

Tableau algorithm for ALC I
Observations on complexity I

43

Reminder

Q P : the class of decision problems that are decided by a Turing machine in Polynomial time (whose
time complexity function is bounded by a polynomial function).

O NP : the class of decision problems that are decided by a Nondeterministic Turing machine in
Polynomial time.

0 EXPTIME : the class of decision problems decided by a deterministic Turing machine whose

time complexity function is bounded by an exponential function (O(2¢() where p(n) is a
polynomial function of 7).

0 PSPACE : the class of decision problems decided by a deterministic Turing machine whose space
complexity function is bounded by a polynomial function.

0 EXPSPACE : the class of all decision problems solvable by a deterministic Turing machine in
O(2#") space, where p(n) is a polynomial function of 7.

P € NP c PSPACE <€ EXPTIME < EXPSPACE

44

Complexity of the tableau algorithm for ALC

0 ALC with acyclic TBoxes :

m The algorithm as explained needs exponential space and time.

= By various optimizations it can be modified such as both concept satisfiability and ontology consistency are

PSPACE—complete(*))

0 ALC , TBoxes with general inclusions :

= Both concept satisfiability and ontology consistency for ALC are EXPTIME—complete(*).

0 The complexity varies with the syntactic constructs included in the DL :

s The algorithms for OWL DL have NEXPTIME (nondeterministic exponential) complexity, although best

reasoners offer acceptable performances for real life problems.

s The profiles of OWL 2, such as OWL EL, offer tractable algorithms (executable in polynomial time) which

can be used for large ontologies (this is indeed the main reason for their creation).

*: a decision problem is complete for a complexity class C if it is in that class and any other problem in C can be
reduced to it by a (polynomial) transformation. It is an example of the hardest problems in C.

45

The description logic complexity navigator

Complexity of reasoning in Description Logics
Note: the information here is (always) incomplete and updated often

Base description logic: Attributive Language with C omplements

ALC::= L | T|A | =sC | CND | CubD | 3RC | VR.C
Concept constructors: Role constructors: trans | reg
O - functionality?: (<1 R) U I - role inverse: R—
O N - (unqualified) number restrictions: (=n R}, (=n R) 00N - role intersection2: B N1 S
[0 Q- qualified number restrictions: (zn R.C), (=n R.C) Ou - role union: Ru S
O~ nominals: {a} or {2y, .., an Cone-ol) O - - role complement: ~R [l
O p - least fixpoint operator: uX.C O o - role chain (composition): R o §
: o I O * - reflexive-transitive closure®: R*
Forbid ~ complex roles2 in number restrictions® O id - concept identity: id(C)
TBox (concept axioms): RBox (role axioms): OWL-Lite
O empty TBox O 5 - role transitivity: Tr(R) OWL-DL
O acyclic TBox (A = C, A is a concept name; no cycles) [0 # - role hierarchy: R ¢ S W
® general TBox (C ¢ D, for arbitrary concepts C and D) O ® - complex role inclusions: RoSc R, RoS5c S
§ - some additional features (click to see them)
Reset You have selected a Description Logic: ALC
ComplexityZ of reasoning problems2
Concept ExpTime-complete ® Hardness: originally proved in [77]; see also [2, Theorem 3.27].
satisfiability p p e Upper bound: an ExpTime tableaux algorithm is given in [33].
ABox ExpTi | e Hardness follows from ExpTime-hardness of concept satisfiability w.r.t. general TBoxes.
consistency xpTime-complete * Upper bound even for $HIQ was proved in [12, Corollary 6.30].
Important properties of the Description Logic
Finite model v For all sublogics of SHOQ. This is mentioned in [63], where a similar result is obtained in Corollary 4.3 for SH0OQ extended with
property es concrete domains and keys. (I did not find a "proper" reference for SHOQ or its sublogics.)
Tga;rzr;(:gel Yes For all sublogics of ALCFlreg with any TBoxes; see [2, p.189, Theorem 5.6].
Maintained by: Evgeny Zolin Any comments are welcome: =\ZE
Please see the list of updates EZolin@cs.man.ac.uk

(bttp://www.cs.man.ac.uk/~ezolin/dl/)

http://www.cs.man.ac.uk/~ezolin/dl/

46

Summary

Q

All important inference problems for decision logics can be reduced to a decision procedure for
ontology consistency.

Syntax-based decision procedures, such as structural subsumption, are performant but only
applicable to very simple decision logics without negation.

Acyclic terminologies for ALC can be handled by eliminating the TBox and using a tableau

algorithm looking for a complete derivation without clash. This procedure is sound and complete.

Extending the algorithm to TBoxes with general inclusions requires the addition of blocking rules
to ensure termination.

The complexity of the ALC decision algorithm with general TBoxes is EXPTIME-complete, hence

not tractable. However existing reasoners are subject to constant improvements (and competition)
and are usable in real-life situations.

The specific sub profiles defined for OWL 2 (EL, QL, RL) have tractable decision algorithms for

their most important tasks.

47

References

Q [Baader and Nutt 2003]: Baader F. and Nutt W, Basic description logic, in Baader F., Calvanese D., McGuinness D., Nardi D., and Patel-Schneider P
(eds.): The Description Logic Handbook: Theory, Implementation, and Applications, chapter 2, Cambridge University Press, New York, NY, USA, 2003.

Q [Baader et al. 2017]: Baader, F.,, Horrocks, I. Lutz C. and Sattler, U., An introduction to Description Logic, Cambridge University Press, 2017.

THANK YOU

