Semantic Data

Chapter 6 : The Web Ontology Language OWL

Jean-Louis Binot

Semantic Data 17/03/2021

Sources and recommended readings

0 There are no additional required references for this chapter for the theory.
Some sections have been taken out of the material for the exam.

The Manchester syntax is not covered in theory but is useful in practice (in Protégé).
Students are expected to acquire the knowledge they need for the project.

0 Sources and useful additional readings :

s The presentation of OWL DL is based on the OWL guide 2004.
m The presentation of OWL 2 is based on the OLW 2 primer and the OWL 2 new features and rationale.
s Web Data Management (Abiteboul et al. 2011) covers succinctly the link between DL and OWL.

» An introduction fo description logic (Baader et al. 2017), chapter 8, covers the mappings between OWL and
description logics.

0 University courses having partially inspired ideas and examples for this chapter :

Description Logics part 1 Languages, I. Horrocks, Oxford University.

Apprentissage symbolique et web sémantique, B. Amman, Université Pierre et Marie Curie, Paris.
OWL 2 Web Ontology Language Revised, S. Wandelt, Humboldt-Universitit zu Berlin.
Semantic Web Technologies, H. Paulheim, Universitat Manbeim.

https://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/
https://www.w3.org/TR/owl-guide/
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/2012/REC-owl2-new-features-20121211/

Agenda

2
2]

1 I Why OWL ?

2

‘ Species of OWL I

oo |

o

—_—

5

e |

Not in the material
for the exam
(except slide 26
27, 28 which
remain in the
material).

OWL in the W3C standards stack

RDFEFS supports only lightweight ontologies (cf. chapter 4).
OWL (Web Ontology Language) is a language for building full Web

ontologies with model-theoretic semantics.

m OWL uses RDF and RDFS to manipulate linked data.
= OWL (in its main variant) uses description logics to support logical inferences.

= This “merging of two worlds” raises a few difficulties.

Description
Logics

decidable expressive logic

linked data

User interface and applications

Proof

Unifying Logic

SPARQL

Ontologies: Rules:
Querying: OWL RIF/SWRL

Taxonomies:RDFS

Data interchange:RDF

Syntax:XML

Identifiers: URI Character Set: UNICODE

The semantic web stack Of standards

AydeisbordAid

Why not just build OWL as an extension of RDFS ?

0 RDFS modeling primitives are sources of unwanted complexity.

= Constructions such as 7dfs:Class and rdf:Property are very powerful :
A class may be an instance of itself; a property may be applied to itself.

m Combined with OWL’s language extensions, this may create undecidability. W3C has given a choice :

0 OWL-Full : total freedom to use RDE, for those wanting to use that freedom.

But : not reasoner exist for all features; the entailment problem in OWL-Full is undecidable !

0 OWL-DL : The model-theoretic semantics of description logics apply; reasoners exist.

But: RDF is restricted to what is needed to express OWL DL concepts and axioms.

owl:Class is a proper subclass of rdfs:Class. A class cannot be also an instance. Other restrictions apply.

https://www.w3.org/TR/owl-ref/#OWLDL

Agenda

1 I ‘ Why OWL ? I
I Species of OWL
I OWL-DL I

I OWL 2 I
‘ I‘ OWL 2 Semantics I

Species of OWL

0 OWL 1 (2004): three increasingly expressive sublanguages for distinct uses:

s OWL Full: maximum expressiveness; syntactic freedom of RDF (e.g., classes can also be instances).

No reasoner supports all features of OWL Full.

» OLW DL: maximum description logic expressivity while guaranteeing completeness and decidability.
Every entailment can be computed by a reasoner.

m OWL Lite: classification hierarchy and simple constraints. Quick migration path for thesauri and taxonomies.

0 All these languages support upward compatibility :

m Every legal OWL Lite ontology is a legal OWL DL ontology.
Every valid OWL Lite conclusion is a valid OWL DL conclusion.

m Everylegal OWL DL ontology is a legal OWL Full ontology.
Every valid OWL DL conclusion is a valid OWL Full conclusion.

o OLW 2 (2009), evolution of OWL 1.

Mapping with description logics

Reminder : & denotes logic ALC extended with transitive roles :
s S=ALCR* (cf. chapter 4 for a description of the naming scheme).

OWL <-> description logics correspondences :

o OWL Lite : <-> SHITF (role hierarchies, inverse roles, functions)
ad OWL - DL . <=> SHOIMD) (role hierarchies, nominals, inverse roles, number restrictions,
data types)

0 OWL — Full : <-> undecidable

o OLW 2 : <-> SROIQ (D) (complex roles and role axioms, nominals, inverse roles, qualified

number restrictions, data types)

OWL 2 is the most expressive OWL language where inferencing is still decidable.

However, many large ontologies are still in OWLI1.

OLW Syntaxes

Examples of the first 5 syntaxes
can be found in the OLW2 Primer

0 RDF/XML syntax :

m Still the only normative syntax.

0 Turtle syntax : straightforward Turtle version of the RDF/XIMML Syntax.

We will only cover Turtle

0 Functional Style syntax :

m Prefix-syntax, given as formal grammar; clean, adjustable, modifiable, easily parsable; used in W3C Specs.

0 Manchester syntax: user-friendly syntax, used in Protégé.

0 OWL/XML syntax :

= Notational variant of Functional Style Syntax. Does not use RDF triples, but XML tree structure.

0 Graphical syntax based on UML conventions.

0 Probably too many syntaxes : complex design choices, multiplication of conversions...

https://www.w3.org/TR/owl2-primer/

10

Agenda

o

‘ Why OWL ? I

2]
=

‘ Species of OWL I
OWL-DL I

0

OWL2 I

=

OLW2 Semantics I

11

Namespaces and prefixes

0 A typical OWL ontology starts with namespace declarations (as RDF).

0 The OWL namespace is defined by :

PREFIX owl: <http://www.w3.0rg/2002/07/0wl#>

0 Other namespaces seen in previous chapters will be reused, among which :
PREFIX rdf: <http.//www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

0 Examples from the wine ontology (downloadable) use the following prefixes :

PREFIX wvin: <http://www.w3.org/ TR/2003/PR-owl-guide-20031209/wine#> .
PREFIX food: <http.//www.w3.org/TR/2003/PR-owl-guide-20031209/food#> .

Example ontology : the Wine ontology

T “hasVintage DR oo
subClassOf . hasVintage Restriction Class
l \ Year subPropertyOf S
Class — T onProperty White
Potable ——— subClassor—*__Loire
Liquid onProperty Restriction
5 ObjectPrope ‘/Propeny/ .\éllIValuesFrom Class
subClassOf i) p—y 2
Value | ‘ fler e Loire
i Class e n___’____._..,- Grape = -onProperty Restriction s
. Wine : allvalvesFrom [~ Class
onProperty xsd:nonNegative
Integer subClassOf Bordeaux
Restriction —minCardinalitym| 1
subClassOf Class

subClassOf

__cardinality Class Bordeaux

Restriction ——alivaluesFrom—p

Winery hasValue.

AP subClassOf o~
estriction Restriction onPropery " w——
e ranamu) / ona
e (FunctionalProperty) [VESORYNcH)
Sy LT I Py

. hasMaker] verseOt—— producesWine |

A wine is a potable liquid produced by one maker of type winery, and made from at least one type of grape...

(Source for the ontology: wine and food)
12 Source for image: Owl language guide: hitp.//www.w3.org/ TR/ owl-guide.rdf, using VisioOWL)

https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine
https://www.w3.org/TR/2003/PR-owl-guide-20031215/food
http://www.w3.org/TR/owl-guide.rdf

13

Expressing DL in OWL, an example

0 DL axioms : 0 A class may be :

Wine € PotableLiquid M VhasMaker.Winery = Identified by name (an URI);

ChateauChevalBlanc : Winery = Anonymous (RDF [] blank node notation).

o In OWL:

0 Syntactic constructs :

vin:PotableLiquid a owl:Class . rdf:type (a) : to type resources / declare instances.

vin:Winery a owl:Class . rdfs:subClassOf : specialization hierarchy.

vin:Wine a owl:Class ;

rdfs:subClassOf vin:PotableLiquid ;
rdfs:subClassOf [a owl:Restriction ;

owl:onProperty vin:hasMaker ;

m owl:Class : the type Class.

owl:allValuesFrom vin:Winery] .

vin:ChateauChevalBlanc a vin:Winery .

14

Thing and Nothing

0 Owl: Thing is the universal concept, T.

m Every individual in the interpretation domain is a member of the class owl:Thing.

= Each user-defined class is implicitly a subclass of owl: Thing.

0 Owl:Nothing is the inconsistent concept, L.

= No individual of the interpretation domain belongs to Owl:Nothing.

15

Types of class restrictions

An OWL class can be defined by :
1. Constraints on properties of the instances (intensional definition);
2. Enumeration of its instances (extensional definition);

3. Set relationships on the extensions of other classes.

16

1. Constraints on the properties of the instances

O Structure:

<class> rdfs:subClassOf <restriction>

<restriction> ::= [a owl:Restriction ;
owl:onProperty <property> ;

<restriction name> <restriction argument> |

0 Example :

vin:Burgundy a owl:Class ;
rdfs:subClassOf [a owl:Restriction ;

owl:onProperty vin:hasSugar ;

owl:hasValue vin:Dry | .
= InDL:

Burgundy € JhasSugar.{Dry}

17

Constraints on the properties of the instances ./.

Property value type restrictions

Existential restriction

Universal restriction

Cardinality restrictions

Minimum cardinality

Maximum cardinality

Property value restriction

[owl:onProperty r ;
owl:someValuesFrom C]

[owl:onProperty r ;
owl:allValuesFrom C]

[owl:onProperty r ;
owl:minCardinality n]

[owl:onProperty r ;
owl:maxCardinality n]

[owl:onProperty r ;
owl:hasValue V]

ar.C

vr.C

<nr®

>nr®

ar.{v}

(*): n is written in RDF format, e.g. "7 " \xsd

18

2. Enumerated classes

0 A class can be specified via a direct enumeration using owl:oneOf :

= This completely specifies the class extension : no other individuals can be declared to belong to the class.

vin:WineColor a owl:Class ;
owl:oneOf (vin:Red vin:Rose vin:White) ;
rdfs:subClassOf vin:-WineDescriptor .

0 In DL (O) : the set (or “one-of”) constructor :

WineColor = {Red, Rose, White}

19

3. Class definitions using set relationships

Class definitions may use inclusion, equivalence, disjoint relationships.

O Inclusion : rdfs:subClassOf.

0 Equivalence : owl:equivalentClass.

0 Disjoint classes : owl:disjointWith.

Example :

food:Fowl a owl:Class ;

rdfs:subClassOf food:EdibleThing ;
owl:disjointWith food:Fruit ;
owl:equivalentClass food:Poultry .

In DL : a GCI axiom : C € D.
In DL : an equivalence axiom : C = D.

InDL:AnBc.l.

20

3. Class definitions using set relationships ./.

0 Complex class definitions may use the Boolean set operators :
s DL, U, -
m OWL : owlintersectionOf, owl:unionOf, owl:complementOf .

0 Structure :

[rdf:type owl :Class; <set operator> (<class> ... <class>)]

0 Example :

vin:WhiteWine owl:equivalentClass
[a owl:Class ;
owl:intersectionOf (vin:Wine [a owl:Restriction ; owl:onProperty vin:hasColor ;

owl:hasValue vin:White])] .
DL: WhiteWine = Wine M 3hasColor.{ White}

21

A larger example

0 Let us revise the definition of /Wine to cover the following information :

“A wine is a potable liquid made from at least one grape; its maker must be a winery; it must be located in one regian”.

vin:Wine a owl:Class ;
rdfs:subClassOf food:PotableLiquid ,
[a owl:Restriction ; owl:onProperty vin:locatedIn ; owl:someValuesFrom vin:Region |,
[a owl:Restriction ; owl:onProperty vin:hasMaker ; owl:allValuesFrom vin:Winery |,

[a owl:Restriction ; owl:onProperty vin:madeFromGrape ; owl:minCardinality
"1"Mxsd:nonNegativelnteger] .

o In DL :

m Wine € PotableLiquid M 3locatedIn.Region M VhasMaker.Winery M >1 madeFromGrape

22

Graph-based visualisation

vin: Wine rdf:type owl:Class ;
rdfs:subClassOf food:PotableLiquid

[rdftype owl:Restriction ;
owl:onProperty vin:locatedIn ;
owl:someValuesFrom vin:Region |,

[rdftype owl:Restriction ;
owl:onProperty vin:hasMaker ;
owl:allValuesFrom vin:Winery |,

[rdftype owl:Restriction ;
owl:onProperty vin:madeFromGrape
; owl:minCardinality

"1 ""Mxsd:nonNegativelnteger] .

L Year g sy ~ VR
Class ranlge onProperty .l
Potable — subClassor—>|__Loir
Liquid Properly Restrlctlont
2 " 3 allValuesFrom Clas
+ subClassOf ObjectProperty- onProperty’ —al ™
MadeFroma— ol
Class somai——————__ Grape onProperty Restriction
=i Wine & - allValuesFrom Clas
_ i onPriperty xsd:nonNegative i
4 — %S0 |ntege|— subClassOf Borde
SUBEmeEO Restriction==siscasinaliey 1 \ T
subClassOf subClassOf N Whit
cardinality® : Class Borde:
subClassOf Restriction |s allalugsEom -
domain suBSgssOf Wlnery | hasValue—
ietion Restriclion ek “InverseFunctional
{ FunctionalProperty) { ¥ ‘
cardinallty bbbl & ___ Property
\G) hasMaker nverseOl—— broducesWine |
Restriction - 5
i " - [TransitiveProperty |
ObjectProperty) onProperty cardinality Restriction ODPMW”; : <
‘hasWine 6 il oL locatedin
‘ : ‘
/Descnpto_rv
\ onProperty domain
subPropertyOf
pertyOf subPropertyOf someVayesFrom range Class
{ FunctionalProperty Thing
hasFlavor anciibna!Propei’ty)
(" h r) Class
asSuga 7 : Cias
/ x \ Region | . poiassor—| Califol
—_—— DA~

ranoe

23

Properties

‘Two types of properties are distinguished:

0 Object properties : type owl:ObjectProperty.

= Express relations between instances of two classes.

0 Datatype or value properties : type owl:DatatypeProperty.

= Express relations between instances of classes and datatypes (RDF or XML Schema types).

Both are subclasses of rdf:Property.

24

OWL property characteristics

0 RDFS property hierarchies, domain and range are still usable.

vin:madeFromGrape a owl:ObjectProperty ;
rdfs:subPropertyOf food:madeFromkFruit ;
rdfs:domain vin:Wine ;

rdfs:range vin:WineGrape .

vin:FormanCabernetSauvignon vin:madeFromGrape vin:CabernetSauvignonGrape .

m Property hierarchies in DL (H) : a role inclusion axiom: madeFromGrape € madeFromFruit
m Domain in DL : 3madeFromGrape. T € Wine
m Range in DL : T € VmadeFromGrape.WineGrape

We can, among others, infer from the example above that FormanCabernetSauvignon is a wine.

0 As OWL uses DL, the domain or range can be a complex class (in contrast with RDFS) :

m Domain : 3childOf. T € Father LI Mother

25

Property axioms

0 Property axioms (transitive, symmetric ...) are defined by making the property an instance

of the appropriate built-in OWL property class :

m vin:locatedIn a owl: TransitiveProperty . In DL : Trans(locatedIn)

The range of a transitive property must be subsumed by its domain.

» vin:adjacentRegion a owl:SymmetricProperty . In DL : adjacentRegion = adjacentRegion™

The domain and range of a symmetric property must be the same.

m vin:hasMaker a owl:FunctionalProperty . In DL : T € (<1 hasMaker)

0 Inverse properties are defined by using the built-in ow/:inverseOf property :

m vin:madeFromGrape owl:inverseOf vin:madelntoWine . In DL : madeFromGrape = madelntoWine

Revisiting the example from chapter 1

Status with RDES
v/ Madrid is a city.

:locatedIn a :rdf:property .

:country a rdf:class .

:city a rdficlass .

:capitalOf rdfs:subPropertyOf :locatedIn .
:capitalOf rdfs:domain :city .

v’ Spain is a country.

v/ Madrid is located in Spain.

:capitalOf rdfs:range :country .

X Barcelona is not the capital of Spain.

)

Madrid is the capital of Spain X Madrid is not the capital of France.

v

:Madrid :capitalOf :Spain . X Madrid is not a country.

0 How can we do it with DL. and OWL ?

(example after Paulheim,
Semantic Web Technologies)

26

DL

OWL

27

Revisiting the example from chapter 1./.

0 Madrid is not the capital of France
City € <1 capital Of.Country

:capitalOf a owl:FunctionalProperty .
:Madrid :capitalOf :Spain .

:Spain owl:differentFrom :France . :Madrid :capitalOf :France . => inconsistent ontology

0 Barcelona is not the capital of Spain
Country € =1 hasCapital.City (abbreviation for > 1 hasCapital.City M < 1 hasCapital.City)

:Country a owl:Class ; rdfs:subClassOf [a owl:Restriction ; owl:onProperty :hasCapital ;
owl:qualifiedCardinality "1"Mxsd:nonNegativelnteger ; owl:onClass :City] .

:Spain hasCapital :Madrid.

:Madrid owl:differentFrom :Barcelona . :Spain :hasCapital :Barcelona . => inconsistent ontology

0 Madrid is not a country:.

City N Country € L
:Madrid a :City .
:City owl:disjointWith :Country . :Madrid a :Country => inconsistent ontology

Updated framework of reference for semantic applications

requests / new facts _,

gy
/ Knowledge base

Knowledge-based component

Inference engine

[How to express knowledge about the world ? J

Use description logics

Data integration component

P

In what kind of databases shall we store this I
type of data / knowledge ?

Web resources

P

Which formalism(s) to represent and access
the meaning of web resources?

Semantic web standards (RDF(S) and OWL).

28

!

Other
applications

/

data sources

—— answers / actions

|

How to perform deductions?
Use entailment

29

Ontology management

0 Meta-information about the ontology itself can be specified:

rdfs:label provides a human-readable version of the ontology name.

rdfs:comment provides the obviously needed ability to comment.

owl:priorVersion provides information that may be used for version control.

owl:imports allows to import other ontologies, bringing their full set of assertions into the current ontology.

0 Class declarations are also part of ontology management. All syntaxes except Manchester
syntax offer facilities to do so :

vin:Bancroft rdf:type owl:NamedIndividual.
vin: Winery rdf:type owl:Class .
vin.adjacentRegion rdf:type owl:ObjectProperty .
vin.yearValue rdf:type owl:DatatypeProperty .

30

Ontology mapping

0 The Semantic Web is distributed; so is ontology construction.

m It is common for ontologies to use different names for the same concept, property, or individual.

m It is common usage to develop ontologies in several parts, which then need to be mapped together.

0 Equivalence declarations can be used for that purpose : equivalentClass for classes,
equivalentProperty for properties and sameAs for individuals :

:Mary owl:sameAs otherOnt:MaryBrown .
Adult owl-equivalentClass otherOnt:Grownup .
hasChild owl-equivalentProperty otherOnt:child .

0 To make sure individuals are different, this must be specified.

s OWL does not have the unique name assumption.

:John owl:differentFrom :Bill .

Agenda

;I ‘ Why OWL ? I
_I ‘ Species of OWL I
J OWL-DL I
| —r—
il OWL 2 Semantics I

32

OLW 2

0 OLW 1 has been successful; its usage has shown additional needs :

= A suitable set of built-in datatypes (OLW 1 still relied on XIML-Schema datatypes);

= Additional features identified by users for which effective reasoning algorithms are now available.

0 OLW 2 was adopted as W3C recommendation in 2009, backward compatible :

= All OWL 1 ontologies remain valid OWL2 ontologies, with identical inferences in all practical cases.

33

OLW 2 relationship to OWL 1

0 The overall structure of OWL 2 is very similar to OWL 1. Almost all OWL 2 building

blocks were present in OWL 1, sometimes in a different name.

0 OWL 2 adds new features with respect to OWL 1 :

n Syntactic sugar : doesn’t change expressiveness or complexity but makes patterns easier to write and allows for more
efficient processing in reasoner : disjoint union, disjoint classes (cf. chapter 5), negative assertions.

s New constructs for properties : cardinality restrictions, property chain inclusion, new axioms (reflexive, asymmetric ...).
s Extended datatypes : richer set of datatypes (e.g. various types of numbers) and datatype restrictions.
m Punning : the same name can be used as class and as instance (dog is a class and an instance of species).
Note : OWL 2 DL treats the two usages as totally different instances of the same name, to preserve decidability.
m Extended annotations : OWL1 could only annotate the ontology. OWL 2 can annotate classes and properties.

m Other minor features.

https://www.w3.org/TR/owl2-new-features/

34

OWL 2 Profiles

Complexity remains a key factor. OWL 2 offers three distinct tractable profiles:

0 EL: fast reasoning services (ptime) for large ontologies (classes, properties).
= Many applications, in particular in life sciences, have large ontologies : SNOMED, GO ...
= They need to represent complex entities, to propagate properties (e.g., location of diseases ...).

= EL is designed for such ontologies with a large conceptual / taxonomy part.

0 QL: Efficient query answering using RDBMs via SQL..

= Conjunctive query answering in logspace wrt size of data; consistency and subsumption reasoning in ptime.
m For applications needing inter-operability with database technologies and tools.

m QL is useful for large datasets already stored in RDBs.

0 RL: can be implemented using rule-based technologies (rule-extended DBMSs, Prolog ...)
= Fast reasoning services (ptime).
= For applications concerned with inter-operability with rule engines operating at RDF level.

m RL is useful for managing large datasets of RDF triples which can be enriched with rules.

https://www.w3.org/TR/owl2-profiles/#Computational_Properties

35

Compatibility of reasoners

0 Every conforming OWL 2 DL reasoner is also a conforming reasoner for OWL 2 EL,
OWL 2 RL,and OWL 2 QL !

0 But they may differ in performance as the OWL 2 DL reasoner is tuned for a more
general set of cases.

36

Agenda

1 I‘ Why OWL ? I

I ‘ Species of OWL I

_I OWL-DL I

LI oWL 2 I

5 I OLW 2 Semantics I

OLW Semantics

0 Two semantics are defined for OWL 2 :

1. Direct semantics:

m Model-theoretic semantics similar to DL SROIQ, extended for datatypes and punning.

Due to these extensions the direct semantics has received a separate formal definition. We will satisfy ourselves to
summarize the mapping between OWL 2 DL and description logics (mapping table next slide).

= Assigns meaning to OWL 2 DL ontologies (those meeting the restrictions necessary to be translated into DL).
= Also provides semantics for OWL 1 Lite and OWL 1 DL ontologies and OWL 2 profiles.
= As description logics, OWL uses the Open World assumption.

2. RDF-based semantics:
= Assigns RDF-based meaning to all OWL 2 (full) ontologies;

= For an OWL 2 DL ontology, inferences based on direct semantics are still valid using RDF-based semantics.

s Will not be covered in this course.

37

https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/

Mapplng between OWL and description logics

¥ T,
I Horrocke, P. F. Patel-Schneider, 0. L. MeGuinnezs, and O Welty 16 I. Horrocks, P. F. Patel-Schneider, D. . McGuinness, and ©. Welty

Abstract Syntax DL Syntax

Descriptions (C) Abstract Syntax DL Symtax
E) E) Classi{A partial &1...Ck) ACCiN...NCh
owl:Thing - Class{A complete Oh...Ch) A=C1N...NCh
owl: Nothing EnumeratedClass({d o...04) A={m}u...1{o,}
intersectionOf (Cy ... Ch) Cin...NCy S‘Jb(_:la“uf{ful Sa) . } '5-:1 C &)
unionDf (Cy ... Cp) cu...uC, EquivalentClasses{(" .. y) Oy=...=0,
complementf (C) - DizjointClasses{(... Cnl GNCyC LiPj
onelf oy . .on) {fmiu.. . Ufon} Datatype ()
restriction({ i someValuesFrom(({')) 2RO ObjectProperty (i super(fi;).. super(ii,) RC R,
restriction(allValuesFrom{{)) YR.C d.n:nmain{f‘j}. . .dn:lma.inu({'.‘m:l f . fl‘?; C:;
restriction{ hasValue(ol}) R:o rfu:lge{f 1)...range(Cy) CYRG
restriction(! minCardinality(n)} Zn it [inverself (/)] R=Hy
restriction(/! minCardinality(n)} wn it [Bymmetric] fE I
restriction{l/ someValuesFrom{[)) D [Functional]) N C “- LR
restriction(l/ allValussFrom({I})) VL. [IoverseFunctionall C=lH
restriction{l’ hasValua{v)) U:w [Tramzitivel} T'ri k)
restriction(!/ minCardinality(n)) =nll SubPropertylf ([Ha) BC i
restriction(!/ maxCardinality(n)) anll EquivalentFroperties{f .. If,) B=...=H,
Data Ranges [D) DatatypeProperty () super(l/|).. super{l) [' C -.’
3] - 0 domain{(Cy). . .domain(Cy) = Il'. C
oneDE (v1 ...vm) [}l ..U fvm] range([h)...ranga(De) TCVUD
Ohbject Properties (1) [F‘lmctmnarl] }_ . C=lU
T 7 SubPropertylf (U7 [s) iy
inv(R) R EquivalentFropertiea{l/ ... LL) Uy=...=0U,
Datatype Properties (I7) AﬂnﬂtatlanPrnpert].r_E.‘:}
i T OntologyProperty(5)
vt (o) Individualic typely). .. typellyhl o Oy

sl valus(/fy op)...value(f, o) {o,o;4) € By
l = _ o value(l’) w). .. .value(ll; wv,)) {o,v) € L))
Data Values () SameIndividoal(o)...on) {m}=...={on}
v v DifferentIndividualsa{oy...on) {o} T ~{oy}, i Pj

Fig. 14.2. OWL DL Descriptions, Data Ranges, Properties, Individuals, and Data Fig. 143, OWL DL Axioms and Facts

Values

(source Horrocks et al. 2007. These tables use abstract syntax. The mapping with the Turtle syntax can be found in the OWL 2 Primer.)

https://www.w3.org/TR/owl2-primer/

39

Summary

0 OWL aims to integrate the flexibility and linked data access provided by RDF graphs

with the precise semantics of description logics.

0 This is only possible with restrictions on RDF constructs, in particular the constructs
representing a class and a property.

0 These restrictions led to the OWL DL sublanguage, which can be mapped into

description logics and for which efficient reasoners exist.

0 The full flexibility of RDF is still available in OWL Full, for which ;however, no reasoner

covering the entire language exists.

0 OWL 2 DL the most expressive decidable ontology language (corresponding to
description logic SROIQ (D).

0 3 additional tractable simplified languages are proposed : OWL2 EL, RL. and QL.

0 OWL is the language of references for ontologies for the semantic web, supported by an
array of reasoners and other tools.

40

References

Q [Abiteboul et al. 2011]: Abiteboul S., Manolescu I, Rigaux P, Rousset M-C. and Senellart P, Web Data Management, Cambridge University Press, 2011.
Q [Baader et al. 2017]: Baader, F.,, Horrocks, I. Lutz C. and Sattler, U., An introduction to Description Logic, Cambridge University Press, 2017.

Q [Horrocks et al. 2007]: Horrocks 1., Patel-Schneider P, McGuinness D., and Welty C., OWL: a Description Logic Based Ontology Language for the Semantic

Web, in Baader F., Calvanese D., McGuinness D., Nardi D., and Patel-Schneider P, (eds.), The Description Logic Handbook: Theory, Implementation,
and Applications (2nd Edition), chapter 14. Cambridge University Press, 2007.

THANK YOU

