Semantic Data

Practice 6 : Ontology Modeling

Jean-Louis Binot

Semantic Data 10/3/2021

Topics

1. Typical mistakes.
2. Expressing rules as general axioms

3. Designing and checking the class hierarchy.

To be read as documentation :
3. Term acquisition.
4. The quality property pattern.

5. Role composition.

Section 1: typical mistakes

0 Use of universals versus existential restrictions.
0 Open world assumption and closure axioms.
0 Understanding domain and range axioms.

0 Expressing related information as part of name strings

This section is inspired from (Rector et al. 2004).

Section 1: typical mistakes

¥-- 0 owl:Thing
v ® Food
To get started : :
o get starte V. ® Pizza
0 Open a new ontology and save it (pizza.owl). B IMargherita
0 Create the class hierarchy illustrated on the right. """ 0 American
- = Siciliana

0 Do not forget to state that subclasses of Pizza are _
disjoint; same for PizzaTopping. T ' PizzaBase
¥-- 1 PizzaTopping
-~ TomatoTopping
- BeefTopping
-) MozarellaTopping

0 Create object properties hasIngredient, hasBase
and hasTopping as illustrated below.

O Save.

v B owltopObjectProperty v — N

: _ e asTopping

v - hasingredient ----- M hasTopping Range PizzaTopping
T B hasBase - M hasTopping SubPropertyOf: hasingredient
~ Il hasTopping M hasTopping Domain Pizza

......

Use of universal versus existential restrictions

A Margherita is made with Mozzarella and 0 No instance identified. Why ?

Tomato (only).
g The following could hold :

0 Add to Margherita the restrictions :

hasTopping only Mozzarella Topping
hasTopping only TomatoTopping

O Create an instance :
m Pizzal of Margherita

0 Ask in DL%CIY : Margherita TomatoTopping

Which pizzas have some tomato topping P A universal restriction does not state “at least one” : it is
trivially satisfied by an individual if that individual has no

0 What happens ? role corresponding to that restriction.

Open world assumption and closure axioms

0 Transform the universal restrictions into
existential ones.

» hasTopping some MozarellaTopping
and hasTopping some TomatoTopping
m Test previous query (should work).

0 Create some instances :

s Tt of TomatoTopping
m Mt of MozarellaTopping
= Bt of BeefTopping

Do not forget to state that individuals are different !

0 Add individual object property assertions :
m Pizzal hasTopping Tt
m Pizzal hasTopping Mt
m Pizzal hasTopping Bt

0 Ask in DLQuery : Margherita
s Pizzal identified (should be rejected). Why ?

0 The following model is a model of our
existential restriction :

/

TomatoTopping

Margherita

BeefTopping
MozzarellaToppiry

0 Open World Assumption : information
non specified is not false, but unknown.

Open world assumption and closure axioms ./.

0 Add a closure axiom by adding to the existential restriction a universal restriction :

In addition to : hasTopping some MozarellaTopping and hasTopping some TomatoTopping
Add : hasTopping only (MozzarellaTopping or TomatoTopping)

0 Result : inconsistent ontology (this is what was intended).

0 Fix it by removing the beef topping assertion for pizzal.

< X
Adding a closure axiom is an important = —TE
logical design pattern in ontology modeling. TR Mg i s T S
This important operation has a special o
menu feature in Protege: select a restriction,
right-click on the edit button and select e

Create closure axiom

Synchranising

Understanding domain and range axioms

0 Domain and range are axioms, not constraints.

They are used to make inferences.

0 To illustrate :

= Add the classes on the right to your hierarchy.
» Insert a restriction for DameBlanche :
hasTopping some Chocolate Topping

m Start the reasoner.

0 What happens ?

» DameBlanche is inferred as being a pizza, because the

domain of hasTopping is Pizza

= Possible solution : use distinct relations haslceTopping and
hasPizzaTopping with different domains
(can be sub-relations of hasTopping)

(Protégé file : pizzasimple.owl).

v-- @ Food
- ChocolateTopping
T . lceC ream
. -1 DameBlanche

Description: DameBlanche

Equivalert To

=ubClass Of

* hasTopping some ChocolateTopping
O lceCream
0 Pizza

Avoid expressing related information as part of name strings

1 1 1 . Individuals: Summer_Beijing Description: Summer_Beijing
0 Example 1 : location & e
. W Alpine_Skiing) Summer_Event
City only present in string name of object (Olympics). & china
@ jimmy
» Maybe understandable by human beings but a program 4 P5 e e
must extract the city name from the string ! SETECET T et propery asserions
= Instead use a topology model : a game takes place in a city "=When 2008
. . B Where China
which is a part of a country.
0 Example 2 : time
. . . . T E————— Property assertions: Beijing_2008
Date only present in string name of object (Olympics). prectinstances _Beling_2003
."‘ ﬁ COhject property assertions
= Again, maybe understandable by human beings but a For: @ Olympic_Game W= has_season Summer
program must extract the Olympics date from the string !
. ,. London_2012 Data property assertions
m Instead use an explicit relation to some time information. @ Pekin_2008 B hasCostOf 32 milliards™

& Rio_de_Janeiro_2016
& Sochi_2014

10

Section 2 : expressing rules as DL axioms

a It is possible to express (definite Horn clauses () rules as
DL axioms (with limitations).

A person who controls a car is a driver.

s Horn rule :
Person(?p) A controls(?p, ?c) A car(?c) -> Driver(?p)

= FOL equivalent :
Vx ((Person(x) ~ 3y controls(x, y)) — Driver(x))

s General DL axiom :
Person M Jcontrols.Car € Driver

0 Create class hierarchy, add a general class axiom, add instances P1,
P2 of Person, C1 of Car, and property assertion P1 controls C1.
When you ask the DL query Driver, answer should be P1.

0 We will look at further extensions (SWRL) in chapter 10.

* : disjunctions of literals of which exactly one is positive.

Active ontology = | Entities = | Individuals by class = | OWLViz x| DL Query = |

Datatypes | Individuals

= @ Driver — http://www.semanticweb.org/jean-louis/ontologie:

Annotation properties

Description: Driver

Data properties

®+

¥ owl:Thing
- Ccar
¥ @ Person

Description: P1

Types
£ Person
£ Driver

Same Individual As

Different Individuals
$c1,p2

s | 8+ | IX | Asserted =

Classes | Ohject properties Eguivalert To
Class hierarchy =] [T =] %]

SubClass Of

) Person

General class axioms

© Person and {controls some Car) SubClassOf Driver
SubClass Of (Anonymous Ancestor)

Instances

&r

Target for Key

E = ™ = § Property assertions: P

Ohject property assertions

B controls C1

Data property assertions

Megative object property assertions

Megative data property assertions

11

Section 3 : designing and checking the class hierarchy

This section documents design criteria and quality checks for the class hierarchy :
0 Basic design decision : class versus instance.

0 General criteria to design and check the class hierarchy
(reminder; was reviewed in chapter 5b. Ontology Modeling).

0 Formal criteria to check the class hierarchy.

(the OntoClean part of this section is inspired from the course Semantic Web Technologies, H. Paulheim,
Universitit Manheim, and the paper on OntoClean from Guarino and Welty).

12

Class or instance ?

0 In order to use a class, the following two relations must make sense :

= Instantiation : are there situations like “Xis a C” (x is a dog; x is a Pluto) ?

= Subsumption : can we say “every C1 is a C2” (every Pluto is a dog) ?

0 Instances define the most specific level of your model.

Romanée-Conti is a wine domain in Burgundy. In a wine ontology, will it be a class or an instance ?
= If we want only to talk about great wines, Romanée-Conti can be an instance.
Romanée-Conti is a GreatWine; a GreatWine is a Wine.
= If we want to discuss specific years as instances, we need Romanée-Conti as class.
Romanée-Conti-1961 is a Romanée-Conti.

= If we want to model a wine cellar, we may need to consider each bottle as an instance.

I have 3 bottles of Romanée-Conti-1961.

13

General criteria to design and check the class hierarchy

Reminder from chapter 5b : Ontology Modeling.

0 Reuse the broad categories (e.g., objects, animates, events...) of an upper ontology.

0 Respect the meaning of the subsumption relation (e.g., do not mix it with part_of).
O Check for synonyms : they normally have the same extension and not should not be distinct.
0 Avoid cycles !

0 Keep siblings at the same level of generality :
m WhiteWine and Chardonnay should not be both direct subclasses of Wine. WhitelWine is more general.

0 Have a reasonable span for the hierarchy structure at each level :

= Too few subclasses (1 or 2) may indicate an incomplete ontology or a modeling problem.

= Too many subclasses: some meaningful intermediate levels may be missing.

14

Formal criteria to check the class hierarchy

In addition to the basic criteria discussed above, three formal criteria to check the class
hierarchy have been developed by Guarino and Welty as part of the OntoClean research
(Guarino and Welty 2009) .

0 Rigidity.
0 Identity.
0 Unity.

They are covered next.

15

Formal criteria 1 : class rigidity - example

0 Create a small ontology for public transport:

m Persons and animals can be passengers.

m Fred is a Person.

0 Do a query on Passenger.

0 Does the answer include Fred ?
If so is that normal ?

Noj; nothing says Fred should be a passenger.

What is going on ?

(Protégé file : passenger].owl)

Class hierarchy: Person Individuals by ty
+
%8 | X

v owl:Thing 20 Person (1)
v 1) Passenger -4 Fred
- Animal
D Person

Query (class expression)

Passenger

| Execute | | Add to ontology

Query results

Subclasses (2 of 3)
¢ Animal
) Person

Instances {1 of 1)

& Fred

16

Class rigidity

0 OntoClean distinguishes rigid and non rigid classes :

= Membership in a rigid class must be permanent.
If the individual is no longer in the class, it ceases to exist.
m Person is a rigid class.

m Passenger is not a rigid class : one may stop being a passenger.

0 OntoClean rule : rigid classes must not be subclasses of non rigid classes.
0 Solution : introduce a property linking the rigid class to the non-rigid one.

hasRole

hasRole

0 Suggested exercise : implement that solution in Protégé (Prorége file : passenger2.owl).

Passenger

Formal criteria : class unity - example

0 Create a small ontology for hydrology :

Water is matter; an ocean is water; the Atlantic Ocean (instance) is an ocean.
Any part of water is water (mereological invariance).

= For the second sentence, use an object property hasPart and add for Water the restriction
subclass of hasPart some Self.

Class hierarchy: Wate (2] (1] 5 [W][X]

0 Do a query on hasPart some Self. What happens ?

T—: [:+ E Asserted ~| Query (class expression)
s . v owl:Thing hasPart some Self
The Atlantic is part of the answer, and so considered as V. ® Matter
mereologically invariant. This is not normal. ater el [Aadto ooy
(Protégé File : oceanl.owl). Query results
Subclasses (2 of 3)
@) Ocean
© water

Instances {1 af 1)

& Atlantic

17

Class unity

0 There is a distinction between amount of matter and physical objects (cf. chapter 5).

Objects have individuation (belong to unity classes in OntoClean).

Matter resists individuation (belong to anti-unity classes in OntoClean).

0 OntoClean rule :

m Unity classes may only have unity subclasses. Ph}’i‘*ﬂ/

= Anti-unity classes may only have anti-unity subclasses. subclass

= Solution : again introduce an additional relation.

0 Suggested exercise : implement that solution in Protégé
(Protégé file : ocean2.owl).

18

isMadeOf

> Matter
C mr >

Y subclass

isMadeO

Formal criteria : class identity - example

0 Create a small ontology for a library :

m FEach book has an ISBN. The library contains copies of books.
An ISBN is the ISBN of only one book.

m Create classes, a hierarchy and
instances of Book, Bookcopy, and ISBN.
Do not forget to make all individuals different.

m Link an instance of Book to an instance of ISBN
through an object property hasISBIN. Use the same property to
link the same ISBN to an instance of Bookcopy to indicate
that it is a copy of that book.

= Define property isISBN as the inverse of hasISBIN.

To capture that An ISBN is the ISBN of only one book,
use a restriction subclass : is/SBN exactly 1 Book.

0 Run a reasoner. What happens ?

19

The ontology is not satisfiable. (Prozégé file : bookidentity1.owl)

| Classes Object proper
Class hierarchy: ISBMN
%o | 8| |
¥ owl:Thing
v . Boolk
- . Bookco py
V-4 Bl
. B1i

= & B1 hasISBEN IB1
- & EB1 Type Book

----- & C1hasISBEN 1B
..... ¢ C1
----- & C1 Type Bookcopy
----- . Differentindividuals: B1, C1, C2, IB1
----- & B1 DifferentFrom C1
& C1 DifferentFrom C2

|r1|ji'l.l'id L E|5 h"," t'p"

.-I- .-I-

v Book (1)
Lo . Bl
¥ Bookcopy (2)
: Cci
Lo . C2
A& () ISBN (1)
. . IB1

@ ISBN — http://www.semanticweb.org/jean
Description: ISBN

Equivalent Ta

SubClass Of

® isISBN exactly 1 Book

General class axioms

Explanation for: awl: Thing SubClassOf owl:Mothing
ISBN SubClassOf isISEN exactly 1 Book
Bookcopy SubClassOf Book
B1 hasISEN IB1
C1 hasISEN IB1
hasISEN InverseOf isISBN
C1 Type Bookcopy
Bl Type Book

IB1 Type ISBN
Bl DifferentFrom C1

Class identity

0 Books are identified by ISBNs, but book copies must be identified by more than just the ISBN, to

make each copy distinct : e.g., a library inventory number.

0 Fine, but it does not solve everything :

= At the level of the class BookCopy the instances are different.

= At the level of the class Book they are the same : they concern the same book.

0 OntoClean rule : if p is a subclass of g, p cannot have identity criteria that q does not has.

m Otherwise, the subclass would contain more instances that the superclass, which is nonsensical.

0 Solution : introduce a property to link the book to the book copy.

hasInventoryNumber

1sCopyO hasISBN
Cm > Bookeopt Y ool Y g
v v

2 0O Suggested exercise : implement that solution in Protégé (file bookidentity2.owi).

21

Annexes: documentation to be read

0 Section 3 : term acquisition

0 Section 4 : the entity property quality pattern

0 Section 5 : role composition

22

Section 3 : term acquisition (to read)

This section documents useful techniques to start the first phase of an ontology project.

0 Steps involved (covered in next slides) :

m 1:Term extraction.

2 : Term grouping.

3 : Term normalization.

4 : Term organisation.

(this section is based on a tutorial from Bechhofer and Sattler, COMP62342, University of Manchester)

23

Term acquisition — step 1 : term extraction

The aim is to build a small ontology of animals, domesticated or wild.

There are several sorts offldomesticated fanimals,

though by far the most arefmammal{ (like|us!). For

example, our faithful pets,/cats and dogs| are clearly

domesticated (or we would not keep such[dangerous

carnivores|in our homes), as is the delicious|yet

Step 1 : term extraction.

docile|cow which is[farmed]in ever increasing = Identify (a) suitable text(s) for the targeted
domain, such as the one shown on the left.
numbers " Highlight the seemingly relevant terms in the

text(s).

24

Iy Oy Iy Iy ey Ny Ny Iy

Term acquisition — step 2 : grouping

domesticated

animals
mammals
us

pets

cats

dogs
dangerous
carnivores
homes
delicious
docile
COw
farmed
increasing
numbers

>

Step 2 : term grouping

u Graup the terms by relevant categories.

» Fliminate terms which do not seem
part of the target domain.

0 Base animal categories (noun terms)

Q

Wi

ays an animal can be (adjective terms)

animals
cats

dogs
mammals
COW

us

domesticated
pets
dangerous
carnivores
delicious
docile

Term acquisition - step 3 : normalize terms

0 Base animal categories (noun terms) > 0 Base animal categories (noun terms)
= animals = Animal
= cats = Cat
= dogs = Dog
= mammals = Mammal
E COW u COW
mUS m Human
0 Ways an animal can be (adjective terms) 0 Ways an animal can be (adjective terms)
s domesticated m domesticated
= pets = wild
= dangerous = pet
m carnivores = dangerous
s delicious Step 3 : term normalization m carnivorous
s docile » Unify grammatical form and spelling. m omnivorous
s farmed » Find good names. m herbivorous
» Add terms from background knowledge. m delicious
s docile
s farmed

26

Term acquisition - step 4 : organize and define terms

0 Base animal categories >

a

Illlllllllé

Animal
Mammal

Cat
Dog
Cow
Human

ays an animal can be

Domesticated
wild
dangerous
carnivorous
omnivorous
herbivorous

delicious Step 4 : term organisation
docile » Reorder from genem/ fo parz‘icular.

pet = Start building definitions in natural language.

farmed » Next step : use the ontology editor to formalize.

0 Base animal categories

Q

Illlllllllé

Animal - eats some things
Mammal - has (as parts) mammal glands

Cat

Dog

Cow - eats only grass
Human - is an omnivore

ays an animal can be (adjective terms)

Domesticated

wild

dangerous

carnivorous - eats only meat
omnivorous - eats meat and plants
herbivorous - eats only plants
delicious - tastes good

docile

pet - lives with human

farmed - is eaten by human

27

Section 4 : the entity property quality pattern (to be read)

0 Example : try to create a small ontology about physical objects and measure units.

Physical objects have a weight.
Object O1 weights 5,5 Kg.

Refer to the ideas concerning qualities of the DOLCE top ontology.

0 A possible solution in triples : 2. ix
O1 a PhysicalObject . v :'::"'RLEE"
O1 hasWeight W1 . I} n::IZ::I eightunit
W1 a Weight . » %‘ ,‘;._!E;'g,,t
W1 hasUpit Kg. ™ @ PhysicalObject
Kg a WeightUnit .

W1 hasValue 5,5 .

Individuals by type: WeightUnit

.-I- .-I-

0 The solution in Protégé :

&) WeightUnit (1)
b . Kg
¥ PhysicalObject (1)
- . Uh]'ECtl
v Weight (1)
- . wi

(File : measureunits.owl).

Show: [w this/vl different
F_Dund 10 uses of W1
74 Object1
L & Objectl hasWeight W1

v owi
’ & W1 hasUnit Kg
L w1
& W1 Type Weight
& W1 hasvalue 5.5

Usage: hasWeight
Shows: v thislv! disjoints
Found 10 uses of hasWeight
V= hasWeight
Lo M hasWeight Range Weight
----- M hasWeight Domain PhysicalObject
----- [] hasWeight
{ M hasWeight SubPropertyOf: owl:topObjectProperty

-4 Object1
' & Objectl hasWeight w1

The entity property quality pattern ./.

0 Used to model descriptive features of things.
0 Elements:

= For each feature or quality such as size, weight, etc. :
m Use a functional property, e.g., hasSize;

m Use a class for its values, e.g., Size;

m State that the class is the range of the property;

= State to which classes these qualities apply via
the domain of the property.

0 Using classes for descriptive features allows to
make sub-partitions :
» E.g., small, medium, large ...
= May overlap or be disjoint.
m May have further properties.

28

|

hasSize
hysicalEObj% >/S;ze

v-- @ owl:Thing

‘r- hasSize T PhysObject
-----] hasSize = Human
-~ mmhasSize Domain PhysObject =
______ M hassize Range Size v @ Quality
Y Size
..... Shtll't
----- Medium
..... Lﬂrﬂe

Class: Child SubClassOf: Human, hasSize only Small
Class: Human SubClassOf hasSize some Size

DisjointClasses: Large, Medium, Small
Class Size: DisjointUnionOf: Large, Medium, Small

Section 5 : role composition — to be read

This example illustrates how to use composition of roles.

Object property hierarchy: uncleOf

Nk

Annotations: uncleQf

O Create a class Person

V- owl:topObjectProperty

0 Create 3 instances: Jobn, Marc, Fred

é—------parentoi
- m brotherOf
0 Define 3 properties at same hierarchy level
unczer(; éral‘beroﬁ Parenllof Characteristics: 1 2] [I] = @]]
. [T 1 A—— -

0 Define the axiom < undeot x
hasParent O hasBrother & hasUncle brotherof o parentof o
Use SubProperty of(chain) and a lowercase o for role T s
composition.

[Irreflexive Ranges (intersection)

29

Section 5 : role composition — to be read ./.

1 L
lass hierarchy: Person ENIZI0NEL | Annotations | Usage

EE JE Annotations: John
v. O|:Thing Annotations

B O Person

0 Add instance axioms (object property assertions)

Marc brotherOf John, John parentOf Fred

Description: John

0 Ask query uncleOf some Person

@ Person
IR Same Individual As P s
Answer should be Marc. ¥[n] o
For: @ Person Different Individuals
o Fi s Com
(Protégé File : uncle.owl). @ arc

parentOf Fred

(Tip: Use CTRL+S5pace t

Active Ontology = | Entities = | Individuals by class = | OWLViz = | DL Query = L

Class hierarchy: 1115 8] (]
H |=+ 4 | Asserted | Query (class expression)

T. owl:Thing uncleOf some Person

g) Person

| Execute | | Add to ontology

Query results

Subeclasses (0 of 1)

Instances (1 of 1)

& Marc
30

31

References

Q [Guarino and Welty 2009] : Guarino N. and Welty C., An overview of OntoClean, in (Staab and Studer, eds.), Handbook on Ontologies 2nd edition,
Springer, 2009.

O [Rector A. et al. 2004]: Rector A. et al., OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors & Common Patterns, in (Motta E.,

Shadbolt N.R., Stutt A., Gibbins N. (eds)) Engineering Knowledge in the Age of the Semantic Web, EKAW 2004. Lecture Notes in Computer Science, vol 3257.
Springer, Berlin, Heidelberg, 2004.

THANK YOU

