Objectives 1

At the end of this exercise session you should be able to:

• Compute the capacity of a channel

2 Exercises

Channel coding

By definition
$$C = \max_{P(X)} T(X; y)$$

BSC

Notice

The proof the proof of the proo

$$T(x;y) = +1(y) - +1(y|x)$$
 $T(x;y) = +1(y) - +1(y|x)$
 $T(x;y) = +1(y) - +1(y|x)$
 $T(x;y) = +1(y) - +1(y|x)$
 $T(x;y) = +1(y|x) - +1(y|x)$
 $T(x;y) = +1(y) - +1(y)$
 $T(x;y) = +1($

$$Q = 27$$

$$Q = \frac{1/3}{1/3} \cdot a$$

$$P(x) = [1/27, 1/29, ...]$$

$$= (0 1/9 0 ... 0 1/9 0)$$

$$C = \max_{P(x)} T(x; y)$$

$$= \max_{P(x)} H(y) - H(y|x)$$

$$= \log_2 27 - \log_2 3$$

$$= \log_2 9$$

Exercise 1. [9.7] Compute the mutual information between X and Y for the binary symmetric channel with p = 0.15 when the input distribution is $P(\mathcal{X})$ is uniform.

Exercise 2. [9.8] Compute the mutual information between X and Y for the Z-channel with p = 0.15 when the input distribution $P(\mathcal{X})$ is uniform.

$$Ex1$$

$$P(X) \text{ is anylow: } [0.5 \text{ o.f}]$$

$$P(Y | X = 0) = [0.65 \text{ o.if}]$$

$$P(Y | X = 1) = [0.15 \text{ o.if}]$$

$$P(Y | X = 1) = [0.17 \text{ o.if}]$$

$$P(Y | X = 1) = [0.17 \text{ o.if}]$$

$$= 1 - [P(X = 0)] + [P(X = 1)] + [P(X$$

 $T(x;y) = H(y) - H(y|x) \qquad [10]$ $= H_2(0.575) - (P(x=0)H(y|x=0) + P(x=1))$ $= H_2(0.575) - 0.5 H_2(p) \qquad [71-p]$ = 0.68 Shannon

Exercise 3. [9.12] What is the capacity of the binary symmetric channel for general p?

By symmetry,
$$P(x) = \min_{z \in [0,T]} m$$

 $= (0,T) = H(y) - H(y|x)$
 $= 1 - H_2(p)$
Without invoking symmetry. $P(x) = P_0 P_0$
 $= 1 - H_2(p)$
 $= 1 - H_2(p)$

Exercise 4. [9.17] What is the capacity of the five-input, ten-output channel whose transition probability matrix is

$$H(y) = log_2(10)$$

 $H(y|x) = log_2 4 = 2$
 $C = log_2(10) - log_2 4$
 $C = log_2(5)$ Shann on $log_2(5)$