1 Objectives

At the end of this exercise session you should be able to:

• Apply and decode Hamming (7,4) code

2 Exercises

Channel coding

Exercise 1. [1.5] Considering the Hamming (7,4) code. Decode the received strings:

- (a) $\mathbf{r} = 1101011$
- (b) $\mathbf{r} = 0110110$
- (c) $\mathbf{r} = 0101111$
- (d) $\mathbf{r} = 0101110$

Exercise 2. [1.2] Show that the error probability is reduced by the use of a repetition code R_3 by computing the error probability of this code for a binary symmetric channel with noise level p.

Exercise 3. [1.6] Calculate the probability of block error p_B of the Hamming (7,4) code as a function of the noise level p and show that to leading order it goes as $21p^2$.

Exercise 4. [8.1] Consider three independent random variables \mathcal{U} , \mathcal{V} , \mathcal{W} with entropies H_u, H_v, H_w . Let $\mathcal{X} \equiv (\mathcal{U}, \mathcal{V})$ and $\mathcal{Y} \equiv (\mathcal{V}, \mathcal{W})$. What is $H(\mathcal{X}, \mathcal{Y})$? What is $H(\mathcal{X}|\mathcal{Y})$? What is $I(\mathcal{X}; \mathcal{Y})$?