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Analysis of the Cholesky Decomposition of aSemi-De�nite Matrix �Nicholas J. Highamy
AbstractPerturbation theory is developed for the Cholesky decomposition of an n � nsymmetric positive semi-de�nite matrix A of rank r. The matrix W = A�111 A12 isfound to play a key role in the perturbation bounds, where A11 and A12 are r � rand r � (n� r) submatrices of A respectively.A backward error analysis is given; it shows that the computed Cholesky fac-tors are the exact ones of a matrix whose distance from A is bounded by 4r(r +1)�kWk2+1�2ukAk2+O(u2), where u is the unit roundo�. For the complete pivot-ing strategy it is shown that kWk22 � 13(n� r)(4r � 1), and empirical evidence thatkWk2 is usually small is presented. The overall conclusion is that the Choleskyalgorithm with complete pivoting is stable for semi-de�nite matrices.Similar perturbation results are derived for the QR decomposition with columnpivoting and for the LU decomposition with complete pivoting. The results givenew insight into the reliability of these decompositions in rank estimation.Key words. Cholesky decomposition, positive semi-de�nite matrix, per-turbation theory, backward error analysis, QR decomposition, rank estimation,LINPACK.AMS subject classi�cations. Primary 65F30, 65G05.�This is a reprint of the paper: N. J. Higham. Analysis of the Cholesky decomposition of a semi-de�nite matrix. In M. G. Cox and S. J. Hammarling, editors, Reliable Numerical Computation, pages161{185. Oxford University Press, 1990.yDepartment of Mathematics, University of Manchester, Manchester, M13 9PL, England(na.nhigham@na-net.ornl.gov).
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1 IntroductionThe Cholesky decomposition A = RTR of a positive de�nite matrix A, in which Ris upper triangular with positive diagonal elements, is a fundamental tool in matrixcomputations. The standard algorithm for its computation dates from the early part ofthis century (Dongarra et al. 1979, p. 3:16; Householder 1964, p. 208) and it is one ofthe most numerically stable of all matrix algorithms (Wilkinson 1968, Meinguet 1983,Kielbasinski 1987).The Cholesky decomposition exists and is unique when A is positive de�nite (see,e.g., Golub and Van Loan (1983, p. 88)). The questions of existence and uniqueness of aCholesky decomposition when A is positive semi-de�nite are answered by the followingresult (Dongarra et al. 1979, p. 8.3; Householder 1964, p. 13; Moler and Stewart 1978).Lemma 1.1. Let A be positive semi-de�nite, of rank r.(a) There exists at least one upper triangular R with nonnegative diagonal elementssuch that A = RTR.(b) There is a permutation � such that �TA� has a unique Cholesky decomposition,which takes the form �TA� = RTR; R =  R11 R120 0 ! ; (1:1)where R11 is r � r upper triangular with positive diagonal elements.Proof. (a): Let the symmetric positive semi-de�nite square root X of A have theQR decomposition X = QR with rii � 0. Then A = X2 = XTX = RTQTQR = RTR.(b): The algorithm with pivoting described below amounts to a constructive proof.Note that the factorisation in part (a) is not in general unique. For example,� 0 00 1� � � 0 0cos � sin ��� 0 cos �0 sin � � :In several applications it is necessary to compute a decomposition of the form (1.1).One example is in the solution of rank-de�cient least squares problems, where \A =XTX" is the matrix of the normal equations (Bj�orck 1987, Dongarra et al. 1979, Stewart1984). Another example occurs in physics in the study of the spectra of molecules withhigh degrees of symmetry (Fox and Krohn 1977); in this application A is idempotent(A2 = A) and of low rank. A further example is in optimisation problems with matrixsemi-de�niteness constraints (Fletcher 1985).Software for computing a decomposition (1.1) is readily available, notably in LIN-PACK, in the routine SCHDC (Dongarra et al. 1979, Ch. 8). However, as pointed out in2



Dongarra et al. (1979, p. 8:15) there is no published error analysis for the Cholesky de-composition of a semi-de�nite matrix, except for the case where A is idempotent (Molerand Stewart 1978). Our aim here is to �ll this gap in the literature, by examining themathematical and numerical properties of the Cholesky algorithm applied to semi-de�nitematrices, with particular reference to SCHDC.This report is organised as follows. In section 2 we develop perturbation theory forthe Schur complements associated with the Cholesky decomposition. A backward erroranalysis of the Cholesky algorithm is presented in section 3; unlike most backward erroranalyses this one draws on perturbation theory|that of section 2. The implications ofthe error analysis are discussed in section 4. In section 5 our perturbation theory isused to derive some new results concerning the reliability of the QR decomposition withcolumn pivoting, and of Gaussian elimination with complete pivoting, for rank estimation.Numerical experiments are presented in section 6.In the remainder of the introduction we describe the Cholesky algorithm as it is imple-mented in LINPACK's SCHDC. Note that this is one of several possible implementationsof the Cholesky method, all of them equivalent both mathematically and numerically (forother versions see Dongarra et al. (1979, Ch. 3), Golub and Van Loan (1983, p. 89)).The algorithm consists of r = rank(A) steps, in the kth of which a rank one matrixis subtracted from A so as to introduce zeros into positions k; : : : ; n in the kth row andcolumn. Ignoring pivoting for the moment, at the start of the kth stage we haveA(k) = �a(k)ij � = A� k�1Xi=1 rirTi = 0@ k�1 n�k+1k�1 0 0n�k+1 0 Ak 1A (1:2)where rTi = (0; : : : ; 0; rii; : : : ; rin).The reduction is carried one stage further by computingrkk =qa(k)kk ;rkj = a(k)kj =rkk; j = k + 1; : : : ; n; (1:3)a(k+1)ij = a(k)ij � rkirkj; i; j = k + 1; : : : ; n:Overall we have, A = rXi=1 rirTi = RTR; RT = (r1; : : : ; rr):To avoid breakdown when a(k)kk vanishes (or is negative because of rounding errors),pivoting is incorporated into the algorithm as follows. At the start of the kth stage anelement a(k)ss > 0 (s � k) is selected as pivot, and rows and columns k and s of Ak, and3



the kth and sth elements of ri (i = 1; : : : ; k � 1), are interchanged. The overall e�ect isto compute the decomposition (1.1), where the permutation � takes account of all theinterchanges.The strategy used by SCHDC in its pivoting option is de�ned bys = minfj : a(k)jj = maxk�i�n a(k)ii g:This is equivalent to complete pivoting in Gaussian elimination, since Ak is positive semi-de�nite so its largest element lies on the diagonal. We note for later reference that thispivoting strategy produces a matrix R that satis�es (Dongarra et al. 1979, p. 8:4)r2kk � minfj;rgXi=k r2ij; j = k + 1; : : : ; n; k = 1; : : : ; r: (1:4)Finally, a word on notation. We will use two matrix norms, the spectral normkAk2 = supx6=0 kAxk2kxk2 �kxk2 = (xTx) 12� ;and the Frobenius norm kAkF =sXi;j a2ij =ptrace(ATA):It will be convenient to denote by cp(A) = �TA� the permuted matrix obtained fromthe Cholesky algorithm with complete pivoting.2 Perturbation TheoryWe begin by analysing the e�ect on the Cholesky decomposition of perturbations in thedata. This perturbation theory will be used in the error analysis of the next section, andin section 5, but it is also of intrinsic interest.Throughout this section A is assumed to be a positive semi-de�nite matrix of rank rwhose leading principal submatrix of order r is positive de�nite. For 1 � k � r we willwrite A = 0@ k n� kk A11 A12n� k AT12 A22 1A (2:1)and other matrices will be partitioned conformally.4



We have the identity
A = 0@ kk RT11n� k RT121A (R11; R12 ) + 0 00 Sk(A)! ; (2:2)where R11 is the Cholesky factor of A11, R12 = R�T11 A12, andSk(A) = A22 � AT12A�111 A12is the Schur complement of A11 in A. Note that Sr(A) � 0 and so for k = r, (2.2) is the(unique) Cholesky decomposition of A. The following lemma shows how Sk(A) changeswhen A is perturbed.Lemma 2.1. Let E be symmetric and assume kA�111 E11k2 < 1. ThenSk(A+ E) = Sk(A) + E22 � (ET12W +W TE12) +W TE11W +O�kEk22�; (2:3)where W = A�111 A12. The second order term (which will be required in section 5) takesthe form�ET12A�111 E12 + ET12A�111 E11W +W TE11A�111 E12 �W TE11A�111 E11W +O�kE11k32�:Proof. The condition kA�111 E11k2 < 1 ensures that A11+E11 is nonsingular and thatwe can expand(A11 + E11)�1 = A�111 � A�111 E11A�111 + A�111 E11A�111 E11A�111 +O�kE11k32�:The result is obtained by substituting this expansion into Sk(A + E) = (A22 + E22) �(A12 + E12)T (A11 + E11)�1(A12 + E12), and collecting terms.Lemma 2.1 shows that the sensitivity of Sk(A) to perturbations in A is governed bythe matrix W = A�111 A12. The question arises of whether, for a given A, the potentialkWk22 magni�cation of E indicated by (2.3) is attainable. For the no-pivoting strategy,� = I, the answer is trivially \yes", since we can take E = �I0 00�, with jj small, toobtain kSk(A+E)�Sk(A)k2 = kWk22kEk2+O�kEk22�. For complete pivoting, however,the answer is complicated by the possibility that the sequence of pivots will be di�erentfor A + E than for A, in which case Lemma 2.1 is not applicable. Fortunately, a mildassumption on A is enough to rule out this technical di�culty, for small kEk2. In thenext lemma we rede�ne A := cp(A) in order to simplify the notation.5



Lemma 2.2. Let A := cp(A). Suppose that�Si(A)�11 > �Si(A)�jj; 2 � j � n� i; 0 � i � r � 1 (2:4)(where S0(A) := A). Then, for su�ciently small kEk2, A + E = cp(A + E). ForE = �I0 00�, with jj su�ciently small,kSk�cp(A+ E)�� Sk(A)k2 = kWk22kEk2 +O�kEk22�:Proof. Note that since A = cp(A), (2.4) simply states that there are no ties in thepivoting strategy (since �Si(A)�11 � a(i+1)i+1;i+1 in (1.2)). Applying Lemma 2.1 inductively,since Si(A+ E) = Si(A) +O�kEk2�;then in view of (2.4), for su�ciently small kEk2,�Si(A+ E)�11 > �Si(A + E)�jj; 2 � j � n� i; 0 � i � r � 1:This shows that A + E = cp(A + E). The last part then follows from Lemma 2.1.We now examine the quantity kWk2 = kA�111 A12k2. In general, this can be arbitrarilylarge; for example, consider the positive semi-de�nite matrixA =  �Ik;k Ik;n�kIn�k;k ��1In�k;n�k!for small � > 0, where Ip;q is the p� q identity matrix. However, for A := cp(A), kWk2can be bounded solely in terms of n and k. The essence of the proof, in the next lemma,is that large elements in A�111 are countered by small elements in A12. Hereafter we setk = r, the value of interest in the following sections.Lemma 2.3. Let A := cp(A) and set k = r. ThenkA�111 A12k2;F �r13(n� r)(4r � 1): (2:5)There is a parametrised family of rank-r matrices A(�) = cp(A(�)), � 2 (0; �2 ], for whichkA11(�)�1A12(�)k2;F !r13(n� r)(4r � 1) as � ! 0:Proof. From (2.2) we have W = A�111 A12 = R�111 R�T11 A12 = R�111 R12, so we may workwith R instead of A. Writing D = diag(r11; : : : ; rrr) we haveW = R�111 D �D�1R12 � T�111 T126



where, in view of the inequalities (1.4), the elements of T11 = (tij) satisfytii = 1; jtijj � 1 for j > i; i = 1; : : : ; r;and each element of T12 is bounded in absolute value by 1. It is easy to show that ifjxij � 1 for all i, then jT�111 xj � (2r�1; 2r�2; : : : ; 1)T =: y;where absolute values and inequalities for vectors or matrices are de�ned elementwise. Itfollows that jW j = jT�111 T12j � yeT ; eT = (1; 1; : : : ; 1) 2 Rn�r :Hence for the 2{ or Frobenius norms, kWk � kyeTk. But kyeTk22 = kyeTk2F = trace(eyTyet) =(n� r)yTy = 13(n� r)(4r � 1), which completes the proof of (2.5).For the last part, let A(�) = R(�)TR(�), whereR(�) = diag(1; s; : : : ; sr�1)0BBBBBB@ 1 �c �c : : : �c �c : : : �c1 �c : : : �c �c : : : �c1 ... ... .... . . ... ... ...1 �c : : : �c
1CCCCCCA 2 Rr�n ; (2:6)with c = cos �; s = sin �. (This is the r � n version of a matrix introduced by Kahan(1966); see also Lawson and Hanson (1974, p.31.)) R satis�es the inequalities (1.4) (asequalities) and so A(�) = cp(A(�)). Some computations analogous to those in the �rstpart show thatR11(�)�1R12(�) = �czeT ; where z = �(1 + c)r�1; (1 + c)r�2; : : : ; 1�T :ThuskR11(�)�1R12(�)k22;F = c(n� r)(1 + c)2r � 1(1 + c)2 � 1 ! 13(n� r)(4r � 1) as � ! 0: (2:7)Example 2.1 We conclude this section with a \worst-case" example for the Choleskydecomposition with complete pivoting. Let U(�) = diag(r; r� 1; : : : ; 1)R(�), where R(�)is given by (2.6), and de�ne the rank-r matrix C(�) = U(�)TU(�). Then C(�) satis�esthe conditions of Lemma 2.2. Also,kWk2 = kC11(�)�1C12(�)k2 = kU11(�)�1U12(�)k2 = kR11(�)�1R12(�)k2!r13(n� r)(4r � 1) as � ! 0;from (2.7). Thus, from Lemma 2.2, for E = �I0 00�, with jj and � su�ciently small,kSr�cp�C(�) + E)��k2 � 13(n� r)(4r � 1)kEk2:7



3 Backward Error AnalysisIn this section we present a backward error analysis for the Cholesky algorithm. Let Abe a symmetric matrix of oating point numbers. Because of potential rounding errorsin forming or storing A, it is unrealistic to assume that A is positive semi-de�nite andsingular. Therefore we will write A = eA+�A;where eA is positive semi-de�nite of rank r < n, and �A is assumed \small". A naturalchoice for eA is a nearest positive semi-de�nite matrix to A (Higham 1986).The analysis makes no assumptions about the pivoting strategy, but to simplify thenotation we will assume that any necessary interchanges are done at the start of thealgorithm; thus A := �TA�. For the analysis it is convenient to reorganise the equations(1.3) into the computationally equivalent formrkk = �akk � k�1Xi=1 r2ik� 12 ; (3:1)rkj = �akj � k�1Xi=1 rikrij��rkk; j = k + 1; : : : ; n: (3:2)To analyse the evaluation of these expressions in oating point arithmetic we will use thefollowing lemma. Here, and throughout, a hat is used to denote computed quantities.Lemma 3.1. Let s = �c� k�1Xi=1 aibi��d (3:3)be evaluated in oating point arithmetic. Assumefl(x op y) = (x op y)(1 + �); j�j � u; op = +;�; �; =;where u is the unit roundo�, and assume that ku < 1. Thenbsd+ k�1Xi=1 aibi = c+ e;where jej � �k�k�1Xi=1 jaijjbij+ jbsjjdj�; (3:4)and where �k = ku=(1� ku). If d = 1 then �k in (3.4) may be replaced by �k�1.Assume also that fl(px) = px(1 + �); j�j � u;8



then, if the division in (3.3) is replaced by a square root,bs 2 + k�1Xi=1 aibi = c+ e;where jej � �k+1�k�1Xi=1 jaijjbij+ bs 2�:Proof. Straightforward. See, for example, Stoer and Bulirsch (1980, pp. 25{27).Applying Lemma 3.1 to (3.1) we obtainkXi=1 br 2ik = akk + ekk;jekkj � �k+1 kXi=1 br 2ik
9>>>>>=>>>>>; k = 1; : : : ; r: (3:5)Similarly, for (3.2),kXi=1 brikbrij = akj + ekj;jekjj � �k kXi=1 jbrikjjbrijj

9>>>>>=>>>>>; j = k + 1; : : : ; n; k = 1; : : : ; r: (3:6)The elements in the Schur complement Ar+1 (see (1.2)) are given bya(r+1)ij = aij � rXk=1 rkirkj; i; j = r + 1; : : : ; n:Applying Lemma 3.1 to this expression we obtainba(r+1)ij + rXk=1 brkibrkj = aij + eij;jeijj � �r� rXk=1 jbrkijjbrkjj+ jba(r+1)ij j�9>>>>=>>>>; i; j = r + 1; : : : ; n: (3:7)Collecting (3.5{3.7) into one matrix equation we haveA� bRTr bRr = E + bA(r+1) (3:8)where bRr = � r n� rr dR11 dR12 �;9



bA(r+1) = 0@ r n� rr 0 0n� r 0 bAr+1 1A;and jEj � �r+1�j bRTr jj bRrj+ j bA(r+1)j�: (3:9)Now we take norms in (3.9) and use the inequalities kBk2 � kjBjk2 � prank(B)kBk2.We obtain kEk2 � �r+1�rk bRTr k2k bRrk2 +pn� rk bA(r+1)k2�= �r+1�rk bRTr bRrk2 +pn� rk bA(r+1)k2�= �r+1�rkA� E � bA(r+1)k2 +pn� rk bA(r+1)k2�� �r+1�rkAk2 + rkEk2 + nk bA(r+1)k2�;which implies kEk2 � �r+11� r�r+1 �rkAk2 + nk bA(r+1)k2�: (3:10)Our aim is to obtain an a priori bound for kA� bRTr bRrk2. It is clear from (3.8{3.10)that to do this we have only to bound k bA(r+1)k2. To this end we interpret (3.8) and (3.9)in such a way that the perturbation theory of section 2 may be applied.Equation (3.8) shows that bA(r+1) is the true Schur complement for the matrixA� E = eA+ (�A� E) =: eA+ F: (3:11)Hence we can apply Lemma 2.1 to eA to deduce thatk bA(r+1)k2 = k bAr+1k2 � kF22k2 + 2kF12k2kWk2 + kWk22kF11k2 +O�kFk22�; (3:12)where W = eA�111 eA12. We can weaken (3.12) tok bA(r+1)k2 � kFk2�kWk2 + 1�2 +O�kFk22�:Using kFk2 � k�Ak2 + kEk2, substituting from (3.10), and rearranging, we �ndk bA(r+1)k2 � 
� r�r+11� r�r+1kAk2 + k�Ak2��kWk2 + 1�2 +O�kFk22�; (3:13)where 
 = �1� n�r+11� r�r+1 �kWk2 + 1�2��1: (3:14)Finally, using (3.8), (3.10) and (3.13), we have certainlykA� bRTr bRrk2 � 
�1 + n�r+11� r�r+1�� 2r�r+11� r�r+1kAk2 + k�Ak2��kWk2 + 1�2 +O�kFk22�:(3:15)On imposing conditions that ensure the above analysis is valid, we obtain the followingbackward error analysis result. 10



Theorem 3.1. Let A = eA + �A be a symmetric n � n matrix of oating pointnumbers, where eA is positive semi-de�nite of rank r < n, and partition eA and �Aconformally with (2.1) with k = r. Assume thatmax�k�A11k2kA11k2 ; k�Ak2kAk2 � = �u; where � is a small constant; (3:16)that A11 is positive de�nite withmax�20r3=2u; 2��u+ r�r+11� r�r+1 ���2(A11) < 1; (3:17)and that n�r+11� r�r+1 �kWk2 + 1�2 < 12 ; (3:18)where W = eA�111 eA12 and �r+1 = (r+1)u=(1� (r+1)u). Then in oating point arithmeticwith unit roundo� u the Cholesky algorithm applied to A successfully completes r stages,and the computed r � n Cholesky factor bRr satis�eskA� bRTr bRrk2 � 2�2r(r + 1) + ���kWk2 + 1�2ukAk2 +O(u2): (3:19)Proof. The assumptions are explained as follows. Condition (3.16) enables us toreplace O�kFk22�, and �r+1k�Ak2, by O(u2) in (3.15). The second condition serves twopurposes. First, the de�niteness of A11, together with the \20r3=2u" part of (3.17), en-sures that Cholesky factorisation of A11 succeeds (Wilkinson 1968), that is, the Choleskyalgorithm applied to A completes r stages without breakdown. As we show next, thesecond part of (3.17) ensures that Lemma 2.1 is applicable to (3.11), that is, that eA11 ispositive de�nite and k eA�111 F11k2 < 1. The de�niteness of eA11 = A11��A11 is immediatesince, certainly, �2(A11)k�A11k2kA11k2 � �2(A11)�u < 12 :To show that k eA�111 F11k2 < 1 we use the boundsk eA�111 k2 = k(A11 ��A11)�1k2 � kA�111 k21� kA�111 �A11k2 � 2kA�111 k2and kE11k2 � r�r+11� r�r+1kA11k2(which is proved in a similar way to (3.10)), obtaining, since F = �A� E,k eA�111 F11k2 � 2kA�111 k2��ukA11k2 + r�r+11� r�r+1kA11k2� < 1by (3.17).Finally, the bound (3.19) is obtained from (3.15) on using (3.16), (3.18) and r�r+1=(1�r�r+1) = r(r + 1)u+O(u2). 11



4 DiscussionFirst, it is important to note that Theorem 3.1 is just about the best result that couldhave been expected. For the bound (3.19) is essentially the same as the bound obtainedon taking norms in Lemma 2.1; in other words (3.19) simply reects the inherent math-ematical sensitivity of A� RTr Rr to small perturbations in A.We turn now to the issue of stability. Ideally, for A as de�ned in Theorem 3.1, thecomputed Cholesky factor bRr produced after r stages of the algorithm would satisfykA� bRTr bRrk2 � �kAk2;where � is a modest multiple of u. Theorem 3.1 shows that stability \depends" on the sizeof  = k eA�111 eA12k2. Of course, because of the many inequalities used in its derivation wecannot say that the bound (3.19) will always be sharp when  is large|but the analysisof section 2 shows that there certainly are perturbations E, which, if present in (3.8),would make (3.19) sharp.If no form of pivoting is used then  can be arbitrarily large for �xed n (see section 2)and the Cholesky algorithm must in this case be classed as unstable. But for completepivoting we know from Lemma 2.3 that there holds the upper bound �r13(n� r)(4r � 1):Thus the Cholesky algorithm with complete pivoting is stable if r is small, but stabilitycannot be guaranteed, and seems unlikely in practice, if  (and hence, necessarily, rand n) is large. We investigate the stability empirically in section 6.Next we consider the implications of our analysis for LINPACK's SCHDC, assumingthe use of the complete pivoting option. SCHDC follows the LINPACK philosophyof avoiding machine dependent constants and tests for \small" numbers, and leavingdecisions about rank to the user. Consequently, SCHDC proceeds with the Choleskyalgorithm until a nonpositive pivot is encountered, that is, up to and including stagek � 1, where k is the smallest integer for whichba(k)ii � 0; i = k; : : : ; n: (4:1)Usually, k > r + 1, due to the e�ect of rounding errors. A potential danger is thatcontinuing beyond the rth stage will lead to instability, induced by eliminating frominde�nite submatrices consisting entirely of roundo�. To investigate this we consider the(r + 1)st stage of the Cholesky algorithm and we write, using (1.3) and (3.3),ba(r+2)ij = �ba(r+1)ij � ba(r+1)r+1;iba(r+1)r+1;jba(r+1)r+1;r+1 (1 + �1)(1 + �2)�(1 + �3); j�ij � u:12



If maxr+1�i;j�n jba(r+1)ij j = cr+1u thenjba(r+2)ij j � cr+1u+O(u2) + (cr+1u)2ba(r+1)r+1;r+1 �1 +O(u)�= �cr+1 + c2r+1dr � u+O(u2);where ba(r+1)r+1;r+1 = dr+1u. Thusk bAr+2k2 � (n� r � 1)�1 + cr+1dr+1� k bAr+1k2 +O(u2)and so the factorisation remains stable provided that cr+1=dr+1 is not too large. It doesnot seem possible to obtain an a priori bound for cr+1=dr+1. We note, however, that anyinstability that is encountered is con�ned to the submatrix of the residual consisting ofthe intersection of rows and columns r + 1; : : : ; n.A more sophisticated termination criterion is to stop as soon ask bAkk � �kAk or ba(k)ii � 0; i = k; : : : ; n; (4:2)for some readily computed norm k�k and a suitable tolerance �. This criterion terminatesas soon as a stable factorisation is achieved, avoiding unnecessary work in eliminatingnegligible elements in the computed Schur complement bAk. Note that k bAkk is indeed areliable order-of-magnitude estimate of the true residual since by (3.8) and (3.10) A �bRTk�1 bRk�1 = E + bA(k) with kEk = O(u)�kAk+ k bA(k)k�.Another possible stopping criterion ismaxk�i�nba(k)ii � �ba(1)11 : (4:3)This is related to (4.2) in that if A and bAk are positive semi-de�nite then a(1)11 =maxi;j jaijj � kAk2, and similarly maxk�i�n ba(k)ii � k bAkk2. Note that (4.3) bounds�2( bRk�1), since �2( bRk�1) � ���� br11brk�1;k�1 ���� =  ba(1)11ba(k�1)k�1;k�1!1=2 � ��1=2:The e�ectiveness of these three stopping criteria for obtaining a stable decompositionis investigated empirically in section 6.5 Rank-Revealing Decompositions5.1 The Cholesky DecompositionAs mentioned in the introduction, one use of the Cholesky algorithm with complete piv-oting is for computing a rank-revealing Cholesky decomposition of a \nearly" positive13



semi-de�nite matrix A. From the results of section 2, however, we know that the algo-rithm in general is unreliable, since the distance to a rank r matrix may be overestimatedby as much as 13(n� r)(4r � 1) (see Example 2.1).5.2 The QR DecompositionLet B 2 Rm�n (m � n) have the QR decomposition with column pivotingB� = Q|{z}m�n R|{z}n�n ; QTQ = I; rii � 0: (5:2:1)Then �TBTB� = RTR (5:2:2)is the Cholesky decomposition of BTB with complete pivoting. In this section we applythe perturbation theory of section 2 to the Cholesky decomposition (5.2.2), in order toobtain a new perturbation result for the QR decomposition (5.2.1) in the case where Bis rank-de�cient.Let rank(B) = r < n, so thatR = 0@ r n� rr R11 R12n� r 0 0 1A: (5:2:3)We wish to examine the e�ect of a perturbation F in B on the (2,2) block of R. LetG = QTF�, so that (B + F )� = Q(R +G); (5:2:4)and let B + F have the QR decomposition with column pivoting(B + F )� = Q R:Our aim is to bound kR22k2. De�neA = �TBTB� = RTR; (5:2:5)A+ E = �T (B + F )T (B + F )� = RTR: (5:2:6)It is easy to see that RT22R22 = Sr(A+ E); (5:2:7)and so our task is to bound kSr(A+E)k2. Assume that A satis�es conditions (2.4); then,for su�ciently small kEk2, � = �, and from (5.2.4{5.2.6),E = RTG +GTR +GTG: (5:2:8)14



We are now in a position to invoke the perturbation theory of section 2. On applyingLemma 2.1, we �nd that for the very special E in (5.2.8) the �rst order perturbationterm vanishes, and the second order term is of a simple form.Lemma 5.1. Under the above assumptions, if kA�111 E11k2 < 1 thenSr(A+ E) = �GT12G12 +GT12G11W +W TGT11G12 �W TGT11G11W +O�kGk32�;where W = A�111 A12 = R�111 R12:Proof. The result is obtained from Lemma 2.1 on using Sr(A) = 0 and substitutingfor E from (5.2.8). We omit the tedious algebra.We obtain the following result.Theorem 5.2. Let B 2 Rm�n , where m � n and rank(B) = r < n. Let B have theQR decomposition with column pivoting B� = QR, where R is given by (5.2.3), andassume A = BTB satis�es the conditions (2.4). Then for su�ciently small kFk2, B + Fhas the QR decomposition with column pivoting (B + F )� = QR, andkR22k2kBk2 � kFk2kBk2 �1 + kWk2�+O�kFk2kBk2�2 : (5:2:9)Proof. Using Lemma 5.1 together with (5.2.7) and kGk2 = kFk2 one obtainskR22k22 � kFk22�1 + kWk2�2 +O�kFk32�;which, on dividing by kBk22, is equivalent to (5.2.9).Theorem 5.2 sheds new light on the behaviour of the QR decomposition with columnpivoting. For it shows that the quality of kR22k2 as an estimate of kFk2, which itself isan upper bound for the distance �r+1(B+F ) from B+F to the rank r matrices, dependson the size of W = W (B) = R�111 R12. (Here �k(X) denotes the kth largest singular valueof X.) If we regard B+F as the given matrix, and we choose F so that B := (B+F )�Fhas rank r with kFk2 = �r+1(B + F ), then we obtain a bound similar to the followingone, from Lawson and Hanson (1974, Theorem 6.31):jrr+1;r+1j � 13p4r+1 + 6(r + 1)� 1 �r+1(B + F ) �(B + F )� = QR �: (5:2:10)Our result is stronger in the sense that for a particular matrix kWk2 may be much smallerthan its upper bound kWk2 � q13(n� r)(4r � 1) from Lemma 2.3 (see the test resultsof the next section); on the other hand (5.2.10) has the advantage of holding for all F .15



While Theorem 5.2 is important theoretically, we do not feel that it leads to any newpractical approaches to the use of the QR decomposition with column pivoting in rankestimation. The main reason for this is the di�culty of verifying that the perturbationF , which in practice must also include the backward error, is \su�ciently small" for oneto be able to obtain a strict bound of the formkFk2kBk2 � � �1 + kWk2� kR22k2kBk2 (5:2:11)(say, for � = 2). For practical use, what is really required is a rigorous bound of the form(5.2.11), with � a small constant, valid for all F . Such a bound would combine the bestfeatures of (5.2.9) and (5.2.10), but is, we suspect, impossible to achieve.The results of our numerical testing in the next section do, however, enable us todraw some important conclusions from Theorem 5.2 about the practical e�ectiveness ofthe QR decomposition with column pivoting.5.3 The LU DecompositionAnother interesting application of our perturbation theory is to the LU decomposition ofa rank-r m� n matrix A (m � n), by Gaussian elimination with complete pivoting:
PAQ = 0@ rr L11m� r L211A � r n� rr U11 U12 �; lii � 1:Rede�ning A := PAQ, the relevant Schur complement is S(A) = A22�A21A�111 A12, whichis zero when A has rank r. A direct analogue of Lemma 2.1 shows that Sr(A+E) containsa term A21A�111 E11A�111 A12. The use of complete pivoting implies thatjuiij � juijj; j � i;jlijj � 1; i > j;using which it can be shown (cf. Lemma 2.3) thatkA�111 A12k2;F �r13(n� r)(4r � 1);kA21A�111 k2;F �r13(m� r)(4r � 1)(with equality for the matrix A = LU where L and U have 1's on the diagonal and �1'severywhere below and above the diagonal respectively). From these results it follows that16



although A + E is within distance kEk2 of the rank-r matrix A, the Schur complementafter r stages of the elimination on A+ E is bounded approximately bykSr(A + E)k2 � kEk23 (4r � 1)p(n� r)(m� r) +O(kEk22):(Note that, strictly, we should make an assumption similar to (2.4), and require kEk2 tobe su�ciently small, so as to ensure that the same pivot sequence is used for A as forA+E.) That equality is possible in this bound is shown by Example 2.1, with A = C(�)(for which we have P = Q = � = I, and A = RTR = RTD�1 � DR � LU whereD = diag(rii)).It is interesting to note that by taking r = n� 1 in the above example we obtain ann� n nonsingular matrix X (� C(�) +E) for which in the LU factorisation by completepivoting mini juiij � �4n�1 � 13 � 1kX�1k2(note that minfkEk2 : X + E is singularg = kX�1k�12 ). Thus the often quoted example
A = 0BBBBBB@ 1 �1 : : : : : : 11 �1 : : : 1. . . .... . . ...1

1CCCCCCA 2 Rn�n ; kA�1k1 = 2n�1;which is left unchanged by Gaussian elimination with partial or complete pivoting, sothat mini juiij = 2n�1kA�1k1 ;is by no means a worst-case example of the failure of near rank-de�ciency to be revealedby small diagonal elements of U ! This second example is perhaps \psychologically" worsethan the �rst, however, since the matrixX tends to be very ill-conditioned, so that, unlikefor A, mini juiij for X always reveals some degree of ill-conditioning.6 Numerical ExperimentsWe have carried out several numerical experiments in order to investigate the \typical"size in practice of kWkF when pivoting is used in the Cholesky and QR decomposi-tions, and to assess the e�ectiveness of the stopping criteria (4.1), (4.2) and (4.3) for theCholesky decomposition.Our �rst group of tests was implemented in Fortran 77 on a CDC Cyber machine,with u = 2�48 � 3:55� 10�15. We used LINPACK's SCHDC with the complete pivoting17



option to compute Cholesky decompositions of various random positive semi-de�nitematrices with pre-assigned spectra. Each matrix was constructed as A = V �V T , where� = diag(�i) is rank-r and positive semi-de�nite, and where V is a random orthogonalmatrix (di�erent for each �) generated using the method of Stewart (1980). We usedthree distributions of the nonzero eigenvalues:1 = �1 = �2 = � � � = �r�1; �r = � � 1;�1 = 1; �2 = �3 = � � � = �r = � � 1;�i = �i�1; 1 � i � r; � � 1;� and � being used to vary �2(A) = �1(A)=�r(A). For each distribution we generated100 di�erent matrices by taking all combinations of n 2 f10; 15; 20; 25; 50g, r 2 f2 +[i(n� 3)=3] : i = 0; 1; 2; 3g, and �2(A) 2 f1; 103; 106; 109; 1012g.Denote a computed Cholesky decomposition from SCHDC by �TA� � bRTk bRk, wherebRk is k � n. Write, for k � r, bRk = 0@ r n� rr bR11 bR12k � r 0 bR22 1A;so that bRr = ( bR11; bR12 )is the computed r � n Cholesky factor obtained after r stages of the decomposition. Inall our tests k � r was satis�ed. For each decomposition we computed the followingquantities: kWkF = k bR�111 bR12kF;�k = k�TA�� bRTk bRkkF��ukAkF�;�r = k�TA�� bRTr bRrkF��ukAkF�;�r = k bAr+1kF��ukAkF�;�r = maxr+1�i�nba(r+1;r+1)ii �(uba(1)11 ):The results were extremely consistent, showing no noticeable variations with n, r, �2(A),or the eigenvalue distribution. They are summarised in Table 6.1.The statistics for �r show that throughout these tests the Cholesky algorithm had,after r stages, produced a remarkably stable factorisation. This stability is predicted bythe bound (3.19), since kWkF < 10 throughout.SCHDC continued for k > r stages of the Cholesky algorithm in all but 18 of the300 cases. For example, for the matrices with n = 50 and r = 33, k varied between 3518



and 41. In a small number of cases these extra elimination stages led to instability, thelargest relative residual being �k = 5814.The values of �r, �r and �r, together with values of �r�1 and �r�1 not reported here,show that for the termination criteria (4.2) (using the Frobenius norm with � = 20u) and(4.3) (with � = 50u), the Cholesky algorithm would in every case have been terminatedafter r stages, giving a stable decomposition.A second group of tests was performed using various general, nonsingular matrices,including random matrices of several types, and Hilbert and Vandermonde matrices. Foreach matrix we computed the QR decomposition with column pivoting, and evaluatedkWkF = k bR�111 bR12kF for each of the n� 2 partitioningsbR = 0@ r n� rr bR11 bR12n� r 0 bR22 1A; 2 � r � n� 1:In this way we e�ectively generated, from a single QR decomposition, the values kWkFcorresponding to the Cholesky or QR decompositions (with pivoting) of a family of ma-trices, of ranks 2, . . . , n� 1. The computations were done using MATLAB on a PC-ATcompatible machine. The dimension n varied between 5 and 25. The largest value ofkWkF was 5.23.Finally, we present examples of the failure of the Cholesky decomposition with com-plete pivoting (or equivalently, in these examples, Gaussian elimination with completepivoting) to provide a rank-revealing decomposition. We used MATLAB to computeCholesky decompositions of C := C(�)=kC(�)k2, where C(�) = cp�C(�)� is de�ned inExample 2.1. For n = 10; 20 the \worst" results we obtained are as follows. Hereu � 2:22� 10�16.n = r = 10; � = 0:38; jbrnnj2 = 2:0� 10�11; b�n(C) = 3:7� 10�16;n = r = 20; � = 0:81; jbrnnj2 = 1:8� 10�9; b�n(C) = 9:9� 10�18:In both cases C is singular to working precision (since b�n(C) � u) yet this is not revealedby the diagonal elements of bR. In these examples �2(C)u � 1, so strictly the theoryof section 2 is not applicable. Nevertheless, the ratio jbrnnj2=b�n(C) is very close to theapproximate theoretical maximum (4n�1 � 1)=3 for n = 10, and within a factor � 1000of it for n = 20.Several conclusions may be drawn from these numerical tests. First, it seems thatkWkF very rarely exceeds 10 in practice. Nevertheless, it is not di�cult to generatematrices for which kWkF is large. To see this, consider the e�ect of modifying the R19



factors generated in the above tests by replacing rij by �jrijj for i 6= j, and also replacingrii by jriij in the case of the QR decomposition. This modi�cation has no e�ect on theinequalities (1.4) and so the new matrices R are still genuine triangular factors fromthe QR or Cholesky decompositions with pivoting. Moreover, it is easy to see thatthese sign changes do not decrease the value of kWkF. In the above tests kWkF for themodi�ed R was frequently bigger than 10, sometimes by several orders of magnitude.One implication of these results is that the \M-matrix sign pattern" occurs very rarelyamongst the matrices R obtained in practice.Another conclusion is that the termination criterion used in SCHDC does occasionallylead to a residual appreciably larger than would be obtained if the Cholesky algorithmwere terminated at an earlier stage. Our test results indicate that either of the criteria(4.2) or (4.3) is preferable from the point of view of backward stability. An added bene�tof terminating earlier is a reduction in the storage requirements for R.Based on our numerical experience we suggest that � = nu is a reasonable tolerancefor use with (4.2) or (4.3). Because the term k bAkk in (4.2) requires some non-trivial workfor its evaluation we favour (4.3).Certainly, the choice of stopping criterion in the Cholesky decomposition is a delicatematter, the \best" choice depending on many factors, such as the scaling of A, andpossible a priori knowledge of the rank. We would suggest that in practice it is desirableto \prune" the k � n bRk returned by SCHDC to a p � n bRp with p � k; this could bedone by removing each row `k' of bRk for which (4.3) is satis�ed.7 Concluding RemarksOur error and perturbation analysis of the Cholesky decomposition of a semi-de�nitematrix has revealed the key role played by the matrixW = R�111 R12, where R = (R11; R12)is the Cholesky factor of A. We have shown that in exact arithmetic the residual after anr-stage Cholesky decomposition of A can overestimate the distance of A from the rank-rsemi-de�nite matrices by a factor � kWk22. And we obtained a bound for the backwarderror in the computed Cholesky decomposition of a semi-de�nite A that is proportionalto �kWk2+1�2. These results hold for any pivoting strategy and so a major objective ofa pivoting strategy should be to keep kWk2 small.Our theoretical and numerical results indicate that complete pivoting|choosing aspivot the largest element from along the diagonal|is an excellent strategy. With com-plete pivoting kWk2 � q13(n� r)(4r � 1), and it appears that in practice kWk2 rarelyexceeds 10. Thus our overall conclusion is that for semi-de�nite matrices the Cholesky20



algorithm with complete pivoting must be regarded as a stable algorithm.A side product of a our analysis is further evidence for the reliability in practice ofthe QR decomposition with column pivoting as a means for computing a rank-revealingdecomposition. Theorem 5.2, combined with the empirical observation that kWk2 isusually small, leads to the conclusion that if B� = QR and B is close to a rank r matrix,then \nearly always" R22 2 Rn�r�n�r will be appropriately small.AcknowledgementsThis work was begun during a visit to the Computer Science Department at StanfordUniversity. I thank Gene Golub for �nancial support. It is a pleasure also to thank IanGladwell for stimulating discussions on this work, and Des Higham and Len Freeman foruseful suggestions for improving the manuscript.
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Table 6.1 Results for 300 test matrices.Condition Number of Cases1 � kWkF < 9:7 throughout1 � �k < 10 19210 � �k < 100 99100 � �k < 1000 51000 � �k < 10; 000 41 � �r < 10 27510 � �r < 20 25max�r = 16:7�r < 10 26510 � �r < 50 35
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