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Production of Conditional Simulations via the LU 
Triangular Decomposition of the 

Covariance Matrix ! 

Michael  W. Davis 

This paper reviews the turning band method and fast Fourier transform method of  producing a 
nonconditional simulation of  a multinormal random function with a given covariance structure. A 
review of the two common methods of  conditioning the simulation to honor the data shows that 
they are formally equivalent. Another method for directly pondering a conditional simulation based 
on the LU triangular decomposition of  the covariance matrix is presented. Computational and 
implementation difficulties are discussed. 
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INTRODUCTION 

Conditional simulations are a useful research tool for studying new algorithms 
and theoretical developments in geostatistics. It is often useful, for performing 
sensitivity analysis, to have multiple conditional simulations from the same set 
of data. 

This paper describes a simple technique, based on the lower-upper (LU) 
triangular decomposition of the covariance matrix, for producing multiple con- 
ditional simulations of a moderate-sized grid (up to 700 points). The method 
can be implemented easily by adapting a standard kriging program. A further 
advantage is that most operations performed in the algorithm can be vectorized 
to take advantage of the vector processing capability which exist on certain 
computers. Indeed, for machines such as the Cray 1 and the CDC Cyber 205, 
subroutines required to implement this procedure already exist as part of the 
standard FORTRAN library routines and are coded to take advantage of the 
machines architecture. The method has several advantages over other methods 
in common use such as the turning band method (Journel and Huijbregts, 1981) 
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and the fast Fourier transform method (FFT) (Borgman et al., 1984). The ad- 
vantages are that it is integrated--i.e., simulation and conditioning are per- 
formed simultaneously and is simple to apply and can be applied to an arbitrary 
covariance structure. Also, data locations do not have to coincide with points 
on the simulated grid. 

As presented, the method assumes that all grid points will be simulated at 
the same time and that all data will be used for conditioning. This restriction 
obviously can be relaxed and the method can be applied locally in much the 
same way as moving neighborhood kriging. 

P R O D U C T I O N  OF A N O N C O N D I T I O N A L  SIMULATION 

Two methods are widely used at present that produce a nonconditional 
simulation of a random function, the turning band method of Matheron as de- 
scribed in Journel and Huijbregts (1981, p. 498) and the fast Fourier transform 
method as described in Borgman et al. (1984). 

The turning band method works by simulating one-dimensional processes 
with a particular covariance structure along lines which are distributed equally 
in space. The appropriate one-dimensional covariance model is deduced from 
the covariance model of the two- or three-dimensional process. The simulated 
value at a given grid point is obtained by summing values taken at the closest 
point on each of the lines, by dropping a perpendicular from the grid point to 
the line. The method is fast, because only one-dimensional simulation is re- 
quired. However, not all two-dimensional random functions have covariance 
models for which a simple one-dimensional covariance model exists, although 
in most cases a reasonable approximation can be found (see Journel and Hu- 
ijbregts, 1981, p. 506 and Brooker, 1985). In three dimensions, the turning 
band method suffers from loss of accuracy due to a finite number of line sim- 
ulations used. This is linked to the difficulty of generating lines which are dis- 
tributed evenly in space. The usual approach is to take 15 lines joining mid- 
points of  a regular icosahedron. This leads to what is termed striping in the 
simulation. Two-dimensional slices of the three-dimensional simulation will 
have stripes of large or small values caused by runs of large or small values on 
particular lines. This can be remedied only by generating many more lines. 
Unfortunately, this only can be done by generating lines drawn through points 
generated at random on the unit sphere. In this case, a large number of lines 
will have to be used to avoid the generation of anisotropic bias induced by 
nonuniform distribution of lines in space. The turning band method is also awk- 
ward to apply in cases where a strong anisotropy is present either in the vario- 
gram model or the actual geometry of the deposit. Anisotropy is usually recti- 
fied by applying a transformation to the coordinate system to remove the 
anisotropy. However, if the anisotropy is strong this can distort the simulated 
grid which is usually a cubic lattice. When the grid is back-transformed, un- 
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wanted anisotropies may be present. These points are all discussed in detail in 
Luster (1985). The principal advantages of the turning band method are its 
speed and the number of points in the three-dimensional simulation which can 
be generated by the method. To date, it has been the only method that can 
generate the large production oriented simulations, which may require as many 
as 2,000,000 grid points. 

The fast Fourier transform method calculates the energy spectrum of the 
random function from the covariance model and uses the fact that the sum of 
independent multinormally distributed variables is also multinormal to produce 
a simulation with the appropriate covariance structure in the space domain. 
Being a numerical technique, the method can be applied for any given covari- 
ance model. Because FFT subroutines are becoming part of the standard FOR- 
TRAN library routines for many computers, particularly those with vector pro- 
cessing capabilities, the method is computationally efficient and easy to use. 
The present limitation of the method appears to be the size of the simulation 
which can be generated. This would appear to be an implementation as opposed 
to a theoretical difficulty. 

C O N D I T I O N I N G  T H E  GRID 

Two methods for conditioning the simulation to take the same values at 
sampled locations are described in Journel and Huijbregts (1981) and Borgman 
et al. (1984). 

The first method works by adding a correlated error obtained from the 
simulation to a grid kriged from the data; the second method works by calcu- 
lating the conditional distribution of grid point values given the data values 
assuming a multivariate normal distribution. The two methods are shown to be 
formally equivalent in the following paragraphs. 

Steps for obtaining a conditional simulation from a nonconditional simu- 
lation using the first method are explained in Journel and Huijbreghts (1981, p. 
494). Briefly, the idea is that a grid kriged from the data will be smoother than 
reality. To produce a grid which reproduces the spatial variability of the un- 
derlying random function, a new kriged grid is produced by using simulation 
values at data locations as values used in kriging. This new kriged grid is sub- 
tracted from the nonconditional grid to give a grid of correlated errors. This 
grid of errors is added to the original kriged grid to produce a conditioned 
simulation. 
So 

zes = z ~  + (Zus - z~u~) 

where Zcs is the conditional simulation, Zkd is the grid kriged from real data, 
Zu, is the unconditional simulation, Zku, is the grid kriged from unconditional 
simulation data. This can be rewritten as 
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zcs= zu, + ( z , ~ -  Zkus) 

Because data locations are the same, Zkd -- Zkus can be obtained by kriging 
differences between data values and simulated values at data locations. The 
explicit representation of a kriged grid for the case of simple kriging with a zero 
mean gives the estimate for a single point as 

Z * ( x ,  y) = k ' ( x ,  y ) K - l z  

where K is the matrix of covariances between the data points, z is the vector 
of data values, and k is the vector of covariances between the point and the 
data. [See Davis and Culhane, (1984, p. 602, for details.) For a grid o f m  points 
this can be rewritten as 

Z = C ' K - l z  

where Z is a vector of estimated grid values and C is an m × n matrix contain- 
ing vectors k for each individual value estimated. 

Expressing this in the same notation as Borgman et al. (1984) 

Z~d -- Zkus = C2 ,C~ ' ( z  - y) 

where z is the actual data value, y is the simulated value at the data location, 
C~I is the covariance between the data (equivalent) K, C21 is the matrix con- 
taining the vectors k equivalent C ' .  So 

Zc, = Zu~ + C21C~ l(z - y) 

This is the same formula used by Borgman et al. (1984) to condition the sim- 
ulation in the space domain. It is derived by considering the conditional co- 
variance of the grid points given the data assuming a multivariate normal dis- 
tribution. So, formally, the two methods of conditioning are demonstrated to 
be equivalent. 

THEORETICAL B A C K G R O U N D  OF PROPOSED METHOD 

Let K be the covariance matrix associated with data locations (x~,x2, . . . ,  

xn). Matrix K is symmetric and positive-definite and hence can be decomposed 
into the product of a lower triangular and an upper triangular matrix. Further- 
more, because K is symmetric, the upper triangular matrix is the transpose of 
the lower triangular matrix 

K -- LU where L '  = U 

Now consider the random vector 

y = Lw 

where w is a vector of independent N(0, 1) distributed random numbers. The 
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expected value of the n x n matrix yy'  is given by 

E(yy ' )  = E(Lww'  U) 

= LE(ww' )U  

Because w is a vector of independent N(0, 1) random numbers 

E ( w w ' )  = I 

where I is the identity matrix 

E(yy'  ) = LIU 

= LU 

= K  

So vector y is a nonconditional autocorrelated simulation of the random function 
at data locations with covariance matrix K. 

CONDITIONAL SIMULATION OF A GRID 

Consider the covariance matrix of data locations the grid to be generated, 
and partition the matrix as follows 

= I  C'~ C~2] 

c LC ' c =J 
where Cll is covariance between data points (K),  C21 is covariance between 
data points and grid points, and C22 is covariance between grid points. (If a 
data point and a grid point happen to coincide, the point should be considered 
as a data point and grouped accordingly. Also, no duplication of data should 
occur at the locations.) 

Now decompose C as follows 

Let w' = (w{, w~) be a vector of independent N(0, 1) distributed random 
numbers. 
Then, vector y '  = (y ' ,  y~) given by 

IL 0]/w ] 
Ly j 
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is an unconditional simulation of the random function at the grid and data points 
with covariance matrix C. Now 

LllWl --=-- Yl and 

LzlWl + Lz2W2 = Y2 

TO condition the simulation, replace w~ by vl where vl is the solution to the 
equation 

LIIV 1 ~- z 1 

where z~ is a vector of values at the data points. (Here data are assumed to have 
been transformed so that Z ( x )  is a N(0, 1)-distributed random function.) Note 
also that E(zlz~) = Cll. 

Therefore 

V 1 = L ~  1 Z 1 

So 

L21 L 2 2 J L w 2  L21LI l lZl  + L22w 2 

produces a conditional simulation of the random function. Multiple simulations 
may be produced simply be regenerating the term L22w2 using different random 
numbers. Note that wl is not needed. 

Therefore 

COMPUTATIONAL DETAILS 

Multiplying the decomposition 

o 

= [L,,V,I ] 
L L21U11 L21U12 + L22U22 

C1~ = L~1Ull 

C21 = L21Ull 

C12 = L11U12 

C22 = L21UI2 + L22022 
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So L~ and UI~ are calculated easily via the modified Cholesky decompo- 
sition. (The reason for using the modified Cholesky decomposition instead of 
the usual R ' R  Cholesky decomposition of a positive definite matrix is that the 
former is more stable numerically and easier to implement. This is discussed in 
Davis and Culhane, (1984, p. 602.) Once UI~ is known, Lzl can directly cal- 
culated by 

L21 = C21UII 1 

The FORTRAN subroutine UDUB given in Davis and Grivet (1984) easily can 
be adapted to perform this decomposition. Note that the algorithm factors a 
symmetric positive definite matrix A as follows 

A = U ' D U  

where D is a diagonal matrix and U is an upper triangular matrix. So, using 
this progrom, the L matrix required to perform the simulation would be given 
by 

L = U ' D  1/2 

Because D is a diagonal matrix whose elements are reciprocals of diagonal 
elements of the matrix U, D 1/2 can be calculated easily. (Note that matrix U 
used in this paper is n o t  the same as matrix U referred to by the program.) 

CONCLUSION 

The described technique provides a simple method of producing a condi- 
tional simulation of an intermediate-sized grid (at present the largest grid which 
has been simulated by the method contains 700 grid nodes plus data). The tech- 
nique is useful for simulating a large number of small grids for studying sam- 
pling distributions. This is described in Solow (in preparation). The method as 
presented also can be applied locally to subareas, and this is often sufficient for 
most research and many production problems. Although the method as pre- 
sented is restricted in the size of the grid it can generate, this is an implemen- 
tational difficulty as opposed to a theoretical limitation. These problems can be 
circumvented by taking into account the particular structure of the covariance 
matrix, which will be sparse for a spherical covariance, or by adapting the 
algorithm to work locally as in moving neighborhood kriging, which is partic- 
ularly appropriate in areas where a global stationary random function model is 
not adequate to describe the data. These topics will be discussed in a future 
paper. 
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