Logic - Tutorial 5

Professor: Pascal Gribomont - gribomont@montefiore.ulg.ac.be TA: Antoine Dubois - antoine.dubois@uliege.be

> Faculty of Applied Sciences University of Liège

> > 1 / 16

Reminder

 $\frac{\text{Craig's interpolation theorem}}{\text{If } A \models B \text{ (or } \models A \Rightarrow B),}$ then there exists a formula C, containing only atoms occurring in both A and B, such that $A \models C \text{ (or } \models A \Rightarrow C)$ and $C \models B \text{ (or } \models C \Rightarrow B).$

Search for an interpolant by induction

Induction on the set Π of atoms occurring in both A and B.

- Base case. If Π = Ø, ⊨ A ⇒ B implies either A is inconsistent (and C ≜ false is an appropriate choice) or B is valid (and C ≜ true is an appropriate choice).
- Induction step. If p ∈ Π, induction hypothesis applies to formulas A(p/true), B(p/true) and also to formulas A(p/false), B(p/false). If C_T and C_F are corresponding interpolants, then formula (p ∧ C_T) ∨ (¬pC_F) is an interpolant for A and B.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Consider the following two formulas:

$$A \triangleq p \land (r \lor q) \land t$$
 and $B \triangleq (p \lor r) \land (q \lor t)$

Do we have that

•
$$A \models B \ (\models A \Rightarrow B)$$
?

•
$$B \models A \ (\models B \Rightarrow A)?$$

If one of those is true, give an interpolation formula.

A B F A B F

$$\frac{A \models B}{\text{If } v(A)} = T \text{, then } v(p) = v(t) = T \text{ and thus } v(B) = T$$

$$\frac{B \models A}{\text{With } v(p)} = v(q) = T \text{ and } v(r) = v(t) = F, \text{ we have } v(B) = T \text{ and } v(A) = F$$

3

メロト メポト メヨト メヨト

Interpolation formula

By Craig's theorem, as $A \models B$, there exist C s.t. $A \models C$ and $C \models B$ containing only atoms in both A and B. We can easily find that $C \triangleq p \land t$ works.

Note:

 $C \triangleq A$ and $C \triangleq B$ also work but they are trivial and bring no new information. Moreover, it works in this case because A and B have all their atoms in common.

Consider the following two formulas:

$$A \triangleq [p \lor (q \land r)] \land (q \lor t) \quad \text{and} \quad B \triangleq (s \lor r) \land q \land t \land p$$

Do we have that $A \models B$ or $B \models A$?

If one of those is true, give an interpolation formula.

To construct the interpolation formula, use the method presented in the proof of the theorem. Is this interpolation formula unique?

• • = • • = •

$$\frac{A \models B}{|f v(t)|} = v(p) = T \text{ and } v(q) = F, v(A) = T \text{ and } v(B) = F$$

$$\frac{B \models A}{|f v(B)|} = T, v(q) = v(t) = v(p) = T, \text{ then } v(A) = T$$

Interpolation formula

The set of common atoms is $E = \{p, q, t, r\}$. We will find the interpolant using the **induction method**.

イロト イポト イヨト イヨト

Let's select atom p, and built $C \triangleq (p \land C_T) \lor (\neg p \land C_F)$ where

- C_T is an interpolant of A(p/true) and B(p/true)
- and C_F is an interpolant of A(p/false) and B(p/false)

$$\frac{C_T}{A(p/\text{true})} \triangleq q \lor t$$
$$B(p/\text{true}) \triangleq (s \lor r) \land q \land t$$

To find C_T , we apply the same method taking out q out of the common set of atoms $E_T = \{q, t\}$ and building $C_T \triangleq (q \land C_{TT}) \lor (\neg q \land C_{TF})$

Exercise 2 - Solution

 $\frac{C_{TT}}{A(p/\text{true}, q/\text{true})} \triangleq \text{true}$ $B(p/\text{true}, q/\text{true}) \triangleq (s \lor r) \land t$

We have $C_{TT} \triangleq \text{true}$.

 $\frac{C_{TF}}{A(p/\text{true}, q/\text{false})} = t$ B(p/true, q/false) = false

We have $C_{TF} \triangleq \text{false}$.

Thus $C_T \triangleq (q \land \text{true}) \lor (\neg q \land \text{false}) \triangleq q$

Now let's do C_F .

$$\frac{C_F}{A(p/\text{false})} \triangleq (q \lor r) \land (q \lor t)$$
$$B(p/\text{false}) \triangleq \text{false}$$

Thus $C_F \triangleq \text{false.}$

Therefore,
$$C \triangleq (p \land q) \lor (\neg p \land \text{false}) \triangleq p \land q$$

<u>Note</u>

This is not a unique solution. For example, we can easily find that $C \triangleq p \land q \land t$ works as well.

3

A B M A B M

Consider the following two formulas:

$$A \triangleq [(q \Rightarrow r) \land s]$$
 and $B \triangleq (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

Do we have that $A \models B$ or $B \models A$? If one of those is true, give an interpolation formula.

• • = • • = •

Exercise 3 - Solution

$$\begin{array}{l} A \models B \\ \hline \mathsf{If} \ v(A) = T, \ v(s) = T \ \mathsf{and} \ v(q) = F \ \mathsf{or} \ v(r) = T. \\ \bullet \ \underline{\mathsf{Case 1}}: \ v(r) = T, \ \mathsf{then} \ v(B) = T \to \mathbf{OK} \\ \bullet \ \underline{\mathsf{Case 2}}: \ v(q) = F. \\ \bullet \ \underline{\mathsf{Case 2.1}}: \ v(p) = T, \ \mathsf{then} \ v(B) = v(\mathsf{false} \Rightarrow (p \Rightarrow r)) = T \to \mathbf{OK} \\ \bullet \ \underline{\mathsf{Case 2.2}}: \ v(p) = F, \ \mathsf{then} \ v(B) = v(\mathsf{true} \Rightarrow \mathsf{true}) = T \to \mathbf{OK} \end{array}$$

$$\frac{B \models A}{|f v(s)|} = F \text{ and } v(r) = T, \text{ then } v(B) = T \text{ but } v(A) = F.$$

Interpolation formula

We can directly infer that $C \triangleq q \Rightarrow r$ works. Indeed, $A \models C$ is trivial and $C \models B$ by following exactly the same proof as $A \models B$.

Consider the following two formulas:

$$A \triangleq (p \lor q) \land (q \Rightarrow r)$$
 and $B \triangleq \neg p \Rightarrow r$

Do we have that $A \models B$ or $B \models A$? If one of those is true, give an interpolation formula.

$$\frac{A \models B}{|f v(A)|} = T, v(p \lor q) = T \text{ and } v(q \Rightarrow r) = T.$$

We then have two interesting cases:

- Case 1: v(p) = T then $v(B) = T \rightarrow \mathbf{OK}$
- Case 1: v(r) = T then $v(B) = T \rightarrow \mathbf{OK}$

$$\frac{B \models A}{|f v(r)|} = T \text{ and } v(p) = v(q) = F, \text{ then } v(B) = T \text{ but } v(A) = F.$$

Interpolation formula Following the proof of $A \models B$, we see that $C \triangleq p \lor r$.

イロト イポト イヨト イヨト

For

$$A \triangleq a \land (b \lor c) \quad \text{and} \quad B \triangleq a \lor (b \land c)$$
$$A \triangleq (p \Rightarrow q) \Rightarrow r \quad \text{and} \quad B \triangleq p \Rightarrow (q \Rightarrow r)$$
$$A \triangleq (a \lor b \lor c) \land d \quad \text{and} \quad B \triangleq (a \lor b) \land c \land c$$

Do we have that $A \models B$ or $B \models A$? If one of those is true, give an interpolation formula.

3

- A I I I A I I I I

$$A \models B, C \triangleq a A \models B, C \triangleq q \Rightarrow r B \models A, C \triangleq c \land d$$

・ロト・日本・日本・日本・日本・日本

16 / 16