Logic－Tutorial 5

Professor：Pascal Gribomont－gribomont＠montefiore．ulg．ac．be TA：Antoine Dubois－antoine．dubois＠uliege．be

Faculty of Applied Sciences
University of Liège

Reminder

Craig's interpolation theorem
If $A \models B$ (or $\models A \Rightarrow B$),
then there exists a formula C,
containing only atoms occurring in both A and B, such that $A \models C$ (or $\models A \Rightarrow C$) and $C \models B$ (or $\models C \Rightarrow B$).

Search for an interpolant by induction Induction on the set Π of atoms occurring in both A and B.

- Base case. If $\Pi=\varnothing, \models A \Rightarrow B$ implies either A is inconsistent (and $C \triangleq$ false is an appropriate choice) or B is valid (and $C \triangleq$ true is an appropriate choice).
- Induction step. If $p \in \Pi$, induction hypothesis applies to formulas $A(p /$ true $), B(p /$ true $)$ and also to formulas $A(p /$ false $), B(p /$ false $)$.
If C_{T} and C_{F} are corresponding interpolants, then formula
$\left(p \wedge C_{T}\right) \vee\left(\neg p C_{F}\right)$ is an interpolant for A and B.

Exercise 1

Exercise 1

Consider the following two formulas:

$$
A \triangleq p \wedge(r \vee q) \wedge t \quad \text { and } \quad B \triangleq(p \vee r) \wedge(q \vee t)
$$

Do we have that

- $A \models B(\models A \Rightarrow B)$?
- $B \models A(\models B \Rightarrow A)$?

If one of those is true, give an interpolation formula.

Exercise 1 - Solution

$\frac{A \models B}{\text { If } v(A)}=T$, then $v(p)=v(t)=T$ and thus $v(B)=T$
$\frac{B \notin A}{\text { With } v}(p)=v(q)=T$ and $v(r)=v(t)=F$, we have $v(B)=T$ and $v(A)=F$

Exercise 1 - Solution

Interpolation formula
By Craig's theorem, as $A \models B$, there exist C s.t. $A \models C$ and $C \models B$ containing only atoms in both A and B.
We can easily find that $C \triangleq p \wedge t$ works.

Note:
$C \triangleq A$ and $C \triangleq B$ also work but they are trivial and bring no new information. Moreover, it works in this case because A and B have all their atoms in common.

Exercise 2

Exercise 2

Consider the following two formulas:

$$
A \triangleq[p \vee(q \wedge r)] \wedge(q \vee t) \quad \text { and } \quad B \triangleq(s \vee r) \wedge q \wedge t \wedge p
$$

Do we have that $A \models B$ or $B \models A$?
If one of those is true, give an interpolation formula.
To construct the interpolation formula, use the method presented in the proof of the theorem. Is this interpolation formula unique?

Exercise 2 - Solution

$A \neq B$
$\overline{\text { If } v(t)}=v(p)=T$ and $v(q)=F, v(A)=T$ and $v(B)=F$
$\frac{B \models A}{\text { If } v(B)}=T, v(q)=v(t)=v(p)=T$, then $v(A)=T$

Interpolation formula
The set of common atoms is $E=\{p, q, t, r\}$.
We will find the interpolant using the induction method.

Exercise 2 - Solution

Let's select atom p, and built $C \triangleq\left(p \wedge C_{T}\right) \vee\left(\neg p \wedge C_{F}\right)$ where

- C_{T} is an interpolant of $A(p /$ true $)$ and $B(p /$ true $)$
- and C_{F} is an interpolant of $A(p /$ false $)$ and $B(p /$ false $)$

$$
\begin{aligned}
& \frac{C_{T}}{A(p / \text { true })} \triangleq q \vee t \\
& B(p / \text { true }) \triangleq(s \vee r) \wedge q \wedge t
\end{aligned}
$$

To find C_{T}, we apply the same method taking out q out of the common set of atoms $E_{T}=\{q, t\}$ and building $C_{T} \triangleq\left(q \wedge C_{T T}\right) \vee\left(\neg q \wedge C_{T F}\right)$

Exercise 2 - Solution

$$
\begin{aligned}
& \frac{C_{T T}}{A(p / \text { true }, q / \text { true }) \triangleq \operatorname{true}} \\
& B(p / \text { true }, q / \text { true }) \triangleq(s \vee r) \wedge t
\end{aligned}
$$

We have $C_{T T} \triangleq$ true.
$\frac{C_{T F}}{A(p / \text { true }, q / \text { false })}=t$ $B(p /$ true,$q /$ false $)=$ false

We have $C_{T F} \triangleq$ false.

Thus $C_{T} \triangleq(q \wedge$ true $) \vee(\neg q \wedge$ false $) \triangleq q$

Exercise 2 - Solution

Now let's do C_{F}.
$\frac{C_{F}}{A(p / \text { false })} \triangleq(q \vee r) \wedge(q \vee t)$
$B(p /$ false $) \triangleq$ false
Thus $C_{F} \triangleq$ false.
Therefore, $C \triangleq(p \wedge q) \vee(\neg p \wedge$ false $) \triangleq p \wedge q$

Note
This is not a unique solution. For example, we can easily find that $C \triangleq p \wedge q \wedge t$ works as well.

Exercise 3

Exercise 3

Consider the following two formulas:

$$
A \triangleq[(q \Rightarrow r) \wedge s] \quad \text { and } \quad B \triangleq(p \Rightarrow q) \Rightarrow(p \Rightarrow r)
$$

Do we have that $A \models B$ or $B \models A$?
If one of those is true, give an interpolation formula.

Exercise 3 - Solution

$A \models B$
If $v(A)=T, v(s)=T$ and $v(q)=F$ or $v(r)=T$.

- Case 1: $v(r)=T$, then $v(B)=T \rightarrow \mathbf{O K}$
- Case 2: $v(q)=F$.
- Case 2.1: $v(p)=T$, then $v(B)=v($ false $\Rightarrow(p \Rightarrow r))=T \rightarrow \mathbf{O K}$
- Case 2.2: $v(p)=F$, then $v(B)=v($ true \Rightarrow true $)=T \rightarrow \mathbf{O K}$
$B \# A$
If $v(s)=F$ and $v(r)=T$, then $v(B)=T$ but $v(A)=F$.

Interpolation formula
We can directly infer that $C \triangleq q \Rightarrow r$ works. Indeed, $A \models C$ is trivial and $C \models B$ by following exactly the same proof as $A \models B$.

Exercise 4

Exercise 4

Consider the following two formulas:

$$
A \triangleq(p \vee q) \wedge(q \Rightarrow r) \quad \text { and } \quad B \triangleq \neg p \Rightarrow r
$$

Do we have that $A \models B$ or $B \models A$?
If one of those is true, give an interpolation formula.

Exercise 4 - Solution

$A \models B$
If $v(A)=T, v(p \vee q)=T$ and $v(q \Rightarrow r)=T$.
We then have two interesting cases:

- Case 1: $v(p)=T$ then $v(B)=T \rightarrow \mathbf{O K}$
- Case 1: $v(r)=T$ then $v(B)=T \rightarrow \mathbf{O K}$
$\frac{B \nmid=A}{\text { If } v(r)}=T$ and $v(p)=v(q)=F$, then $v(B)=T$ but $v(A)=F$.
Interpolation formula
Following the proof of $A \models B$, we see that $C \triangleq p \vee r$.

Exercise 5

Exercise 5

For

$$
\begin{array}{rlll}
A \triangleq a \wedge(b \vee c) & \text { and } & B \triangleq a \vee(b \wedge c) \\
A \triangleq(p \Rightarrow q) \Rightarrow r & \text { and } & B \triangleq p \Rightarrow(q \Rightarrow r) \\
A \triangleq(a \vee b \vee c) \wedge d & \text { and } & B \triangleq(a \vee b) \wedge c \wedge d
\end{array}
$$

Do we have that $A \models B$ or $B \models A$?
If one of those is true, give an interpolation formula.

Exercise 5 - Solution

(1) $A \models B, C \triangleq a$
(2) $A \models B, C \triangleq q \Rightarrow r$
(3) $B \models A, C \triangleq c \wedge d$

