Bioinspired Helicoidal Composites with Tunable Mechanical Behavior by 3-Dimensional Multi-material Printing

The construction principle of arranging stiff helicoidal fibers into a soft matrix is used by nature both to tune the mechanical behavior of biological load-bearing materials and to achieve high-performance biocomposites starting from relatively weak components [1]. Common examples of helicoidal reinforcement are the arrangement of lamellar bone in osteons [2] and the twisted pattern of cellulose microfibrils inside the wood cell walls [3]. Therefore, the aim if this project is the characterization of cylindrical shells reinforced with helicoidal fibers fabricated by 3-dimensional polymer printing and the study of properties that can be achieved by varying the fiber angle.

MAIN TASKS
- Review the relevant literature on helicoidal composites
- Get familiar with the existing models describing mechanical behavior helicoidal composites
- Characterize the behavior of different structure as function of fiber angle.
- Write a detailed report and prepare a presentation of the work performed

PRACTICAL INFORMATION
- Project type: 50% experimental; 50% computational / analytical modeling / data analysis
- Project supervisor: Prof. Davide Ruffoni, Laura Zorzetto, PhD student
- Required background: some previous knowledge of Matlab and/or finite element analysis would be beneficial

REFERENCES

Prof. Davide Ruffoni (druffoni@ulg.ac.be)
Laura Zorzetto, PhD student (lzorzetto@ulg.ac.be)