Lecture 9. Robustness and performance

- 1. How to use the theory of feedback systems in design problems?
- 2. Sensitivity functions
- 3. Robustness measures
- 4. Performance limitations

Syst003 lecture 9

Rodolphe Sepulchre

Academic year 2006-2007

Linear control systems

Robustness

- 1. the ability of the closed-loop system to be insensitive to component variations
- 2. what makes possible to design feedback system based on strongly simplified systems
- 3. Is feedback without robustness relevant?

Robustness is not implied by feedback

Caveat: (nave) pole placement can be highly non robust.

Example 9.2.

$$G(s) = \frac{s+a}{s(s+1)}$$

System is controllable and observable. Minimum phase. \Rightarrow Easy to control.

2

A seemingly good design

- 1. Pole placement: $s^2 + 2\zeta_c \omega_c s + \omega_c^2$
- 2. Observer design: $s^2 + 2\zeta_o\omega_o s + \omega_o^2$

Choice: $\omega_c = 5$, $\zeta_c = \zeta_o = 0.6$, $\omega_o = 10 = 2\omega_5$.

Observation: 2% process variation causes instability.

What is wrong?

Syst003 lecture 9

Back to the basic feedback loop

Loop analysis insight

- 1. no stability margins!
- 2. pole placement might result in bad stability margins
- 3. there are ways to guarantee robustness with (advanced) statespace methods

Syst003 lecture 9

Basic specifications

- 1. Load disturbance rejection $\left(\frac{Y}{D}\right)$
- 2. Noise measurement injection $\left(\frac{U}{N}\right)$
- 3. Robustness to process variations
- 4. Response to command signals (tracking) $\left(\frac{Y}{R}\right)$

6

4

Sensitivity functions

 $S = \frac{1}{1+PC}$ is the sensitivity function $T = \frac{PC}{1+PC} = 1 - S$ is the complementary sensitivity function $\frac{P}{1+PC} = PS = \frac{T}{C}$ is the load sensitivity $\left(=\frac{Y}{R}\right)$ $\frac{C}{1+PC} = CS = \frac{T}{P}$ is the noise sensitivity $\left(=\frac{U}{N}\right)$

The gang of six is:

	R	D	Ν
Υ	FΤ	ΡS	S
U	F C <mark>S</mark>	C <mark>S</mark>	Т

Syst003 lecture 9

Frequent mistake: Focus on only one transfer function

Example: Cancelling a slow proces pole

$$P(s) = \frac{1}{(s+1)(s+\epsilon)}$$

The PI control $K\frac{s+\epsilon}{s}$ provides the loop transfer $L=\frac{K}{s(s+1)}$

$$T(s) = \frac{PC}{1+PC} = \frac{K}{s^2+s+K}$$
 is "good"

BUT

$$\frac{Y}{D} = \frac{T}{C} = \frac{s}{(s+\epsilon)(s^2+s+K)}$$
 is "bad"

CCL: Plot the step response and frequency response of the six transfer functions!

Key transfer functions in a two-degree of freedom architecture

Optimize C for the feedback path:

- 1. S (sensitivity to P variations) and T (=meas. noise to output $\frac{Y}{N}$ =load disturbance to control $\frac{-U}{D}$))
- 2. *PS* (=disturbance to output $\frac{Y}{D}$) and *CS* (=meas. noise to control $-\frac{U}{N}$)

Adjust ${\boldsymbol{F}}$ for the feedforward path:

- 1. Reference to output: $\frac{Y}{R} = FT$
- 2. Reference to control value: $\frac{Y}{U}=FCT$

Syst003 lecture 9

The sensitivity function

Feedback attenuates external signals when $\mid S(j\omega)\mid <1$ and amplifies signals when $\mid S(j\omega)\mid >1$

8

The complementary sensitivity function

Stability if

Syst003 lecture 9

$$\left|\frac{\Delta P(j\omega)}{P(j\omega)}\right| < \frac{1}{\mid T(j\omega)}$$

A fundamental trade-off

S(s) + T(s) = 1

Load disturbance attenuation $\Rightarrow \mid S(j\omega) \mid << 1$ at low frequencies

Robustness to unmodelled dynamics $\Rightarrow \mid T(j\omega) \mid << 1$ at high frequencies

Syst003 lecture 9

13

Robustness measures: sensitivity peaks

Minimize the sensitivity peaks:

 $M_s = \parallel S \parallel_{\infty} = \sup_{\omega} \mid S(j\omega) \mid$ Maximal sensitivity to external disturbance

 $M_t = \parallel T \parallel_{\infty} = \sup_{\omega} \mid T(j\omega) \mid \text{Maximal sensitivity to process variations}$

Rule of thumb: it is good to keep $M_t \leq 1.1-1.2$ and $M_s \leq 1.1-1.2$

Performance limitation

For minimum phase systems:
$$\int_0^{+\infty} \log |S(j\omega)| d\omega = 0$$

Pushing the low frequency spec (for load disturbance attenuation) and the high frequency spec (for robustness against unmodelled dynamics) causes a higher peak of sensitivity : waterbed effect

Consequences for modeling

The sensitivity peaks arise near ω_c . They are related to the stability margins.

- 1. Good process knowledge is critical around ω_c
- 2. it is hard to reject external disturbances around ω_c .

Consequences for design

$$S = \frac{d_p d_c}{d_p d_c + n_p n_c}, \quad T = \frac{n_p n_c}{d_p d_c + n_p n_c}$$

 $T \approx 1$ at low frequencies and increases for frequencies close to process zeros unless there is a closed-loop pole nearby.

 \Rightarrow match slow zeros with slow closed-loop poles

 $S \approx 1$ at high frequencies and increases for frequencies close to process poles unless there is a closed-loop pole nearby.

 \Rightarrow match fast open-loop poles with fast closed-loop poles

Syst003 lecture 9

16

Syst003 lecture 9

17

Back to the specifications

- 1. Load disturbance rejection $(\frac{Y}{D} = PS = \frac{T}{C})$
- 2. Noise measurement injection $\left(\frac{U}{N} = CS = \frac{T}{P}\right)$
- 3. Robustness to
 - process variations $|\frac{\Delta P(j\omega)}{P(j\omega)}| < \frac{1}{|T(j\omega)|} \le M_t^{-1}$ external disturbances $|S(j\omega)| < M_s$

 - + Response to signal commands: $\frac{Y}{R} = TF$

Load disturbance attenuation: $\frac{T}{C}$

At low frequencies, $|T| \approx 1$.

Therefore $\left|\frac{Y}{D}\right| \approx \frac{1}{|C|}$

It the controller contains integral action, then $C(s) = \frac{1}{sT_i} +$ $\cdots = \frac{k_i}{s} + \ldots$

Consequence:

$$|\frac{Y}{D}| \approx \frac{|\omega|}{k_i}$$

Noise measurement attenuation: $\frac{U}{N} = CS$

At high frequencies, $\mid S \mid \approx 1$.

Therefore $\left| \frac{U}{N} \right| \approx |C|$

For instance, the phase lead $\frac{s+t_d}{1+\frac{st_d}{N}}$ amplifies the noise by a factor N at high frequencies.

Summary of lecture

- A good design of feedback system integrates performance and robustness considerations
- Loop analysis is useful to asses robustness and performance: the gang of six
- the sensitivity functions capture much of the design trade-offs.
- With this material, you should be able to design good controllers for "easy control systems" and to recognize when a model is difficult to control.

Syst003 lecture 9

20

Syst003 lecture 9