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Feedbackmechanisms for global oscillations in Lure systems�
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Abstract

The paper presents two mechanisms for global oscillations in feedback systems, based on bifurcations in absolutely stable
systems. The external characterization of the oscillators provides the basis for a (energy-based) dissipativity theory for
oscillators, thereby opening new possibilities for rigorous stability analysis of high-dimensional systems and interconnected
oscillators.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper describes two feedback mechanisms for
global oscillations in Lure systems that admit the block
diagram representation ofFig. 1, which is the feedback
interconnection of a dynamical passive system with a
static sector nonlinearity. A parameterk�0 controls
the negative slope at the origin of the static nonlinear-
ity �k(y)= −ky + �(y) and the results are provided
in the vicinity of a bifurcation valuek∗ for which the
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null equilibrium of the feedback system loses stability.
Sufficient conditions are provided for (almost) global
convergence of the solutions to a limit cycle. The limit
cycle either results from a supercritical Hopf bifurca-
tion or from a supercritical pitchfork bifurcation that
yields a globally bistable system then turned into a
relaxation oscillation by slow adaptation. The first
scenario provides a high-dimensional generalization
of Van der Pol oscillators. Its energy interpretation
fits the qualitative description of many physical oscil-
lations, described as the lossless exchange of energy
between two storage elements, regulated by a locally
active but globally dissipative element. The second
scenario provides a high-dimensional generalization
of Fitzugh–Nagumo oscillators. Its energy interpreta-
tion fits the qualitative description of many oscillation
mechanisms in biology, viewed as a periodic switch
between two quasi-stable steady states.
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Central to the results of this paper is the character-
ization of our oscillators by the dissipation inequality

Ṡ�(k − k∗)y2 − y�(y)+ uy. (1)

Beyond the stability results of this paper, the dissipa-
tion inequality (1) provides an external characteriza-
tion of the oscillator inFig. 1which opens the way to
a rigorous stability analysis of limit cycles in possi-
bly high-dimensional systems and interconnections of
such systems. The important topic of interconnections
will be treated in an extended version of the present
paper[13].
Dissipativity theory[18] has emerged as a central

tool for nonlinear stability theory of equilibria. To the
best of the authors knowledge, a dissipativity theory
for oscillators is new and should prove useful for in-
stance in the study of synchronization or phase-locking
phenomena in coupled oscillators. Many earlier results
in the literature have nevertheless exploited the struc-
ture of Lure systems in the study of nonlinear oscil-
lations. Yakubovich[14,19]provided sufficient condi-
tions for the existence of sustained oscillations (not
necessarily corresponding to a periodic orbit) and this
theory has been followed by many developments sum-
marized in[7]. Mees[8] provided a graphical crite-
rion for Hopf bifurcations in Lure systems based on
the Nyquist curve of the (linear) dynamical element
in the feedback loop. Recently, the authors of[4] de-
veloped novel numerical tools for the global analysis
of limit cycles in piecewise linear systems. The use
of this method in our context (restricting to a linear
element in the forward path and to a piecewise lin-
ear static element) to extend our stability results in the
parameter space is discussed in[12].
The paper is structured as follows. Section 2 sum-

marizes important results from absolute stability the-
ory and dissipativity theory. Section 3 contains the
main results of the paper. Section 4 discusses the Hopf
scenario in more details while Section 5 elaborates on
the pitchfork scenario as the basis for relaxation oscil-
lations. Section 6 provides an illustrative example of
our results. Finally, conclusions are given in Section 7.

2. Preliminaries

We start by recalling standard definitions about pas-
sivity and absolute stability. We consider the Lure

Fig. 1. Block diagram of the Lure SISO nonlinear system studied
in this paper.

Fig. 2. Equivalent representations of the Lure SISO nonlinear
system studied in this paper.

system shown inFig. 2 representing the feedback in-
terconnection of the nonlinear system� with a static
nonlinearity�k. The (SISO) system� is described by
the state-space model

(�)
{
ẋ = f (x)+ g(x)v, x ∈ Rn, v ∈ R,

y = h(x), y ∈ R,
(2)

where the vector fieldsf andg and the scalar function
h are smooth. We assume that the originx = 0 is an
equilibrium point, i.e.f (0)=0 and thatg(0) 	= 0 and
h(0)=0.We also assume zero-state detectability of the
pair(f, h), i.e. that every solutionx(t) of ẋ=f (x) that
verifiesy(t) = h(x(t)) ≡ 0 asymptotically converges
to the zero solutionx = 0 ast → ∞.
The static nonlinearity�k is described as

�k(y)= −ky + �(y), (3)

where�(·) is a smooth sector nonlinearity in the sector
(0,∞), which satisfies�′(0)= �′′(0)= 0, �′′′(0) :=
�>0 and lim|s|→∞ (�(s)/s)=+∞ (“stiffening” non-
linearity). We denote by�k the (positive) feedback
interconnection of� with the feedback gaink. The
feedback system is equally described as the feedback
interconnection of�k and the nonlinearity�(·). We
denote byG(s) the transfer function of the lineariza-
tion of � at x = 0 and byGk(s)=G(s)/(1− kG(s))

the transfer functionof the linearization of�k.
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Dissipativity theory has emerged as a central tool for
the stability analysis of feedback systems[11,15,18].
The system� isdissipativeif there exists a scalar stor-
age functionS(x)�0 and a scalar supply ratew(u, y)
such that the dissipation inequality

S(x(T ))− S(x(0))�
∫ T

0
w(u(t), y(t))dt

is satisfied for allT �0 and along any solutionx(t)
of (2). Passivity is dissipativity with the supply rate
w(u, y)= uy. Strict (output) passivity is dissipativity
with the supply ratew(u, y)=uy−d(y), with d(y)>0
for y 	= 0. Throughout the paper, we consider pas-
sive systems with additional properties for the storage
functionS:

(i) (smoothness)S(x) is continuously differentiable
(C1) in Rn and twice continuously differentiable
(C2) in a neighborhood of the origin.

(ii) (Lyapunov) S(x) is positive definite (S(0) = 0,
S(x)>0 for x 	= 0), and radially unbounded, i.e.
S(x) → ∞ as|x| → ∞.

(iii) (locally quadratic) The Hessian evaluated at
zero �2S/�x2(0) is a positive definite matrix
P = PT >0.

To emphasize the extra requirements on the storage
function, we will say that� is strongly passivewhen-
ever� is passive with a storage function that satisfies
the three additional assumptions (i), (ii) and (iii). As
is well known, these assumptions are always satisfied
in the (observable) linear case because linear passive
systems have quadratic storage functions[18]. In gen-
eral, these assumptions are convenient to link the pas-
sivity of � to the stability properties of the zero input
system sinceSserves as a (global) Lyapunov function.
The locally quadratic assumption further ensures that
the linearization of� is passive, with the quadratic
approximation ofS as a storage function. It also im-
plies that the system has a relative degree one atx=0,
i.e. (�h/�x)(0)g(0)>0, and that it is weakly mini-
mum phase, i.e. its zero dynamics are Lyapunov sta-
ble [2]. For linear detectable systems, passivity of� is
equivalent to positive realness of the transfer function
G(s), i.e.

∀s ∈ C+ : G(s) ∈ C+.

The feedback system (2), (3) isabsolutely stablewhen
the equilibriumx=0 is globally asymptotically stable
for any nonlinearity� in the sector(0,+∞). Because
the systemy = �(u) is strictly passive, a well-known
sufficient condition for absolute stability is that�k is
strongly passive and zero-state detectable. The storage
functionS(x) then satisfies the dissipation inequality

Ṡ� − y�(y).

UsingSas a Lyapunov function, global asymptotic sta-
bility of the equilibriumx = 0 follows from LaSalle’s
invariance principle (see e.g.[11]).
Conditions for absolute stability are relaxed with

the use of multipliers (see[9] for a recent and general
treatment of multipliers). For the results of the present
paper, the main observation is that whenH1(s) and
H2(s) are two rational transfer functions with both
poles and zeros in the left half plane, then the feedback
interconnection of�k and� in Fig. 1 is equivalent to
the feedback interconnection of�̃k = H1�kH

−1
2 and

�̃=H2�H
−1
1 . If H1 andH2 are such that̃� is strictly

passive, then passivity of̃�k becomes sufficient for
absolute stability, yielding relaxed conditions for the
stability of the feedback system.
For the static nonlinearity�, the simplest example

of multiplier is the Popov multiplier

M(s)=H1(s)= 1+ �s, �>0.

Requiring passivity of the system(1+ �s)�k for ab-
solute stability of the feedback system (2) and (3) is
Popov criterion[6]. For monotonestatic nonlineari-
ties, a broad class of multipliers was introduced by
Zames and Falb[20] in the form

M(j�)= 1− Z(j�)= 1−
∫ +∞

−∞
z(t)e−j�t dt,∫ ∞

−∞
|z(t)|dt <1. (4)

The additional assumptionz(t)�0 is also needed un-
less�(·) is odd. Zames and Falb[20] showed that
multipliers of the form (4), which are not necessarily
causal, can always be factored in the form

M(s)=H1(s)H2(−s)
with H1, H2, and their inverses being causal and sta-
ble and with �̃ = H2�H

−1
1 being strictly passive.
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As a consequence, strong passivity of�̃k is sufficient
for absolute stability of the feedback system. Note
that when�k is a linear system, passivity of̃�k is
equivalent to positive realness of the transfer function
Gk(s)M(s).
For later reference, we summarize the following suf-

ficient conditions for absolute stability of the feedback
system inFig. 2.

Theorem 1. Consider the system shown inFig. 2and
characterized by(2), (3).Assume that� and its lin-
earization are zero-state detectable and that all solu-
tions of the feedback system are bounded. Then each of
the following conditions is sufficient for global asymp-
totic stability of the equilibriumx = 0.

• � in the sector(0,∞) and there exists�>0 such
that (1+ �s)�k is strongly passive;

• � monotone in the sector(0,∞) and there exists
M(s)=H1(s)H2(−s) in the form(4), z(t)�0,such
that �̃k =H1�kH

−1
2 is strongly passive;

• � odd, monotone in the sector(0,∞) and there
existsM(s) = H1(s)H2(−s) in the form (4) such
that �̃k =H1�kH

−1
2 is strongly passive.

Proof. Let x be the state of̃�kx and S̃(x) be aC1

positive-definite storage for̃�kx . For all T �0, it sat-
isfies the dissipation inequality

S̃(x(T ))− S̃(x(0))�
∫ T

0
ũ(t)ỹ(t)dt, (5)

with ỹ =H1y andũ the output of−�̃ is of the form

(−�̃)

{
ẇ1 = A1w1 + B1ỹ, y = C1w1 +D1ỹ,

ẇ2 = A2w2 ũ= −C2w2 −D2�(y),
+B2�(y),

(6)

with (Ai, Bi, Ci,Di), i = 1,2, minimal realizations
of the (stable) filtersH−1

1 andH2, respectively. For a

given ỹ(t), t�0, let−�̃(ỹ(t)) be the (unique) output
ũ(t) of (6) for the initial conditionw = (w1, w2) =
(0,0). Strict passivity of the operator̃� is established
in [20]. It implies∫ T

0
ỹ(t)�̃(ỹ(t))dt >0,

for all T >0, which in turn implies that the integral
monotonically increases as a function ofT.

For an arbitrary initial conditionw(0), the differ-
ence ũ(t) + �̃(ỹ(t)) is exponentially decaying and,
becausẽy(t) is bounded for allt�0,∫ ∞

0
(ũ(t)+ �̃(ỹ(t)))ỹ(t)dt�C(w(0)),

where the constantC continuously depends on the
initial condition and satisfiesC(0)=0. The dissipation
inequality (5) yields

∀T �0 :
∫ T

0
ỹ(t)�̃(ỹ(t))dt < S̃(x(0))+ C(w(0)).

Because the integral in the left-hand side increases as
a function ofT, the finite upper bound in the right-
hand side forces asymptotic convergence ofỹ(t) to
zero ast → ∞. Convergence of the state follows
from the zero-state detectability of�̃k. Finally, Lya-
punov stability of the origin follows from the contin-
uous dependence ofS̃(x(0))+C(w(0)) on the initial
condition and from the detectability of the linearized
system. �

The statements of the results in the paper areglobal
in the state-space. To this end, we introduce an ex-
tra property for the feedback system inFig. 2. The
feedback interconnection of� and�k(·) is calledul-
timately bounded1 if all solutions enter in finite time
a compact set� = �(k).
The results of the paper state ultimate boundedness

as an extra assumption to strong passivity and zero-
state detectability of�. Following the argument in
[1], we observe that this extra assumption is always
satisfied when� is linear. This is because the stiffening
nonlinearity�k(·) always admits the decomposition

�k(y)= �(y)+ �k(y)

with �(y) strictly passive and�k(y) uniformly
bounded by a constantC = C(k). If � is passive,
the feedback interconnection of� and�k(·) is thus
equivalent to the feedback interconnection of� with
�(·), which is strictly passive, forced by the bounded
input �k(y). Ultimate boundedness is thus implied by

1 In the literature, this property is often calleddissipativity,
which is not to be confused with the dissipativity notion in the
present paper.
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input-to-state stability of the strictly passive intercon-
nection of� and�(·), whereas strict passivity only
implies a finiteL2 gain when� is nonlinear.

3. Bifurcations in absolutely stable feedback
systems

In this section, we analyze the stability properties
of the feedback system inFig. 2 as the parameterk
increases.We assume that� is strongly passive, which
implies that the feedback loop is absolutely stable for
k = 0. As k increases, a root locus argument shows
that the feedback system must lose stability at some
critical valuek∗. (As the transfer function of a passive
system,G(s) has a relative degree equal to one and
one branch (at least) of the root locus must enter the
right half plane). The following result characterizes the
possible bifurcations under a passivity assumption for
�k∗ . Throughout the paper, the notationk�k∗ is used
to denote a value of the parameternearthe bifurcation,
i.e. k ∈ (k∗, k̄] for somek̄ > k.

Theorem 2. Consider the system shown inFig. 2 and
characterized by(2), (3). Assume that� is strongly
passive, that both � and its linearization are de-
tectable, and that the feedback interconnection of�
and �k(·) is ultimately bounded. Letk∗ �0 be the
minimum value for which the transfer functionGk(s)
has a pole on the imaginary axis.
If Gk∗(s) has a unique pole on the imaginary axis

and if �k∗ is strongly passive, then the bifurcation
is a supercritical pitchfork bifurcation: for k�k∗, the
system is globally bistable, that is, the equilibriumx=
0 is a saddle and its stable manifoldEs(0) separates
the state space in two open sets, each of which is the
basin of attraction of a stable equilibrium.
If Gk∗(s) has a unique pair of conjugated poles on

the imaginary axis and if�k∗ is strongly passive, then
the bifurcation is a supercritical Hopf bifurcation: for
k�k∗, the system has a unique limit cycle which is
globally asymptotically stable inRn\Es(0).

Proof. The proof is divided into a local argument and
a global argument. Both arguments rely on the dissi-
pation inequality

Ṡ� − y�(y) (7)

at the bifurcation point, whereS denotes a storage
function for�k∗ with the additional properties (i), (ii)
and (iii). The local argument will show the existence
of a supercritical Hopf (respectively, pitchfork) bifur-
cation at	 = k − k∗ = 0. This implies the existence
of a constant̄	1>0 and a neighborhoodU of x = 0
such that for each	 ∈ (0, 	̄1], all solutions with initial
condition inU either converge to the unstable equilib-
rium x = 0 or to a unique stable limit cycle of radius
O(

√
	) (respectively, one of two stable equilibria lo-

cated at a distanceO(
√

	) of the origin). The global
argument will show that there exists a constant	̄2>0,
	̄2� 	̄1, such that for each	 ∈ (0, 	̄2], all solutions en-
ter the setU in finite time (which means that the local
argument eventually applies to each solution).
We first prove the global argument. Ultimate bound-

edness of the feedback system implies that for each
	 ∈ (0, 	̄3], all solutions enter in finite time an invari-
ant compact set�=�(	). Furthermore, the robustness
of global asymptotic stability at	 = 0 implies practi-
cal semiglobal stability of the solutionx = 0, i.e. the
existence of̄	2� 	̄3 is such that for each	 ∈ (0, 	̄2],
all solutions with initial condition in� enter the set
U in finite time.
Next we turn to the local argument. At the bifur-

cation, i.e. fork = k∗, the system possesses a center
manifold. If Gk∗(s) has a unique pole on the imagi-
nary axis, the center manifold is one-dimensional. In
normal form, the center manifold dynamics write[16]


̇ = a3

3 + O(|
|4), 
 ∈ R. (8)

Up to multiplication of the variable
 by a positive
constant scaling factor, the restriction ofSon the cen-
ter manifold isS = 1

2

2 + O(|
|3) and it satisfies the

dissipation inequality

Ṡ = a3

4 + O(|
|5)� − �y4 + O(|
|5).

Detectability of the linearized system implies observ-
ability of the linearized center manifold dynamics. We
conclude thata3<0, which implies that the bifurca-
tion is a supercritical pitchfork, that is, for small	>0,
there exist one unstable equilibrium atx = 0 and two
asymptotically stable equilibria.
If Gk∗(s) has two conjugated poles ats = ±j�, the

center manifold is two-dimensional. The normal form
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of the center manifold dynamics is[16]


̇ = Ac
 + |
|2
(
a3
1 − b3
2
b3
1 + a3
2

)
+ O(|
|4),

Ac =
(

0 �
−� 0

)
, (9)

which, in polar coordinates, yields

�̇ = a3�3 + O(�4),
�̇ = � + O(�2). (10)

The restriction ofSon the center manifold is a locally
quadratic Lyapunov functionS=
T Q
+O(|
|3) and
it satisfies

Ṡ = 
T (QAc + ATc Q)
 + O(|
|3)
� − �y4 + O(|y|5). (11)

Up to a scaling factor, the only positive definite so-
lution of QAc + ATc Q�0 isQ = 1

2I , which implies
S = 1

2�
2 + O(�3). For initial conditions in the center

manifold, the dissipation inequality (11) thus satisfies

Ṡ = a3�4 + O(�5)� − �y4 + O(|y|5), (12)

which, from the observability of the linearized center
manifold dynamics, forcesa3<0. We conclude to a
supercritical Hopf bifurcation, that is, for small	>0,
all solutions inU either converge to the unstable equi-
librium x=0 or to a unique stable limit cycle of radius
O(

√
	). �

The assumption that�k∗ is strongly passive in The-
orem 2 is rather restrictive. It requires that�k loses
stability and passivity for the same value of the param-
eterk. The assumption can be relaxed with the help of
multipliers.

Theorem 3. The statements of Theorem2 still hold if
the strong passivity assumption on�k∗ is replaced by
one of the following conditions:

• � in the sector(0,∞) and there exists�>0 such
that (1+ �s)�k∗ is strongly passive;

• � monotone in the sector(0,∞) and there exists
M(s)=H1(s)H2(−s) in the form(4), z(t)�0,such
that �̃k∗ =H1�k∗H−1

2 is strongly passive;
• � odd, monotone in the sector(0,∞) and there
existsM(s) = H1(s)H2(−s) in the form (4) such
that �̃k∗ =H1�k∗H−1

2 is strongly passive.

Proof. The global argument of the proof of Theorem
2 is unchanged because it relies on absolute stability of
the system when	 = 0. Conditions of Theorem 3 still
guarantee absolute stability when	 = 0 (see Section
2). For the local argument, we consider, as in the proof
of Theorem 1, aC1 and locally quadratic storagẽS
for �̃k∗ . It satisfies the dissipation inequality

˙̃
S� ũỹ (13)

with ỹ = H1y and ũ the output of (6). BecauseA1
andA2 are Hurwitz, the filters (6) do not change the
dimension of the center manifold. In normal form, the
center manifold dynamics write


̇ = Ac
 + O(|
|3) (14)

with 
 ∈ R andAc = 0 whenGk∗(s) has a unique
pole ats = 0, and with (14) repeated from (9) when
Gk∗(s) has two conjugated poles ats = ±j�.
In order to analyze the dissipation inequality (13)

on the center manifold, we approximate the expression
of ũ and ỹ as functions of
 up to suitable order. We
noteũ= ũ(3)(
)+O(|
|4), w2=h(3)2 (
)+O(|
|4) and
ỹ = c̃
 + O(|
|2), w1 = h1
 + O(|
|2). By definition,
we have

ũ(3)(
)= −C2h(3)2 (
)−D2�(c
)3,
c = C1h1 +D1c̃.

The functionh(3)2 is a solution of the partial differential
equation that expresses the invariance of the center
manifold up to termsO(|
|4)[3]:(

−C2�h(3)2

�

−D23�(c
)2c

)
Ac


= −C2A2h
(3)
2 (
)− (C2B2 +D2)�(c
)3 (15)

with the boundary conditionh(3)2 (0)=0,(�h(3)2 /�
)(0)=
0. Because they satisfy the same PDE[5], the solu-
tion ũ(3)(
(t)) coincides with the unique steady-state

output of the operator(−�̃
(3)
), which is the operator

−(�̃) with � replaced by its cubic approximation, to
the (periodic) input̃y(1) = c̃eAct
(0).
When
 ∈ R, the constant input̃y(1)= c̃
 gives rise

to the constant output̃u(3)(
)=

3, with c̃
=−�<0

by strict passivity of the operator̃�
(3)
. The dissipation
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Fig. 3. Forcing the Hopf bifurcation with an integrator in the
feedback loop andH passive. The caseH(s) = 1/s corresponds
to Lienard systems.

inequality thus becomes

˙̃
S� ũ(3)(
)ỹ(1)(
)+ O(|
|5)= −�
4 + O(|
|5),
which forces the existence of a supercritical pitchfork
bifurcation, as in the proof of Theorem 2.
When 
 ∈ R2, the periodic inputỹ(1)(
(t)) =

c̃eAct
(0) gives rise to the periodic outputũ(3)(
(t)).
Strict passivity and homogeneity of the operator

(�̃
(3)
) implies∫ T

0
ũ(3)(
(t))ỹ(1)(
(t))dt <−�|
(0)|4+O(|
(0)|5),

T = 2�
�
.

Using the same argument as in the proof of Theorem
2, integration of (13) over one period yields for initial
conditions in the center manifold,

S̃(x(T ))− S̃(x(0))= a3

∫ T

0
�4(t)dt + O(�5(0))

� − ��4(0)+ O(�5(0)). (16)

This forcesa3<0, which proves the existence of
a supercritical Hopf bifurcation. This concludes the
proof. �

4. Hopf bifurcation and global oscillations

The simplest illustration of the Hopf bifurcation
mechanism described in Theorem 2 is provided by the
Lienard system

d2x

dt2
+ x + d

dt
�k(x)= 0, x ∈ R. (17)

It admits the feedback representation shown inFig. 3
whenH(s) = 1/s. It is well known that the Lienard

system (17) has a globally asymptotically stable equi-
librium x = 0 for k�0 and has a globally asymptoti-
cally stable limit cycle fork >0. The result fork�0
follows from Theorem 2 because� is the feedback
interconnection of two passive systems and because
its linearization has two poles on the imaginary axis.
Theorem 2 extends the result to an arbitrary trans-
fer functionH(s) provided that the transfer function
Gk∗(s) is passive at the critical valuek∗ at which the
equilibriumx = 0 loses stability.
The Hopf bifurcation in the feedback system ofFig.

3 has the following energy interpretation: passivity
of Hk∗ allows for a lossless exchange of energy be-
tween two storage elements. The static nonlinearity
�k “regulates” the dissipation in the feedback system,
restoring energy when it is too low and dissipating en-
ergy when it is too high. In the celebrated Van der Pol
oscillator, the two storage elements are a capacitor and
an inductor, whereas the dissipation is regulated by
means of (for instance) a tunnel-diode circuit modeled
as a static negative (i.e. active) resistance. Theorem 2
extends this feedback mechanism for oscillations to
higher-dimensional systems. It can be noted that the
local argument in the proof of Theorem 2 essentially
shows that the (arbitrary) passive systemH reduces to
an integrator on the center-unstablemanifold. It should
also be noted that, starting from an arbitrary passive
systemH, putting an integrator in the feedback loop
as inFig. 3 forces the Hopf bifurcation scenario be-
cause of the resulting presence of a zero ats = 0 in
the transfer functionGk = sH(s)/(s+ (1− k)sH(s)).

5. Pitchfork bifurcation, bistability, and
relaxation oscillations

The pitchfork bifurcation scenario of Theorem 2 is
the basis for a second global oscillation mechanism
best exemplified with the Fitzhugh–Nagumo model2

ẏ = ky − y3

3
− R,

�Ṙ = −R + y, (18)

2 The particular equation (18) is obtained from the
Fitzhugh–Nagumo model in[10] with the change of coordinates
y=v−((a+1)/3),R=w+(b/�)((a+1)/3) and a well-chosen value
of the input currentIa . The value ofk is thenk= 1

3(a
2−a+1)>0.
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Fig. 4. Converting the pitchfork scenario into a relaxation oscillator
with a slow adaptation mechanism (�?0). The caseG(s) = 1/s
corresponds to the Fitzhugh–Nagumo oscillator.

(a)

(b)

Fig. 5. The hysteresis associated to a bistable system (a) with-
out adaptation (bistable system); (b) with adaptation (relaxation
oscillation).

which admits the block-diagram representation shown
in Fig. 4with G(s)=1/s and�k(y)=y3/3− ky. For
k >0, the inner-loop

ẏ = ky − y3/3− R (19)

is a globally bistable system over the range of param-
etersR ∈ (−2

3k
√
k, 23k

√
k). Outside of this range of

parameters, the inner-loop is absolutely stable and has
a unique globally asymptotically stable equilibrium.
TreatingR as a parameter, one thus obtains the bifur-
cation diagram shown inFig. 5. This bifurcation dia-
gram exhibits the typical hysteresis loop associated to
bistable systems.
The outer-loop inFig. 4 or equivalently theadap-

tation equation

�Ṙ = −R + y (20)

converts the hysteresis loop into a limit cycle in the
phase plane(y, R). The limit cycle is guaranteed to be
globally asymptotically stable provided that the time
constant� is large enough, i.e. the adaptation is slow
enough to let the “fast” dynamics converge to quasi
steady state.
The global bistability of the inner loop com-

bined with theslow adaptationof the outer loop
thus provides a feedback mechanism for a global
oscillation. The resulting oscillation is arelaxation
oscillation characterized by a rapid switch between
two quasi-steady states. Such oscillation mecha-
nisms are frequent in biology (see, e.g.[10]). In
the Fitzhugh–Nagumo model, a simplification of
Hodgkin–Huxley model for voltage oscillations in
the neuron cell membrane, the switch is between the
(high) equilibrium potential associated to potassium
ions and the (low) equilibrium potential associated to
sodium ions. The “recovery” variableR models the
voltage-dependent opening (closing) of the sodium
ion channels and the corresponding closing (opening)
of the potassium ion channels.
Theorem 2 provides a higher-dimensional gen-

eralization of the global bistability in the inner
loop of Fig. 4. The following result transforms
this global bistability result into a mechanism for
global oscillations.

Theorem 4. Under the assumptions of Theorem2,
suppose that the feedback interconnection of� and
�k undergoes a supercritical pitchfork bifurcation at
k = k∗. Then there exists a constant	̄>0 such that
∀k ∈ (k∗, k∗ + 	̄) and �?(k − k∗)−1, the feedback
system shown inFig. 4 has a globally asymptotically
stable limit cycle inR × Rn\Es(0).

Proof. The proof is similar to the proof of Theorem
2. Let 	 = k − k∗. We augment the one-dimensional
center-unstable manifold of the original system (with-
out adaptation) with the adaptation equation to obtain

ẏ = 	y − �y3 − R + O(|(y, R)|4),
Ṙ = �(−R + y),

(	̇ = 0, �̇ = 0), (21)

where treating� = �−1 as a state variable makes the
adaptation equation part of the center-unstable mani-
fold locally defined around(x, R, 	, �) = (0,0,0,0).
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The equilibrium(y, R) = (0,0) of (21) is stable for
	< �>0 and unstable for	> �>0. Standard argu-
ments, see[6, pp. 445–448], prove that there exist a
constant̄	>0 and a neighborhoodU of the equilib-
rium (y, R) = (0,0) of (21) such that for any fixed
0< �< 	 ∈ (0, 	̄], all solutions with initial condition
in U\{0} converge to a unique limit cycle. Because of
the time-scale separation, this limit cycle corresponds
to a relaxation oscillation.
The global part of the proof is as in Theorem 2:

for �>0 and	 = 0, the equilibrium(x, R)= (0,0) is
globally asymptotically stable because the augmented
storageV =�S+ 1

2R
2 satisfies the dissipation inequal-

ity V̇ � − �y�(y). �

6. An example

We illustrate the main results of the paper with the
second-order system

�̈ + �2
n� + 2��n�̇ = u, �>0, �n >0. (22)

The choice of the outputy = ��̇ + �2
n� results in the

transfer function

H(s)= �s + �2
n

s2 + 2��ns + �2
n

, (23)

which is passive if

2�� �n

�
>0.

In this section we assume that�(·) is odd and mono-
tone so that we can use the relaxed conditions of The-
orem 3 in order to prove absolute stability at the bi-
furcation point.
As a first illustration, we force the Hopf bifurcation

scenario by considering the feedback system shown in
Fig. 3.
Rewriting the system in the Lure form ofFig. 2

yields the transfer function

Gk(s)

= sH(s)

s + (1− ks)H(s)

= s(�s + �2
n)

s3 + (2��n − k�)s2 + (� + �2
n(1− k))s + �2

n

.

A bifurcation arises at

k∗ =
(
�(� + �2

n)+ 2��3
n−

√
�4+2�2

n�3+�3
n(�n−4�)�2+4�4

n�(1−��n)+4�2�6
n

)/

(2�2
n�),

with

Gk∗(s)= sH(s)

s + (1− k∗s)H(s)
= s(�s + �2

n)

(s + �)(s2 + �2)
(24)

and

� = 2��n − k∗�, � =
√

� + �2
n(1− k∗).

Theorem 2 applies only if the transfer function in (24)
is passive, which implies�=�2

n/�. Theorem 3 extends
the result to the range of parameters 0< �<2�2

n/�
because the (causal) Zames–Falb multiplier

M(s)= 1− Z(s), Z(s)= (�2
n/�)− �

s + (�2
n/�)

,

results in the passive transfer function

Gk∗(s)M(s)= s

s2 + �2 .

As a second illustration, we do not enforce the Hopf
bifurcation with an additional integrator and we an-
alyze bifurcations in the feedback interconnection of
H(s) with �k, determined by the transfer function

Hk(s)= H(s)

1− kH(s)

= �s + �2
n

s2 + (2��n − k�)s + (1− k)�2
n

.

The bifurcation in the feedback loop differs according
to the relative position of the poles and zero ofH(s).
If 2��n < �, then the bifurcation arises atk∗ = 1 and

Hk∗(s)= �s + �2
n

s(s + 2��n − �)
.

The (Popov) multiplierM(s) = 1 + (2��n − �)−1s

makes the transfer functionHk∗(s)M(s) passive. As a
consequence, the feedback interconnection ofHk∗(s)
with � is absolutely stable fork�k∗ and globally
bistable fork�k∗.
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Finally, if 2��n < �, then a Hopf bifurcation arises
at k∗ = (2��n/�) and

Hk∗(s)= �s + �2
n

s2 + (1− 2��n/�)�2
n

.

No valid multiplier could be found to prove absolute
stability of the feedback loop. The results of the paper
do not apply in this situation and the stability prop-
erties of the limit cycle may depend on the particular
nonlinearity�(·). Note that the limit case 2��n = �
leads to the transfer function

Hk(s)= �s + �2
n

s2 + �(1− k)s + (1− k)�2
n

for which a bifurcation occurs atk∗ = 1. The corre-
sponding critical transfer function is thenHk∗(s) =
(�s + �2

n)/s
2 which is a classical counter-example to

Aizerman conjecture[17] and therefore not absolutely
stable.

7. Conclusions

In this paper, we have studied conditions for global
oscillations in the feedback interconnection of a
passive system with a static nonlinearity that has a
parametrized negative slope at the origin. The pa-
per has presented almost global stability results for
limit cycles in the vicinity of a bifurcation value of
the parameter. The limit cycle either results from a
Hopf bifurcation—a situation exemplified by the Van
der Pol oscillator—or from a pitchfork bifurcation
which yields a bistable system then turned into a
relaxation oscillation by slow adaptation—a situa-
tion exemplified with the Fitzugh–Nagumo oscillator.
The external characterization of our—possibly high-
dimensional—oscillators by a dissipation inequality
has been shown to play a role both in the supercritical
character of the bifurcation and in the preservation of
global convergence properties beyond the bifurcation
value. We expect this external characterization to play
an important role in the study of oscillations in inter-
connected systems, a topic which will be developed
in the extended version[13] of the present paper.
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