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Abstract

The paper presents two mechanisms for global oscillations in feedback systems, based on bifurcations in absolutely stable
systems. The external characterization of the oscillators provides the basis for a (energy-based) dissipativity theory for
oscillators, thereby opening new possibilities for rigorous stability analysis of high-dimensional systems and interconnected
oscillators.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction null equilibrium of the feedback system loses stability.
Sufficient conditions are provided for (almost) global
This paper describes two feedback mechanisms for convergence of the solutions to a limit cycle. The limit
global oscillations in Lure systems that admit the block cycle either results from a supercritical Hopf bifurca-
diagram representation Bfg. 1, which is the feedback  tion or from a supercritical pitchfork bifurcation that
interconnection of a dynamical passive system with a yields a globally bistable system then turned into a
static sector nonlinearity. A parameter:0 controls relaxation oscillation by slow adaptation. The first
the negative slope at the origin of the static nonlinear- scenario provides a high-dimensional generalization
ity ¢(y) = —ky + ¢(y) and the results are provided of Van der Pol oscillators. Its energy interpretation
in the vicinity of a bifurcation valug* for which the fits the qualitative description of many physical oscil-
- lations, described as the lossless exchange of energy
* This paper presents research partially supported by the Belgian P€tween two storage elements, regulated by a locally
Programme on Inter-university Poles of Attraction, initiated by the active but globally dissipative element. The second
Belgian State, Prime Minister's Office for Science, Technology scenario provides a high-dimensional generalization

and Culture. of Fitzugh—Nagumo oscillators. Its energy interpreta-
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Central to the results of this paper is the character-
ization of our oscillators by the dissipation inequality

S<(k —k*)y? — yp(y) + uy. 1)

Beyond the stability results of this paper, the dissipa-
tion inequality (1) provides an external characteriza-
tion of the oscillator inFig. 1 which opens the way to

a rigorous stability analysis of limit cycles in possi-
bly high-dimensional systems and interconnections of
such systems. The important topic of interconnections
will be treated in an extended version of the present
paper[13].

Dissipativity theory[18] has emerged as a central
tool for nonlinear stability theory of equilibria. To the
best of the authors knowledge, a dissipativity theory
for oscillators is new and should prove useful for in-
stance in the study of synchronization or phase-locking
phenomena in coupled oscillators. Many earlier results
in the literature have nevertheless exploited the struc-
ture of Lure systems in the study of nonlinear oscil-
lations. Yakubovicij14,19] provided sufficient condi-
tions for the existence of sustained oscillations (not
necessarily corresponding to a periodic orbit) and this
theory has been followed by many developments sum-
marized in[7]. Mees[8] provided a graphical crite-
rion for Hopf bifurcations in Lure systems based on
the Nyquist curve of the (linear) dynamical element
in the feedback loop. Recently, the authord4ifde-
veloped novel numerical tools for the global analysis
of limit cycles in piecewise linear systems. The use
of this method in our context (restricting to a linear
element in the forward path and to a piecewise lin-
ear static element) to extend our stability results in the
parameter space is discussedig].

The paper is structured as follows. Section 2 sum-
marizes important results from absolute stability the-
ory and dissipativity theory. Section 3 contains the
main results of the paper. Section 4 discusses the Hopf
scenario in more details while Section 5 elaborates on
the pitchfork scenario as the basis for relaxation oscil-
lations. Section 6 provides an illustrative example of
our results. Finally, conclusions are given in Section 7.

2. Preliminaries

We start by recalling standard definitions about pas-
sivity and absolute stability. We consider the Lure
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passive

Fig. 1. Block diagram of the Lure SISO nonlinear system studied
in this paper.

Fig. 2. Equivalent representations of the Lure SISO nonlinear
system studied in this paper.

system shown ifrig. 2 representing the feedback in-
terconnection of the nonlinear systexnwith a static
nonlinearity¢, . The (SISO) system is described by
the state-space model

xeR" veR,
y € R,

= fx)+gx)v,
y=h(x),

where the vector fieldsandg and the scalar function
h are smooth. We assume that the origig= 0 is an
equilibrium point, i.e.f(0) =0 and thaig(0) = 0 and
h(0)=0. We also assume zero-state detectability of the
pair (f, h), i.e. that every solution(z) of x= f (x) that
verifies y(r) = h(x(r)) = 0 asymptotically converges
to the zero solution = 0 ast — oo.

The static nonlinearityp, is described as

G (y) = —ky + ¢(y), 3)

where¢(-) is a smooth sector nonlinearity in the sector
(0, o), which satisfiesp’(0) = ¢”(0) =0, ¢"(0) :=
k>0 and limg|— o (¢(s)/s) =400 (“stiffening” non-
linearity). We denote by the (positive) feedback
interconnection ofX” with the feedback gaitk. The
feedback system is equally described as the feedback
interconnection o, and the nonlinearityp(-). We
denote byG (s) the transfer function of the lineariza-
tion of X atx =0 and byG(s) = G(s) /(1 — kG (s))

the transfer functionof the linearization 2f,.

) { @)
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Dissipativity theory has emerged as a central tool for The feedback system (2), (3)absolutely stablevhen
the stability analysis of feedback systefti4,15,18] the equilibriumx =0 is globally asymptotically stable
The systent is dissipativef there exists a scalar stor-  for any nonlinearityp in the sectox0, +o0). Because
age functionS(x) >0 and a scalar supply rate(u, y) the systemy = ¢ (u) is strictly passive, a well-known
such that the dissipation inequality sufficient condition for absolute stability is thaj, is
strongly passive and zero-state detectable. The storage
function S(x) then satisfies the dissipation inequality

S< —yo(y).

is satisfied for all7 >0 and along any solution(#) UsingSas a Lyapunov function, global asymptotic sta-
of (2). Passivity is dissipativity with the supply rate pjjity of the equilibriumx = 0 follows from LaSalle’s
w(u, y) = uy. Strict (output) passivity is dissipativity  jqvariance principle (see e.fL1]).
with the supply ratev (u, y)=uy—d(y), withd(y) >0 Conditions for absolute stability are relaxed with
for y # 0. Throughout the paper, we consider pas- the yse of multipliers (sef®] for a recent and general
sive systems with additional properties for the storage treatment of multipliers). For the results of the present
functionS paper, the main observation is that whan(s) and
H>(s) are two rational transfer functions with both
(i) (smoothness}(x) is continuously differentiable  poles and zeros in the left half plane, then the feedback
(C1)in R" and twice continuously differentiable  interconnection of and¢ in Fig. 1is equivalent to
(C?) in a neighborhood of the origin. the feedback interconnection &% = H1X; H, * and

(i) (Lyapunov) S(x) is positive definite §(0) = 0, < -1 Z :
S(x) > 0forx # 0), and radially unbounded, i.e. o= HZQSHl 1 H gr_1dH2~ are such thap IS. s_trlctly
passive, then passivity of;, becomes sufficient for

S(x) — oo as|x| — oo. o o "
(iii) (locally quadratic) The Hessian evaluated at absolute stability, yielding relaxed conditions for the
stability of the feedback system.

zero 925/0x2(0) is a positive definite matrix . . ; :
p—pl=o. For the static nonlinearity, the simplest example

of multiplier is the Popov multiplier

T
S((T)) — S(x(0) < /0 w(u (@), () dr

To emphasize the extra requirements on the storage
function, we will say that” is strongly passivevhen-
ever is passive with a storage function that satisfies Requiring passivity of the systeii + ys)X; for ab-
the three additional assumptions (i), (ii) and (iii). As solute stability of the feedback system (2) and (3) is
is well known, these assumptions are always satisfied Popov criterion[6]. For monotonestatic nonlineari-

in the (observable) linear case because linear passiveties, a broad class of multipliers was introduced by
systems have quadratic storage functifdr@j. In gen- Zames and Falf20] in the form

eral, these assumptions are convenient to link the pas- oo

sivity of 2'to the stability properties of the zero input /() =1 — Z(jw) =1 — / (e g,

system sinc&serves as a (global) Lyapunov function.

The locally quadratic assumption further ensures that [ Adr <1 4
the linearization ofY' is passive, with the quadratic /_OO 20l dr <1. @)

approximation ofS as a storage function. It also im- The additional . ~0is al ded
plies that the system has a relative degree one-20, € additional assumptiaf¢) 20 is also needed un-

i.e. (0h/0x)(0)g(0) >0, and that it is weakly mini- Iess_¢>(_-) is odd. Zames and _FaI[SZO] showed that_
mum phase, i.e. its zero dynamics are Lyapunov sta- multipliers of the form (4), whlch are not necessarily
ble[2]. For linear detectable systems, passivityds causal, can always be factored in the form
zq(u;vailgnt to positive realness of the transfer function M(s) = Hy(s)Ha(—s)

s), l.e.

M(s)=Hi(s)=141ys, y>0.

—0o0

with Hq, Ho, apd their inverses being causal and sta-
Vs € Cy:G(s) € Cy. ble and with ¢ = ngSHl_l being strictly passive.
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As a consequence, strong passivityXgfis sufficient

For an arbitrary initial conditionwv(0), the differ-

for absolute stability of the feedback system. Note enceii(r) + é(y(z)) is exponentially decaying and,

that whenXy is a linear system, passivity ofy is

equivalent to positive realness of the transfer function

Gr(s)M(s).

For later reference, we summarize the following suf-
ficient conditions for absolute stability of the feedback

system inFig. 2

Theorem 1. Consider the system shownHig. 2 and
characterized by2), (3). Assume that and its lin-

becausey(¢) is bounded for alk >0,

fo @(1) + GFONF (1) dr < C(w(0)),

where the constant continuously depends on the
initial condition and satisfie€ (0)=0. The dissipation
inequality (5) yields

T ~ ~
earization are zero-state detectable and that all solu- V7 >0: / Y1) Py (1)) dt < S(x(0)) + C(w(0)).
tions of the feedback system are bounded. Then each of 0

the following conditions is sufficient for global asymp-

totic stability of the equilibriumx = 0.

e ¢ in the sector(0, co) and there exists > 0 such
that (1 + ys) 2y is strongly passive

e ¢ monotone in the sectqi, co) and there exists
M (s)= H1(s)H2(—s) in the form(4), z(r) >0, such
that X, = lekHz‘l is strongly passive

e ¢ odd monotone in the sectai0, co) and there
exists M (s) = H1i(s)H2(—s) in the form(4) such
that >, = Hy 2, Hz_1 is strongly passive

Proof. Let x be the state o+ and $(x) be aC?
positive-definite storage faXy«. For all T >0, it sat-
isfies the dissipation inequality

5 5 T
S(x(T))—S(X(O))</0 u(r)y () dr, ®)

with = Hyy andii the output of—¢ is of the form

y = Ciw1 + D1y,
i =—Cowz — Da¢g(y),

(6)
with (A;, B;, C;, D;), i = 1, 2, minimal realizations
of the (stable) filters,” 1 and H,, respectively. For a
giveny(t), t >0, Iet—&)(&(t)) be the (unique) output
u(t) of (6) for the initial conditionw = (w1, w2) =
(0, 0). Strict passivity of the operataf is established
in [20]. It implies

w2 = Arws

_ (w1=A1wi+ B1y,
ol
+B2¢(y),

T ~
/0 Y1) P(y(1)) dt >0,

for all 7 > 0, which in turn implies that the integral
monotonically increases as a functionTof

Because the integral in the left-hand side increases as
a function of T, the finite upper bound in the right-
hand side forces asymptotic convergencey@f) to

zero ast — oo. Convergence of the state follows
from the zero-state detectability &. Finally, Lya-
punov stability of the origin follows from the contin-
uous dependence 6%x(0)) + C(w(0)) on the initial
condition and from the detectability of the linearized
system. [

The statements of the results in the papergobal
in the state-space. To this end, we introduce an ex-
tra property for the feedback system kig. 2 The
feedback interconnection &f and ¢, (-) is calledul-
timately boundelif all solutions enter in finite time
a compact se@2 = Q(k).

The results of the paper state ultimate boundedness
as an extra assumption to strong passivity and zero-
state detectability of. Following the argument in
[1], we observe that this extra assumption is always
satisfied whetX is linear. This is because the stiffening
nonlinearity ¢, (-) always admits the decomposition

O =) + 5

with (y) strictly passive andy,(y) uniformly
bounded by a constar@ = C(k). If 2 is passive,
the feedback interconnection af and ¢, (-) is thus
equivalent to the feedback interconnection2bfvith

Y (-), which is strictly passive, forced by the bounded
input y, (y). Ultimate boundedness is thus implied by

1in the literature, this property is often calletissipativity
which is not to be confused with the dissipativity notion in the
present paper.
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input-to-state stability of the strictly passive intercon-
nection of X and y(-), whereas strict passivity only
implies a finiteL, gain whenX is nonlinear.

3. Bifurcations in absolutely stable feedback
systems

In this section, we analyze the stability properties
of the feedback system iRig. 2 as the parametet
increases. We assume tiais strongly passive, which
implies that the feedback loop is absolutely stable for
k = 0. As k increases, a root locus argument shows

813

at the bifurcation point, wher& denotes a storage
function for 2+ with the additional properties (i), (ii)
and (iii). The local argument will show the existence
of a supercritical Hopf (respectively, pitchfork) bifur-
cation ate = k — k* = 0. This implies the existence
of a constang; > 0 and a neighborhood of x =0
such that for each € (0, 1], all solutions with initial
condition inU either converge to the unstable equilib-
rium x = 0 or to a unique stable limit cycle of radius
0(/¢) (respectively, one of two stable equilibria lo-
cated at a distancé(./¢) of the origin). The global
argument will show that there exists a consfant 0,

g2 < &1, such that for each € (0, 2], all solutions en-

that the feedback system must lose stability at some ter the set) in finite time (which means that the local

critical valuek*. (As the transfer function of a passive
system,G(s) has a relative degree equal to one and

argument eventually applies to each solution).
We first prove the global argument. Ultimate bound-

one branch (at least) of the root locus must enter the edness of the feedback system implies that for each

right half plane). The following result characterizes the

¢ € (0, 3], all solutions enter in finite time an invari-

possible bifurcations under a passivity assumption for ant compact se®=€(¢). Furthermore, the robustness

Z«. Throughout the paper, the notatibgk* is used
to denote a value of the parametearthe bifurcation,
i.e.k € (k*, k] for somek > k.

Theorem 2. Consider the system showrFig. 2 and
characterized by(2), (3). Assume that is strongly
passive that both 2 and its linearization are de-
tectable and that the feedback interconnection Xf
and ¢, (-) is ultimately bounded. Let*>0 be the
minimum value for which the transfer functic (s)
has a pole on the imaginary axis

If Gi+(s) has a unique pole on the imaginary axis
and if 2y« is strongly passivethen the bifurcation
is a supercritical pitchfork bifurcationfor k>k*, the
system is globally bistabl¢hat is, the equilibriumy =
O is a saddle and its stable manifolg, (0) separates
the state space in two open setach of which is the
basin of attraction of a stable equilibrium

If G+(s) has a unique pair of conjugated poles on
the imaginary axis and i£+ is strongly passivghen
the bifurcation is a supercritical Hopf bifurcatioror
k=>k*, the system has a unique limit cycle which is
globally asymptotically stable if®"\ E, (0).

Proof. The proof is divided into a local argument and
a global argument. Both arguments rely on the dissi-
pation inequality

S< —yp(y) @

of global asymptotic stability at = 0 implies practi-
cal semiglobal stability of the solution= 0, i.e. the
existence ofy <é&3 is such that for each € (0, &3],
all solutions with initial condition inQ enter the set
U in finite time.

Next we turn to the local argument. At the bifur-
cation, i.e. fork = k*, the system possesses a center
manifold. If Gg=(s) has a unique pole on the imagi-
nary axis, the center manifold is one-dimensional. In
normal form, the center manifold dynamics wijiies]
E=a®+ 008", CeRr (8)
Up to multiplication of the variabl€ by a positive
constant scaling factor, the restriction®6n the cen-
ter manifold isS = %62 + 0(|¢%) and it satisfies the
dissipation inequality

§=azé* + 0(1¢1%) < — ky* + 0(€P).

Detectability of the linearized system implies observ-
ability of the linearized center manifold dynamics. We
conclude that:z < 0, which implies that the bifurca-
tion is a supercritical pitchfork, that is, for smab- 0,
there exist one unstable equilibriumxat 0 and two
asymptotically stable equilibria.

If Gi+(s) has two conjugated poles at& +jw, the
center manifold is two-dimensional. The normal form
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of the center manifold dynamics [$6]

;. 2 (a3éy — b3l 4
E=AL+ (¢ <b3£1+a3§2> + O(E),

0 w
which, in polar coordinates, yields
p=azp®+ O(p*),
0=+ 0(p?). (10)

The restriction ofSon the center manifold is a locally
quadratic Lyapunov functiof = ¢7 Q&+ ¢(|¢|3) and
it satisfies

§=ET(QA. + AT Q)¢+ 0(1¢)®)
< —ky* Oy P). (11)

Up to a scaling factor, the only positive definite so-
lution of QA, + AT 0 <0 is Q = 31, which implies
S= %pz + (0(p?). For initial conditions in the center
manifold, the dissipation inequality (11) thus satisfies

S =azp* + 0(p°) < — wy* + Oy, (12)

which, from the observability of the linearized center
manifold dynamics, forceas < 0. We conclude to a
supercritical Hopf bifurcation, that is, for smalb 0,

all solutions inU either converge to the unstable equi-
librium x =0 or to a unique stable limit cycle of radius

0We. O

The assumption thaf;« is strongly passive in The-
orem 2 is rather restrictive. It requires that loses
stability and passivity for the same value of the param-
eterk. The assumption can be relaxed with the help of
multipliers.

Theorem 3. The statements of Theorehstill hold if
the strong passivity assumption ap- is replaced by
one of the following conditions

e ¢ in the sector(0, oco) and there exists > 0 such
that (1 + ys) 2+ is strongly passive

e ¢ monotone in the sectai, co) and there exists
M (s)=H1(s)H2(—s) in the form(4), z(t) >0, such
that X« = H1 X+ H, * is strongly passive

e ¢ odd monotone in the sectai0, co) and there
exists M (s) = H1(s)Hz(—s) in the form(4) such
that X« = H1 X+ Hy L is strongly passive

R. Sepulchre, G.-B. Stan / Systems & Control Letters 54 (2005) 809-818

Proof. The global argument of the proof of Theorem
2 is unchanged because it relies on absolute stability of
the system when= 0. Conditions of Theorem 3 still
guarantee absolute stability wher= 0 (see Section

2). For the local argument, we consider, as in the proof
of Theorem 1, aC! and locally quadratic storagé

for 2. It satisfies the dissipation inequality
S<ay (13)
with y = Hyy andz the output of (6). Becausd;
and A, are Hurwitz, the filters (6) do not change the
dimension of the center manifold. In normal form, the
center manifold dynamics write
E= AL+ 0(EP) (14)
with ¢ € R and A, = 0 whenGy+(s) has a unique
pole ats = 0, and with (14) repeated from (9) when
G+ (s) has two conjugated poles at= +jm.

In order to analyze the dissipation inequality (13)
on the center manifold, we approximate the expression
of &7 andy as functions off up to suitable order. We
noteii =i (&) + O(|E[%), wa=hy) (&) + O(1¢|*) and
§=¢EE+ O0(1¢&1?), w1 = h1é + O(|E]?). By definition,
we have

i@ (&) = —C2hS (&) — Dar(cd)®,
¢ = C1h1 + D1c.

The functionhgs) is a solution of the partial differential
equation that expresses the invariance of the center
manifold up to terms’(|¢|*)[3]:

e
_Cza_é — D23K(C6) c Acé

= —CaAzhy) (&) — (C2Ba + Do)c(cd)®  (15)
with the boundary conditiolmf)(O):O, (ahf)/aé)(O)z
0. Because they satisfy the same P[BE the solu-
tion #® (¢(1)) coincides with the unique steady-state
output of the operato(r—é(s)), which is the operator
—(¢) with ¢ replaced by its cubic approximation, to
the (periodic) inputy® = cele! £(0).

When¢ € R, the constant inpu® = é¢& gives rise
to the constant outpu® (&) = &3, with ¢f=—y <0

by strict passivity of the operatdr(s). The dissipation
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e =

oi(-)

Fig. 3. Forcing the Hopf bifurcation with an integrator in the
feedback loop andH passive. The casél/(s) = 1/s corresponds
to Lienard systems.

inequality thus becomes

S<AD@OFD @) + 0(E3) = =& + 0(EP),

which forces the existence of a supercritical pitchfork
bifurcation, as in the proof of Theorem 2.

When ¢ € R?, the periodic inputy® (é(r)) =
cetel £(0) gives rise to the periodic outpat® (£(1)).
Strict passivity and homogeneity of the operator

(&5@)) implies

T
/0 i &)V (E@) df < —p|EO)*+0(EO) ),

2n
T=—.

(@]
Using the same argument as in the proof of Theorem
2, integration of (13) over one period yields for initial

conditions in the center manifold,

T
S(x(T)) — $(x(0)) = a3 /0 pt) dr + 0(p°(0))

< —7p%0) + 0(p°(0).  (16)

This forcesasz <0, which proves the existence of
a supercritical Hopf bifurcation. This concludes the
proof. [J

4. Hopf bifurcation and global oscillations

The simplest illustration of the Hopf bifurcation
mechanism described in Theorem 2 is provided by the
Lienard system
d?x
dr2
It admits the feedback representation showirig 3
when H(s) = 1/s. It is well known that the Lienard

+x+ %(]ﬁk(x) =0, xelR a7)

815

system (17) has a globally asymptotically stable equi-
librium x = 0 for £ <0 and has a globally asymptoti-
cally stable limit cycle fork > 0. The result fork=>0
follows from Theorem 2 becausk is the feedback
interconnection of two passive systems and because
its linearization has two poles on the imaginary axis.
Theorem 2 extends the result to an arbitrary trans-
fer function H (s) provided that the transfer function
G+ (s) is passive at the critical valug' at which the
equilibrium x = O loses stability.

The Hopf bifurcation in the feedback systenrag.
3 has the following energy interpretation: passivity
of Hy« allows for a lossless exchange of energy be-
tween two storage elements. The static nonlinearity
¢, “regulates” the dissipation in the feedback system,
restoring energy when it is too low and dissipating en-
ergy when it is too high. In the celebrated Van der Pol
oscillator, the two storage elements are a capacitor and
an inductor, whereas the dissipation is regulated by
means of (for instance) a tunnel-diode circuit modeled
as a static negative (i.e. active) resistance. Theorem 2
extends this feedback mechanism for oscillations to
higher-dimensional systems. It can be noted that the
local argument in the proof of Theorem 2 essentially
shows that the (arbitrary) passive systdmeduces to
an integrator on the center-unstable manifold. It should
also be noted that, starting from an arbitrary passive
systemH, putting an integrator in the feedback loop
as inFig. 3 forces the Hopf bifurcation scenario be-
cause of the resulting presence of a zere at0 in
the transfer functioG, =sH(s) /(s + (L —k)s H(s)).

5. Pitchfork bifurcation, bistability, and
relaxation oscillations

The pitchfork bifurcation scenario of Theorem 2 is
the basis for a second global oscillation mechanism
best exemplified with the Fitzhugh—-Nagumo mddel

3
, y
=ky — — — R,
y' y 3
TR=—R+Yy, (18)

2The particular equation (18) is obtained from the
Fitzhugh—Nagumo model ifil0] with the change of coordinates
y=v—((a+1)/3), R=w+(b/y)((a+1)/3) and a well-chosen value
of the input current,,. The value ok is thenk:%(az—a—H) >0.
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Y

]
=]

oi(-)
il 1
T5+1

Fig. 4. Converting the pitchfork scenario into a relaxation oscillator
with a slow adaptation mechanism3 0). The caseG(s) = 1/s
corresponds to the Fitzhugh—Nagumo oscillator.

stable

unstable

@

Unique, unstable
equilibrium point

\M\/

Fig. 5. The hysteresis associated to a bistable system (a) with-
out adaptation (bistable system); (b) with adaptation (relaxation
oscillation).

elaxation Oscillation

(b)

which admits the block-diagram representation shown
in Fig. 4with G(s) =1/s and¢, (y) = y3/3—ky. For

k > 0, the inner-loop
y=ky—y%/3-R (19)

is a globally bistable system over the range of param-
etersR e (—3kvk, 3kv/k). Outside of this range of

parameters, the inner-loop is absolutely stable and has

a unique globally asymptotically stable equilibrium.
TreatingR as a parameter, one thus obtains the bifur-
cation diagram shown ifig. 5. This bifurcation dia-

gram exhibits the typical hysteresis loop associated to

bistable systems.
The outer-loop inFig. 4 or equivalently theadap-
tation equation

TR=—R+y (20)

R. Sepulchre, G.-B. Stan / Systems & Control Letters 54 (2005) 809-818

converts the hysteresis loop into a limit cycle in the
phase planéy, R). The limit cycle is guaranteed to be
globally asymptotically stable provided that the time
constantr is large enough, i.e. the adaptation is slow
enough to let the “fast” dynamics converge to quasi
steady state.

The global bistability of the inner loop com-
bined with the slow adaptationof the outer loop
thus provides a feedback mechanism for a global
oscillation. The resulting oscillation is gelaxation
oscillation characterized by a rapid switch between
two quasi-steady states. Such oscillation mecha-
nisms are frequent in biology (see, el[d0]). In
the Fitzhugh—Nagumo model, a simplification of
Hodgkin—Huxley model for voltage oscillations in
the neuron cell membrane, the switch is between the
(high) equilibrium potential associated to potassium
ions and the (low) equilibrium potential associated to
sodium ions. The “recovery” variablR models the
voltage-dependent opening (closing) of the sodium
ion channels and the corresponding closing (opening)
of the potassium ion channels.

Theorem 2 provides a higher-dimensional gen-
eralization of the global bistability in the inner
loop of Fig. 4 The following result transforms
this global bistability result into a mechanism for
global oscillations.

Theorem 4. Under the assumptions of Theorein
suppose that the feedback interconnection*ofnd
¢, undergoes a supercritical pitchfork bifurcation at
k = k*. Then there exists a constaht- 0 such that
Vk € (k*, k* + &) and t> (k — k*)~1, the feedback
system shown ifig. 4 has a globally asymptotically
stable limit cycle inR x R\ E(0).

Proof. The proof is similar to the proof of Theorem
2. Lete = k — k*. We augment the one-dimensional
center-unstable manifold of the original system (with-
out adaptation) with the adaptation equation to obtain

y=ey —ky° = R+ 0(0, B,
R=06(=R +y),

(6=0,0=0), (21)

where treatingd = t~! as a state variable makes the
adaptation equation part of the center-unstable mani-
fold locally defined aroundx, R, ¢, 6) = (0, 0, 0, 0).
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The equilibrium(y, R) = (0, 0) of (21) is stable for A bifurcation arises at
&£ <0 >0 and unstable foe> § > 0. Standard argu-
ments, seg6, pp. 445-448]prove that there exista  +"= (T(T+w5>+24w3—
constante > 0 and a neighborhootd of the equilib-
rium (y, R) = (0, 0) of (21) such that for any fixed \/f4+2w573+w§<wn—4C>12+4w;‘r<1—5wn>+4g“2w2) /
0<d<e¢ € (0,¢], all solutions with initial condition
in U\{0} converge to a unique limit cycle. Because of
the time-scale separation, this limit cycle corresponds with
to a relaxation oscillation. 5
The global part of the proof is as in Theorem 2: G,.(s)= SH(s) __Sas+ o)
for > 0 ande = 0, the equilibrium(x, R) = (0, 0) is s+ QA -k H(s) (s +ou)(s?2+Q
globally asymptot|cally stable because the augmented nd
storageV 0S+5 1 R? satisfies the dissipation inequal-

ity V< — 5)"15()’) 0 v=2w, —k*t, Q=1+ 02(1—k*).

Theorem 2 applies only if the transfer function in (24)
6. An example is passive, which implies=w; /7: Theorem 3 extends
the result to the range of parameter&&< 2@2/1
We illustrate the main results of the paper with the because the (causal) Zames—Falb multiplier
second-order system

W3T),

2 (24)

(W;/7) — o

M@ =1=206). 26) =

0+ 0?0+ 2lw,0=u, >0, w,>0. (22)

The choice of the output = 0 + w20 results in the ~ results in the passive transfer function

transfer function
Ge($)M(s) = ———

5.
s + 02 (23) 5<+Q
52 4 2lw,s + 02’ As a second illustration, we do not enforce the Hopf

bifurcation with an additional integrator and we an-
alyze bifurcations in the feedback interconnection of

H(s) =

which is passive if

2> On 0. H (s) with ¢, determined by the transfer function
f H(s)

In this section we assume that-) is odd and mono- HiGs) = 1= KH ()

tone so that we can use the relaxed conditions of The- s + 605

orem 3 in order to prove absolute stability at the bi-
furcation point.

As a first illustration, we force the Hopf bifurcation  The bifurcation in the feedback loop differs according
scenario by considering the feedback system shown into the relative position of the poles and zerofdfs).

s2 + (2L, — k1)s + (L — kw2’

Fig. 3 If 2w, < 7, then the bifurcation arises &t = 1 and
Rewriting the system in the Lure form d&fig. 2 )
yields the transfer function Hie(s) = — 2T @n

s(s + 2w, — 1)
Gi(s)
SH(s) The (Popov) multiplierM (s) = 1 + (2{w, — 7) " Ls
=3 F(A—ks)HG) makes the transfer functial« (s) M (s) passive. As a
2 consequence, the feedback interconnectiof/of(s)
=— s(ts + ;) 5. with ¢ is absolutely stable fok <k* and globally
s34 (2wn — k1)s? + (1 + 0F (L= k)s + of bistable fork>k*.
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Finally, if 2{w, < 7, then a Hopf bifurcation arises
atk* = (2lw, /) and

Ts + co,%
524+ (11— 2w, /)02’

Hi () =

No valid multiplier could be found to prove absolute
stability of the feedback loop. The results of the paper
do not apply in this situation and the stability prop-
erties of the limit cycle may depend on the particular
nonlinearity ¢(-). Note that the limit case{, =t
leads to the transfer function

TS +w5

)= o A s + A= 02

for which a bifurcation occurs dt* = 1. The corre-
sponding critical transfer function is theH«(s) =
(ts + w?)/s? which is a classical counter-example to
Aizerman conjecturgl7] and therefore not absolutely
stable.

7. Conclusions
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